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Abstract

The art of solving the Mastermind puzzle was initiated by Donald Knuth and
is already more than 30 years old; despite that, it still receives much attention
in operational research and computer games journals, not tomention the nature-
inspired stochastic algorithm literature. In this paper wetry to suggest a strategy
that will allow nature-inspired algorithms to obtain results as good as those based
on exhaustive search strategies; in order to do that, we firstreview, compare and
improve current approaches to solving the puzzle; then we test one of these strate-
gies with an estimation of distribution algorithm. Finally, we try to find a strategy
that falls short of being exhaustive, and is then amenable for inclusion in nature
inspired algorithms (such as evolutionary of particle swarm algorithms). This pa-
per proves that by the incorporation of local entropy into the fitness function of the
evolutionary algorithm it becomes a better player than a random one, and gives a
rule of thumb on how to incorporate the best heuristic strategies to evolutionary
algorithms without incurring in an excessive computational cost.

Keywords: games, Mastermind, bulls and cows, search strategies, oracle games

1 Introduction

Mastermind in its current version is a board game that was introduced by the telecom-
munications expert Mordecai Merowitz [15] and sold to the company Invicta Plastics,
who renamed it to its actual name; in fact, Mastermind is a version of a traditional puz-
zle calledbulls and cowsthat dates back to the Middle Ages. In any case, Mastermind
is a puzzle (rather than a game) in which two persons, thecodemakerandcodebreaker
try to outsmart each other in the following way:

• The codemaker sets a lengthℓ combination ofκ symbols. In the classical ver-
sion,ℓ= 4 andκ = 6, and color pegs are used as symbols over a board with rows
of ℓ= 4 holes; however, in this paper we will use uppercase lettersstarting with
A instead of colours.
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• The codebreaker then tries to guess this secret code by producing a combination.

• The codemaker gives a response consisting on the number of symbols guessed in
the right position (usually represented as black pegs) and the number of symbols
in an incorrect position(usually represented as white pegs).

• The codebreaker then, using that information as a hint, produces a new combi-
nation until the secret code is found.

For instance, a game could go like this: The codemaker sets the secret codeABBC.
The rest of the game is shown in Table 1.

Combination Response
AABB 2 black, 1 white
ACDE 1 black, 1 white
FFDA 1 white
ABBE 3 black
ABBC 4 black

Table 1: Progress in a Mastermind game that tries to guess thesecret combination
ABBC. The player here is not particularly clueful, playing a third combination that is
not consistentwith the first one, not coinciding in two positions and one color (corre-
sponding to the 2 black/1 white response given by the codemaker) with it.

Different variations of the game include giving information on which position has
been guessed correctly, avoiding repeated symbols in the secret combination (bulls and
cowsis actually this way), or allowing the codemaker to change the code during the
game (but only if this does not make responses made so far false).

In any case, the codebreaker is allowed to make a maximum number of combina-
tions (usually fifteen, or more for larger values ofκ andℓ), and score corresponds to
the number of combinations needed to find the secret code; after repeating the game
a number of times with codemaker and codebreaker changing sides, the one with the
lower score wins.

Since Mastermind is asymmetric, in the sense that the position of one of the players
after setting the secret code is almost completely passive,and limited to give hints as
a response to the guesses of the codebreaker, it is rather a puzzle than a game, since
the codebreaker is not really matching his skills against the codemaker, but facing a
problem that must be solved with the help of hints, the implication being that playing
Mastermind is more similar to solving a Sudoku than to a game of chess; thus, the
solution to Mastermind, unless in a very particular situation (always playing with an
opponent who has a particular bias for choosing codes, or maybe playing the dynamic
code version), is a search problem with constraints.

What makes this problem interesting is its relation to other, generally calledora-
cle problems such as circuit and program testing, differentialcryptanalysis and other
puzzle games (these similarities were reviewed in our previous paper [10]) is the fact
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that it has been proved to be NP-complete [14, 5] and that there are several open is-
sues, namely, what is the lowest average number of guesses you can achieve, how to
minimize the number of evaluations needed to find them (and thus the run-time of the
algorithm), and obviously, how it scales when increasingκ and ℓ. This paper will
concentrate on the first issue.

