Adapting Heuristic Mastermind Strategies to
Evolutionary Algorithms

Thomas Philip Runarssbn Juan J. Merelo-Guervds

August 14, 2018

Abstract

The art of solving the Mastermind puzzle was initiated by 8ldrknuth and
is already more than 30 years old; despite that, it still kesemuch attention
in operational research and computer games journals, moetdion the nature-
inspired stochastic algorithm literature. In this papertoyeto suggest a strategy
that will allow nature-inspired algorithms to obtain resuds good as those based
on exhaustive search strategies; in order to do that, werévstw, compare and
improve current approaches to solving the puzzle; then steotee of these strate-
gies with an estimation of distribution algorithm. Finalye try to find a strategy
that falls short of being exhaustive, and is then amenabl@nfdusion in nature
inspired algorithms (such as evolutionary of particle swatgorithms). This pa-
per proves that by the incorporation of local entropy in®fitness function of the
evolutionary algorithm it becomes a better player than dsanone, and gives a
rule of thumb on how to incorporate the best heuristic siateto evolutionary
algorithms without incurring in an excessive computatiauest.

Keywords: games, Mastermind, bulls and cows, search strategiedegames

1 Introduction

Mastermind in its current version is a board game that waedlntced by the telecom-
munications expert Mordecai Merowiiz [15] and sold to thenpany Invicta Plastics,
who renamed it to its actual name; in fact, Mastermind is aigerof a traditional puz-

zle calledbulls and cowshat dates back to the Middle Ages. In any case, Mastermind
is a puzzle (rather than a game) in which two personsgtidemakeandcodebreaker

try to outsmart each other in the following way:

arxiv:0912.2415v1 [cs.NE] 12 Dec 2009

e The codemaker sets a lengtltombination ofk symbols. In the classical ver-
sion,¢ =4 andk = 6, and color pegs are used as symbols over a board with rows
of £ = 4 holes; however, in this paper we will use uppercase lestarsing with
A instead of colours.

*University of Iceland, ematipr@bhi.is

TDepartment of Architecture and Computer Technology, ETSlniversity of Granada, Spain, email
jmerelo@geneura.ugr.es

http://arxiv.org/abs/0912.2415v1

e The codebreaker then tries to guess this secret code byg@ngohicombination.

e The codemaker gives a response consisting on the numbenbioy guessed in
the right position (usually represented as black pegs)f@damber of symbols
in an incorrect position(usually represented as white pegs

e The codebreaker then, using that information as a hint,yresla new combi-
nation until the secret code is found.

For instance, a game could go like this: The codemaker setseitret codABBC
The rest of the game is shown in Table 1.

Combination Response
AABB 2 black, 1 white
ACDE 1 black, 1 white
FFDA 1 white
ABBE 3 black
ABBC 4 black

Table 1: Progress in a Mastermind game that tries to guesseitret combination
ABBC The player here is not particularly clueful, playing a thdtombination that is
not consistentvith the first one, not coinciding in two positions and oneotdtorre-
sponding to the 2 black/1 white response given by the codenaiith it.

Different variations of the game include giving information which position has
been guessed correctly, avoiding repeated symbols in thetssmbinationkfulls and
cowsis actually this way), or allowing the codemaker to changedbde during the
game (but only if this does not make responses made so faj fals

In any case, the codebreaker is allowed to make a maximum ewofiltombina-
tions (usually fifteen, or more for larger valuestofind/), and score corresponds to
the number of combinations needed to find the secret cods, refpeating the game
a number of times with codemaker and codebreaker changieg,sihe one with the
lower score wins.

Since Mastermind is asymmetric, in the sense that the pagifione of the players
after setting the secret code is almost completely pasaieJimited to give hints as
a response to the guesses of the codebreaker, it is rathexzke pnan a game, since
the codebreaker is not really matching his skills againstabdemaker, but facing a
problem that must be solved with the help of hints, the ingilan being that playing
Mastermind is more similar to solving a Sudoku than to a gafmehess; thus, the
solution to Mastermind, unless in a very particular sitatfalways playing with an
opponent who has a particular bias for choosing codes, obenghaying the dynamic
code version), is a search problem with constraints.