This NP completeness implies that it is difficult to find algorithms that solve the
problem in a reasonable amount of time, and that is why in our previous work [10, 9, 2]
we introduced stochastic evolutionary and simulated annealing algorithms that solved
the Mastermind puzzle in the general case, finding solutionsin a reasonable amount of
time that scaled roughly logarithmically with problem size. The strategy followed to
play the game was optimal in the sense that is was guaranteed to find a solution after
a finite number of combinations; however, there was no additional selection on the
combination played other than the fact that it was consistent with the responses given
so far.

In this paper, after reviewing how the state of the art in solving this puzzle has
evolved in the last few years, we examine how we could improvethe code-breaking
skills of an evolutionary algorithm by using different techniques, and how these tech-
niques can be further optimized. In order to do that we examine different ways of
scoring combinations in the search space, how to choose one combination out of a set
of combinations that have exactly the same score, and how allthat can be applied to
a simple estimation of distribution algorithm to improve results over a standard one.
This paper presents for the first time an evolutionary algorithm that biases search so
that combinations played have a better chance of reducing the size of the remaining
search space, and adapt to an stochastic environment deterministic techniques that had
been previously published; all techniques, unlike our former papers, have been tested
over the whole code space, instead of a random sample, so thatthey can be compared
and yield significant results.

The rest of the paper is organized as follows: next we establish terminology and
examine the state of the art; then heuristic strategies for Mastermind are examined in
Section 3; the way they could be adapted to an evolutionary algorithm is presented in
Section 5, and finally, conclusions are drawn in the closing section 6

2 State of the art

Before presenting the state of the art, a few definitions are needed. We will use the
termresponsefor the return code of the codemaker to a played combination,cplayed. A
response is therefore a function of the combination,cplayed and the secret combination
csecret, let the response be denoted byh(cplayed,csecret). A combinationc is consistent
with cplayed iff

h(cplayed,csecret) = h(cplayed,c) (1)

that is, if the combination has as many black and white pins with respect to the played
combination as the played combination with respect to the secret combination. Fur-
thermore, a combination isconsistentiff

h(ci ,c) = h(ci ,csecret) for i = 1..n (2)
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wheren is the number of combinations,ci , played so far; that is,c is consistent with
all guesses made so far. A combination that is consistent is acandidate solution. The
concept of consistent combination will be important for characterizing different ap-
proaches to the game of Mastermind.

One of the earliest strategies, by Knuth [6], is perhaps the most intuitive for Master-
mind. In this strategy the player selects the guess that reduces the number of remaining
consistent guesses and the opponent the return code leadingto the maximum number of
guesses. Using a complete minimax search Knuth shows that a maximum of 5 guesses
are needed to solve the game using this strategy. This type ofstrategy is still the most
widely used today: most algorithms for Mastermind start by searching for a consistent
combination to play.

In some cases once a single consistent guess is found it is immediately played, in
which case the object is to find a consistent guess as fast as possible. For example, in
[10] an evolutionary algorithm is described for this purpose. These strategies are fast
and do not need to examine a big part of the space. Playing a consistent combinations
eventually produces a number of guesses that uniquely determine the code. However,
the maximum, and average, number of combinations needed is usually high. Hence,
some bias must be introduced in the way combinations are searched. If not, the guesses
will be no better than a purely random approach, as solutionsfound (and played) are a
random sample of the space of consistent guesses.

The alternative to discovering a single consistent guess isto collect a set of consis-
tent guesses and select among them the best alternative. Forthis a number of heuristics
have been developed over the years. Typically these heuristics require all consistent
guesses to be first found. The algorithms then use some kind ofsearch over the space
of consistent combinations, so that only the guess that extracts the most information
from the secret code is issued, or else the one that reduces asmuch as possible the set
of remaining consistent combinations. However, this is obviously not known in ad-
vance. To each combination corresponds a partition of the rest of the space, according
to their match (the number of blacks and white pegs that wouldbe the response when
matched with each other). Let us consider the first combination: if the combination
considered is AABB, there will be 256 combinations whose response will be 0b, 0w
(those with other colors), 256 with 0b, 1w (those with eitheran A or a B), etc. Some
partitions may also be empty, or contain a single element (4b, 0w will contain just
AABB, obviously). For a more exhaustive explanation see [7]. Each combination is
thus characterized by the features of these partitions: thenumber of non-empty ones,
the average number of combinations in them, the maximum, andother characteristics
one may think of.