What makes this problem interesting is its relation to qtbenerally calledra-
cle problems such as circuit and program testing, differemtigbtanalysis and other
puzzle games (these similarities were reviewed in our prespaper[10]) is the fact

that it has been proved to be NP-compléte [14, 5] and thaetaer several open is-
sues, namely, what is the lowest average number of guessesayoachieve, how to
minimize the number of evaluations needed to find them (ansl tihe run-time of the
algorithm), and obviously, how it scales when increasingnd ¢. This paper will
concentrate on the first issue.

This NP completeness implies that it is difficult to find aligfmms that solve the
problem in a reasonable amount of time, and that is why in cewipus work[10, 9, 12]
we introduced stochastic evolutionary and simulated dimgealgorithms that solved
the Mastermind puzzle in the general case, finding solufioaseasonable amount of
time that scaled roughly logarithmically with problem sizEhe strategy followed to
play the game was optimal in the sense that is was guararddidita solution after
a finite number of combinations; however, there was no auitli selection on the
combination played other than the fact that it was consistéth the responses given
so far.

In this paper, after reviewing how the state of the art in sg\this puzzle has
evolved in the last few years, we examine how we could imptbeecode-breaking
skills of an evolutionary algorithm by using different tedfues, and how these tech-
niques can be further optimized. In order to do that we examndifferent ways of
scoring combinations in the search space, how to chooseambigation out of a set
of combinations that have exactly the same score, and hothailcan be applied to
a simple estimation of distribution algorithm to improveués over a standard one.
This paper presents for the first time an evolutionary atorithat biases search so
that combinations played have a better chance of reducmgitte of the remaining
search space, and adapt to an stochastic environment d@gtimiechniques that had
been previously published; all techniques, unlike our farmapers, have been tested
over the whole code space, instead of a random sample, sthélyatan be compared
and yield significant results.

The rest of the paper is organized as follows: next we estalbdirminology and
examine the state of the art; then heuristic strategies fastdtmind are examined in
SectiorB; the way they could be adapted to an evolutionggridhm is presented in
Sectiorb, and finally, conclusions are drawn in the closewisn®

2 Stateof theart

Before presenting the state of the art, a few definitions esdad. We will use the
termresponsdor the return code of the codemaker to a played combinatipgeqs A
response is therefore a function of the combinatipn,eq4and the secret combination
Csecres let the response be denotedtiyiayed Csecre). A cOmbinationc is consistent
with Cplayed iff

h(Cpiayed: Csecret) = N(Cpiayed C) (1)

that is, if the combination has as many black and white piris reispect to the played
combination as the played combination with respect to tleeeseombination. Fur-
thermore, a combination onsistentff

h(ci,c) = h(ci, Csecrey) fori = 1..n (2)

wheren is the number of combinations;, played so far; that is; is consistent with

all guesses made so far. A combination that is consistent@ndidate solution. The
concept of consistent combination will be important for rettderizing different ap-
proaches to the game of Mastermind.

One of the earliest strategies, by Kntith [6], is perhaps tbstintuitive for Master-
mind. In this strategy the player selects the guess thatesdihe number of remaining
consistent guesses and the opponent the return code l¢adirgmaximum number of
guesses. Using a complete minimax search Knuth shows thakiamam of 5 guesses
are needed to solve the game using this strategy. This typeatégy is still the most
widely used today: most algorithms for Mastermind starté&grshing for a consistent
combination to play.

In some cases once a single consistent guess is found it isdimtely played, in
which case the object is to find a consistent guess as fastsathfg For example, in
[10Q] an evolutionary algorithm is described for this purpo¥hese strategies are fast
and do not need to examine a big part of the space. Playingsistent combinations
eventually produces a number of guesses that uniquelyndigtetthe code. However,
the maximum, and average, number of combinations needexliadly high. Hence,
some bias must be introduced in the way combinations arefsedrIf not, the guesses
will be no better than a purely random approach, as solufmmsd (and played) are a
random sample of the space of consistent guesses.