The path leading to the most successful strategies to date include using theworst
case, expected case, entropy[13, 3] andmost parts[7] strategies. Theentropystrategy
selects the guess with the highest entropy. The entropy is computed as follows: for each
possible responsei for a particular consistent guess, the number of remaining consistent
guesses is found. The ratio of reduction in the number of guesses is also thea priori
probability,pi , of the secret code being in the corresponding partition. The entropy is
then computed as∑n

i=1 pi log2(1/pi), where log2(1/pi) is the information in bit(s) per
partition, and can be used to select the next combination to play in Mastermind [13].
Theworst caseis a one-ply version of Knuth’s approach, but Irving [4] suggested using
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theexpected caserather than the worst case. Kooi [7] noted, however, that thesize of
the partitions is irrelevant and that rather the number of non empty partitions created,n,
was important. This strategy is calledmost parts. The strategies above require one-ply
look-ahead and either determining the size of resulting partitions and/or the number of
them. Computing the number of them is, however, faster than determining their size.
For this reason themost partsstrategy has a computational advantage.

The heuristic strategies described above use some form of look-ahead which is
computationally expensive. If no look-ahead is used to guide the search a guess is se-
lected purely atrandom. However, it may be possible to discriminate by using local
information. If this were possible one could even dismiss searching for all consis-
tent guesses and search for a single consistent guess with the bias. In section 3 these
heuristic strategies are compared. In section 4 an EDA usingonly local information is
compared with those that need to examine all consistent guessed in order to select the
best one.

3 Comparison of heuristic strategies

As has been mentioned before, there have been a number of different strategies pro-
posed over the years for selecting among consistent guessesin Mastermind. These
heuristics do not consider an exhaustive minimax search, but rather one-ply search.
What is, however, not clear in these research papers is how ties are broken, which
probably implies that afirst come, first servedapproach is taken, using the first combi-
nation in lexicographical order out of all tied combinations. For this reason we propose
to perform a comparison of the heuristic methods here where the ties are broken ran-
domly. Each strategy is, therefore, used on all possible secret combinations (they are
64 = 1296) using ten independent runs.

The heuristics compared are theentropy, most partsandworst casestrategy, as
performed by Bestavros and Belal [3]. The worst case refers to the fact that for each
possible return code for a particular guess the smallest reduction in assumed, i.e. the
worst case. The actual consistent guess chosen is the one which maximizes the worst
case. Finally, theexpected sizestrategy, [4] is also tested; in this strategy the expected
case is used instead of the worst case. These strategies are compared with therandom
strategy.

The results of the experiments are given in table 2. The first combination played
is always AABC, as proposed by [4]. The Wilcoxon rank sum (used instead of t-
test since the variable does not follow a normal distribution) with a 0.05 significance
level is used to determine which results are statistically different form another. The
horizontal lines are used to group together heuristics thatare not statistically different
from the other. From these results we can gather that there isno statistical difference
between theentropyandmost partsstrategies. However, out of all games played the
maximum number of guesses needed by the Entropy strategy wasonly 6 while for
most parts it was 7. These strategies are also better than theworst andexpectedcase,
which are statistically equivalent. For the worst case strategy used, nevertheless, only
a maximum of 6 guesses, unlike the expected case with 7. The worst performer is the
randomstrategy which also required a maximum of 8 guesses. Finally, note that the
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Strategy min mean median max st.dev. max
guesses

Entropy 4.383 4.408 4.408 4.424 0.012 6
Most parts 4.383 4.410 4.412 4.430 0.013 7
Expected size 4.447 4.470 4.468 4.490 0.015 7
Worst case 4.461 4.479 4.473 4.506 0.016 6
Random 4.566 4.608 4.608 4.646 0.026 8

Table 2: A comparison of the mean number of games played usingall 64 colour com-
binations and breaking ties randomly, ranked from best to worst average number of
guesses needed. Statistics are given for 10 independent experiments. The maximum
number of moves used for the 10× 64 games is also presented in the final column.
Horizontal separators are given for statistically independent results.

optimal expected result on playing all secrets is 4.340 [8].