The alternative to discovering a single consistent guetssdsllect a set of consis-
tent guesses and select among them the best alternativihis-amumber of heuristics
have been developed over the years. Typically these hiesrigtquire all consistent
guesses to be first found. The algorithms then use some kiselaoth over the space
of consistent combinations, so that only the guess thahetstithe most information
from the secret code is issued, or else the one that reducesdasas possible the set
of remaining consistent combinations. However, this isiolrssty not known in ad-
vance. To each combination corresponds a partition of tteofehe space, according
to their match (the number of blacks and white pegs that wbalthe response when
matched with each other). Let us consider the first comlbnatif the combination
considered is AABB, there will be 256 combinations whos@oese will be Ob, Ow
(those with other colors), 256 with 0b, 1w (those with eitharA or a B), etc. Some
partitions may also be empty, or contain a single element @hbwill contain just
AABB, obviously). For a more exhaustive explanation sée Fach combination is
thus characterized by the features of these partitionsntineber of non-empty ones,
the average number of combinations in them, the maximumpémer characteristics
one may think of.

The path leading to the most successful strategies to deltedim using thevorst
case expected casentropy[13,[3] andmost partd[7] strategies. Thentropystrategy
selects the guess with the highest entropy. The entropynguated as follows: for each
possible responsédor a particular consistent guess, the number of remairongistent
guesses is found. The ratio of reduction in the number of gpeeis also tha priori
probability, p;, of the secret code being in the corresponding partitiore diitropy is
then computed a§}', pilog,(1/pi), where log(1/pi) is the information in bit(s) per
partition, and can be used to select the next combinatiotatpip Mastermind[[1B].
Theworst casés a one-ply version of Knuth’s approach, but Irviag [4] segted using

theexpected casether than the worst case. Kool [7] noted, however, thastbe of
the partitions is irrelevant and that rather the number oferopty partitions created,
was important. This strategy is calletbst parts The strategies above require one-ply
look-ahead and either determining the size of resultingtars and/or the number of
them. Computing the number of them is, however, faster tledarchining their size.
For this reason themost partsstrategy has a computational advantage.

The heuristic strategies described above use some formokfdhead which is
computationally expensive. If no look-ahead is used to gtie search a guess is se-
lected purely atandom However, it may be possible to discriminate by using local
information. If this were possible one could even dismissrcging for all consis-
tent guesses and search for a single consistent guess withia. In sectiohl3 these
heuristic strategies are compared. In sedtion 4 an EDA umihglocal information is
compared with those that need to examine all consistensgdas order to select the
best one.

3 Comparison of heuristic strategies

As has been mentioned before, there have been a number exfediffstrategies pro-
posed over the years for selecting among consistent guegsdéastermind. These
heuristics do not consider an exhaustive minimax searchrabber one-ply search.
What is, however, not clear in these research papers is fesnatie broken, which
probably implies that &irst come, first servedpproach is taken, using the first combi-
nation in lexicographical order out of all tied combinasoiror this reason we propose
to perform a comparison of the heuristic methods here wherdi¢s are broken ran-
domly. Each strategy is, therefore, used on all possibleeseombinations (they are
6% = 1296) using ten independent runs.

The heuristics compared are teatropy most partsandworst casestrategy, as
performed by Bestavros and Belal [3]. The worst case retetise fact that for each
possible return code for a particular guess the smallesicienh in assumed, i.e. the
worst case. The actual consistent guess chosen is the ook mhaximizes the worst
case. Finally, thexpected sizstrategy,[[4] is also tested; in this strategy the expected
case is used instead of the worst case. These strategiesmapaied with theandom
strategy.

The results of the experiments are given in tdble 2. The fosthination played
is always AABC, as proposed bi]|[4]. The Wilcoxon rank sum @usestead of t-
test since the variable does not follow a normal distritijti@ith a 0.05 significance
level is used to determine which results are statisticaiffigint form another. The
horizontal lines are used to group together heuristicsalanot statistically different
from the other. From these results we can gather that there $atistical difference
between theentropyandmost partsstrategies. However, out of all games played the
maximum number of guesses needed by the Entropy strategymias$ while for
most parts it was 7. These strategies are also better thamottséandexpectectase,
which are statistically equivalent. For the worst casetatpaused, nevertheless, only
a maximum of 6 guesses, unlike the expected case with 7. Th& performer is the
randomstrategy which also required a maximum of 8 guesses. Fjnale that the

Strategy min mean median max st.dgv. max
guessesg
Entropy 4.383 4.408 4.408 4.424 0.012 6
Most parts 4.383 4.410 4.412 4.430 0.013 7
Expected sizg 4.447 4.470 4,468 4.490 0.015 7
Worst case | 4.461 4.479 4473 4506 0.016 6
Random 4566 4.608 4608 4.646 0.026 8

Table 2: A comparison of the mean number of games played adli6§ colour com-
binations and breaking ties randomly, ranked from best tostvaverage number of
guesses needed. Statistics are given for 10 independesttigemts. The maximum
number of moves used for the ¥06* games is also presented in the final column.
Horizontal separators are given for statistically indefsart results.

optimal expected result on playing all secrets.340 [€].

4 Estimation of distribution algorithm using local en-
tropy

The common approach to using evolutionary algorithms fostelamind, is simply
to search for a single consistent guess which is then imrtediplaying it. This is
especially true for the generalized version of the game\for6 andL > 4, where the
task of just finding a consistent guess can be difficult. Tisaltef such an approach
is likely to do as well as the random strategy discussed irptheious sections. For
steady state evolutionary algorithms it may, however, lectise that the consecutive
consistent guesses found may be similar to others playextéethat is, the strategy
of play may not necessarily be purely random. In any case liighly likely that
evolutionary algorithms of this type will not do better thiwe random strategy, as seen
above, since consistent combinations found are a randoplsarfthe set of consistent
combinations.

In this section we investigate the performance of stragetiiat find a single con-
sistent guess and play it immediately. In this case we usstmation of distribution
algorithm [12]EDA included with theaAlgorithm: : Evolutionary Perl module
[11], with the whole EDA-solving algorithm available atgorithm: :MasterMind: : EDA
from CPAN (the comprehensive Perl Archive Network). Thiamsstandard EDA that
uses a population of 200 individuals and a replacement fale50 each generation,
half the population is generated from the previously geteerdistribution. The first
combination played was AABB, since it was not found signifitha different from
using AABC, as before.

The fitness function used previously [10] to find consistar@sges is as follows,

f(Cgues§ = lzl|h(ci7cgues§ - h(Ci,Csecret)|

thatis, the sum of the absolute difference of the number dteramd black pegs needed
to make the guess consistent. However, this approach iy li@gerform as well as
the random strategy discussed in the previous section. Vifiging a single consistent
guess we cannot apply the heuristic strategies from théqresection. For this rea-
son we introduce now a local entropy measure, which can bléeddp non-consistent
guesses and so bias our search. The local entropy assunéBettfact that some
combinations are better than others depends on its infasnetcontent, and that in
turn depends on the entropy of the combination along withrésé of the combina-
tions played so far. To compulecal entropy the combination is concatenated with
combinations played so far and its Shannon entropy computed

B #g (n+1)¢
S(Cguesg = Z (Nt 1)¢ log (#g) (3)

with g being a symbol in the alphabet and # denotes the number of. thénrs, the
fitness function which includes the local entropy is definged a

S(Cguesy

fy (Cgues§ = chuesg

In this way a bias is introduced to the fitness to as to selecgtless with the high-
est local entropy. When a consistent combination is foumel combination with the
highest entropy found in the generation is played (whichhmige the only one or one
among several; however, no special provision is done torgémseveral).

The result of ten independent runs of the EDA over the whoteckespace are
now compared with the results of the previous section. Theselts may be seen in
table[3. Two EDA experiments are shown, one using the fitnesstibn designed to
find a consistent guess onlf)(and ones using local entrody. The EDA using local
entropy is statistically better than playing pure randornereas the other EDA is not.
In order to confirm the usefulness of the local entropy, artehél experiment was
performed. This time, as in the previous sections, all gtest guesses are found and
the one with the highest local entropy played. This ressltalielledLocalEntropyin
table[3. The results are not statistically different frore DA results using fitness
function f,.