4 Estimation of distribution algorithm using local en-
tropy

The common approach to using evolutionary algorithms for Mastermind, is simply
to search for a single consistent guess which is then immediately playing it. This is
especially true for the generalized version of the game, forN > 6 andL > 4, where the
task of just finding a consistent guess can be difficult. The result of such an approach
is likely to do as well as the random strategy discussed in theprevious sections. For
steady state evolutionary algorithms it may, however, be the case that the consecutive
consistent guesses found may be similar to others played before. That is, the strategy
of play may not necessarily be purely random. In any case it ishighly likely that
evolutionary algorithms of this type will not do better thanthe random strategy, as seen
above, since consistent combinations found are a random sample of the set of consistent
combinations.

In this section we investigate the performance of strategies that find a single con-
sistent guess and play it immediately. In this case we use an estimation of distribution
algorithm [12]EDA included with theAlgorithm::Evolutionary Perl module
[11], with the whole EDA-solving algorithm available asAlgorithm::MasterMind::EDA
from CPAN (the comprehensive Perl Archive Network). This isan standard EDA that
uses a population of 200 individuals and a replacement rate of 0.5; each generation,
half the population is generated from the previously generated distribution. The first
combination played was AABB, since it was not found significantly different from
using AABC, as before.

The fitness function used previously [10] to find consistent guesses is as follows,

f (cguess) =
n

∑
i=1

|h(ci ,cguess)−h(ci,csecret)|
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that is, the sum of the absolute difference of the number of white and black pegs needed
to make the guess consistent. However, this approach is likely to perform as well as
the random strategy discussed in the previous section. Whenfinding a single consistent
guess we cannot apply the heuristic strategies from the previous section. For this rea-
son we introduce now a local entropy measure, which can be applied to non-consistent
guesses and so bias our search. The local entropy assumes that the fact that some
combinations are better than others depends on its informational content, and that in
turn depends on the entropy of the combination along with therest of the combina-
tions played so far. To computelocal entropy, the combination is concatenated withn
combinations played so far and its Shannon entropy computed:

s(cguess) = ∑
g∈{A,...,F}

#g
(n+1)ℓ

log

(

(n+1)ℓ
#g

)

(3)

with g being a symbol in the alphabet and # denotes the number of them. Thus, the
fitness function which includes the local entropy is defined as,

fℓ(cguess) =
s(cguess)

1+ f (cguess)

In this way a bias is introduced to the fitness to as to select the guess with the high-
est local entropy. When a consistent combination is found, the combination with the
highest entropy found in the generation is played (which might be the only one or one
among several; however, no special provision is done to generate several).

The result of ten independent runs of the EDA over the whole search space are
now compared with the results of the previous section. Theseresults may be seen in
table 3. Two EDA experiments are shown, one using the fitness function designed to
find a consistent guess only (f ) and ones using local entropyfℓ. The EDA using local
entropy is statistically better than playing pure random, whereas the other EDA is not.
In order to confirm the usefulness of the local entropy, an additional experiment was
performed. This time, as in the previous sections, all consistent guesses are found and
the one with the highest local entropy played. This results is labelledLocalEntropyin
table 3. The results are not statistically different from the EDA results using fitness
function fℓ.

As a local conclusion, theEntropymethod seemed to perform the best on average,
but the estimation of distribution algorithm is not statistically different from (admit-
tedly naive) exhaustive search strategies such as LocalEntropy and performs signifi-
cantly better than the Random algorithm on average.

We should remark that the objective of this paper is not to show which strategy is
the best runtime-wise, or which one offers the best algorithmic performance/runtime
trade-off; but in any case we should note that the algorithm with the least number of
evaluations and lowest runtime is the EDA. However, its average performance as a
player is not as good as the rest, so some improvement might beobtained by creating
a set of possible solutions. It remains to be seen how many solutions would be needed,
but that will be investigated in the next section.
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Strategy min mean median max st.dev. max
guesses

Entropy 4.383 4.408 4.408 4.424 0.012 6
Most parts 4.383 4.410 4.412 4.430 0.013 7
Expected size 4.447 4.470 4.468 4.490 0.015 7
Worst case 4.461 4.479 4.473 4.506 0.016 6
LocalEntropy 4.529 4.569 4.568 4.613 0.021 7
EDA+ fℓ 4.524 4.571 4.580 4.600 0.026 7
EDA+ f 4.562 4.616 4.619 4.665 0.032 7
Random 4.566 4.608 4.608 4.646 0.026 8

Table 3: A comparison of the mean number of games played usingall 64 colour com-
binations and breaking ties randomly, ranked from best to worse mean number of com-
binations. Statistics are given for 10 independent experiments. The maximum number
of moves used for the 10×64 games is also presented in the final column. Horizontal
separators are given for statistically independent results.

5 Heuristics based on a subset of consistent guesses

Following a tip in one of our former papers, recently Berghman et al. [1] proposed
an evolutionary algorithm which finds a number of consistentguesses and then uses a
strategy to select which one of these should be played. The strategy they apply is not
unlike theexpected sizestrategy. However, it differs in some fundamental ways. In
their approach each consistent guess is assumed to be the secret in turn and each guess
played against every different secret. The return codes arethen used to compute the
size of the set of remaining consistent guesses in the set. Anaverage is then taken over
the size of these sets. Here, the key difference between theexpected sizemethod is that
only a subset of all possible consistent guesses is used and some return codes may not
be considered or considered more frequently than once, which might lead to a bias in
the result. Indeed they remark that their approach is computationally intensive which
leads them to reduce the size of this subset further. Note that Berghman et al. only
present the result of a single evolutionary run and so their results cannot be compared
with those here.

Their approach is, however, interesting, and lead us to consider the case where an
evolutionary algorithms has been designed to find a maximum of µ consistent guesses
within some finite time. It will be assumed that this subset issampled uniformly and
randomly from all possible consistent guesses. The question is, how do the heuristic
strategies discussed above work on a randomly sampled subset of consistent guesses?
The experiment performed in the previous sections are now repeated, but this time
only using the four best one-ply look-ahead heuristic strategies on a random subset
of guesses, bounded by sizeµ . If there are many guesses that give the same num-
ber of partitions or similar entropy then perhaps taking a random subset would be a
good representation for all guesses. This has implicationsnot only with respect to the
application of EAs but also to the common strategies discussed here.

The size of the subsets are fixed at 10, 20, 30, 40, and 50, in order to investigate the
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influence of the subset size. The results for these experiments and their statistics are
presented in table 4. The results are presented are as expected better as the subset size,
µ , gets bigger. Noticeable is the fact that theentropyandmost partsstrategies perform
the best as before, however, atµ = 40 and 50 the entropy strategy is better.

Strategy min mean median max st.dev. max
guesses

µ = 10
Most parts 4.429 4.454 4.454 4.477 0.016 7
Entropy 4.438 4.468 4.476 4.483 0.016 7
Expected size 4.450 4.472 4.474 4.493 0.014 7
Worst case 4.447 4.486 4.487 4.519 0.020 7

µ = 20
Entropy 4.394 4.423 4.426 4.455 0.021 7
Most parts 4.424 4.431 4.427 4.451 0.009 7
Expected size 4.427 4.454 4.455 4.481 0.017 7
Worst case 4.429 4.453 4.451 4.486 0.017 7

µ = 30
Entropy 4.380 4.413 4.410 4.443 0.020 6
Most parts 4.393 4.416 4.416 4.435 0.015 7
Expected size 4.426 4.453 4.456 4.491 0.019 7
Worst case 4.434 4.459 4.461 4.477 0.013 7

µ = 40
Entropy 4.372 4.398 4.399 4.426 0.017 7
Most parts 4.383 4.424 4.427 4.448 0.020 7
Expected size 4.418 4.457 4.455 4.491 0.023 7
Worst case 4.424 4.458 4.457 4.490 0.022 7

µ = 50
Entropy 4.365 4.397 4.393 4.438 0.020 6
Most parts 4.400 4.424 4.422 4.454 0.017 7
Expected size 4.419 4.453 4.453 4.495 0.022 7
Worst case 4.431 4.456 4.457 4.474 0.012 6

Table 4: Statistics for the average number of guesses for different maximum sizesµ
of subsets of consistent guesses. The horizontal lines are used as before to indicate
statistical independent, with the exception of one case: for µ = 10 the expected size
and worst case are not independent.

Is there a statistical difference between the different subset sizes? To answer this
we look at only the two best strategies in more detail,entropyandmost parts, and
compare their performances for the different subset sizes,µ , and using the complete
set, case whenµ = ∞, as presented in table 3. These results are given in table 5 and
6. From this analysis it may be concluded that a set size ofµ = 20 is sufficiently large
and not statistically different from using the entire set ofconsistent guesses. This is
actually quite a large reduction is the set size, which is about 250 on average after the
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first guess, then 55, followed by 12 [1].

µ = min mean median max st.dev.

10 4.438 4.468 4.476 4.483 0.016
20 4.394 4.423 4.426 4.455 0.021
30 4.380 4.413 4.410 4.443 0.020
40 4.372 4.398 4.399 4.426 0.017
50 4.365 4.397 4.393 4.438 0.020
∞ 4.383 4.408 4.408 4.424 0.012

Table 5: No statistical advantage is gained when using a set size larger thanµ = 30
when using theentropystrategy. However, there is also no statistically difference be-
tweenµ =20 and bothµ =30 andµ =∞ (the only cases not indicated by the horizontal
lines).

µ = min mean median max st.dev.

10 4.429 4.454 4.454 4.477 0.016
20 4.424 4.431 4.427 4.451 0.009
30 4.393 4.416 4.416 4.435 0.015
40 4.383 4.424 4.427 4.448 0.020
50 4.400 4.424 4.422 4.454 0.017
∞ 4.383 4.410 4.412 4.430 0.013

Table 6: No statistical advantage is gained when using a set size larger thanµ = 20 for
themost partsstrategy. However, there is a statistical difference betweenµ = 20 and
µ = ∞ (the only case not indicated by the horizontal lines.

This implies that, at least in this case, using a subset of thecombination pool that
is around 1/10th of the total size potentially yields a result that is as good as using the
whole set; even as algorithmically finding 20 tentative solutions is harder than finding
a single one, using this in stochastic search algorithms such as the EDA mentioned
above or an evolutionary algorithm holds the promise of combining the accuracy of
exhaustive search algorithms with the speed of an EDA or an EA. In any case, for
spaces bigger thanκ = 6, ℓ = 4 there is no other option, and this 1/10 gives at least
a rule of thumb. How this proportion grows with search space size is still an open
question.

6 Discussion and Conclusion

In this paper we have tried to study and compare the differentheuristic strategies for the
simplest version of Mastermind in order to come up with a nature-inspired algorithm
that is able to beat them in terms of running time and scalability. The main problem
with heuristic strategies is that they need to have the wholesearch space in memory;
even the most advanced ones that run over it only once will become unwieldy as soon
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asℓ or κ increase. However, evolutionary algorithms have already been proved [10] to
scale much better, the only problem being that their performance as players is no better
than a random player.

In this paper, after improving (or maybe just clarifying) heuristic and deterministic
algorithms with an random choice of a combination to play, wehave incorporated the
simplest of those strategies to an estimation of distribution algorithm (the so-called
local entropy, which takes into account the amount ofsurprisethe new combination
implies); results are promising, but still fall short of thebest heuristic strategies, which
take into account the partition of search space created by each combination. That is
why we have tried to compute the subset that would be able to obtain results that
are indistinguishable, in the statistical sense, from those obtained with the whole set,
coming up with a subset whose size is around 10% of the whole one, being thus less
computational intensive and easily incorporated into an evolutionary algorithm.

However, how this is incorporated within the evolutionary algorithm remains to be
seen, and will be one of our future lines of work. So far, distance to consistency and
entropy are combined in an aggregative fitness function; thequality of partitions in-
duced will also have to be taken into account; however, thereare several ways of doing
this: putting consistent solutions in anarchive, in the same fashion that multiobjec-
tive optimization algorithms do, leave them into the population and take the quality of
partitions as another objective, not to mention the evolutionary parameter issues them-
selves: population size, operator rate. Our objective, in this sense, will be not only to
try and minimize the number of average/median games played,but also to minimize
the proportion of the search space examined to find the final solution.

All the tests and algorithms have been implemented using theMatlab package, and
are available as open source source software with a GPL licence from the authors.
The evolutionary algorithm and several mastermind strategies are also available from
CPAN; most results and configuration files needed to compute them are available from
the group’s CVS server.
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