As a local conclusion, thEntropymethod seemed to perform the best on average,
but the estimation of distribution algorithm is not statiatly different from (admit-
tedly naive) exhaustive search strategies such as Localsnand performs signifi-
cantly better than the Random algorithm on average.

We should remark that the objective of this paper is not tavsivbich strategy is
the best runtime-wise, or which one offers the best algaiithperformance/runtime
trade-off; but in any case we should note that the algorithth the least number of
evaluations and lowest runtime is the EDA. However, its agerperformance as a
player is not as good as the rest, so some improvement mighthtaened by creating
a set of possible solutions. It remains to be seen how mangiso$ would be needed,
but that will be investigated in the next section.

Strategy min mean median max st.dgv. max
guessesy
Entropy 4.383 4.408 4,408 4.424 0.012 6
Most parts 4383 4.410 4,412 4.430 0.013 7
Expected sizg 4.447 4.470 4468 4.490 0.015 7
Worst case 4.461 4.479 4,473 4506 0.016 6
LocalEntropy | 4.529 4.569 4568 4.613 0.021 7
EDA+f, 4524 4571 4580 4.600 0.026 7
EDA+f 4562 4.616 4619 4.665 0.032 7
Random 4566 4.608 4,608 4.646 0.026 8

Table 3: A comparison of the mean number of games played adli6§ colour com-
binations and breaking ties randomly, ranked from best tesazmean number of com-
binations. Statistics are given for 10 independent expamis1 The maximum number
of moves used for the 106* games is also presented in the final column. Horizontal
separators are given for statistically independent result

5 Heuristicsbased on a subset of consistent guesses

Following a tip in one of our former papers, recently Berghmnea al. [1] proposed
an evolutionary algorithm which finds a number of consistgrésses and then uses a
strategy to select which one of these should be played. Tategy they apply is not
unlike theexpected sizstrategy. However, it differs in some fundamental ways. In
their approach each consistent guess is assumed to be theisgarn and each guess
played against every different secret. The return codeshareused to compute the
size of the set of remaining consistent guesses in the sedvémage is then taken over
the size of these sets. Here, the key difference betweesxfierted sizmethod is that
only a subset of all possible consistent guesses is usecamglreturn codes may not
be considered or considered more frequently than once hwhight lead to a bias in
the result. Indeed they remark that their approach is coatioumially intensive which
leads them to reduce the size of this subset further. NoteBitahman et al. only
present the result of a single evolutionary run and so tlesults cannot be compared
with those here.

Their approach is, however, interesting, and lead us toidenthe case where an
evolutionary algorithms has been designed to find a maximumamnsistent guesses
within some finite time. It will be assumed that this subsetampled uniformly and
randomly from all possible consistent guesses. The questjdiow do the heuristic
strategies discussed above work on a randomly sampledtfiisensistent guesses?
The experiment performed in the previous sections are npeated, but this time
only using the four best one-ply look-ahead heuristic sgrigis on a random subset
of guesses, bounded by sizge If there are many guesses that give the same num-
ber of partitions or similar entropy then perhaps takingradoan subset would be a
good representation for all guesses. This has implicatioh®nly with respect to the
application of EAs but also to the common strategies disuibsre.

The size of the subsets are fixed at 10, 20, 30, 40, and 50, @n tréhvestigate the

influence of the subset size. The results for these expetinaenl their statistics are
presented in tablg 4. The results are presented are as edfedter as the subset size,
U, gets bigger. Noticeable is the fact that #r@ropyandmost partsstrategies perform
the best as before, howeverat 40 and 50 the entropy strategy is better.

Strategy min mean median max st.dgv. max
guesseg

u=10

Most parts 4.429 4.454 4.454 4477 0.016 7
Entropy 4438 4.468 4476 4.483 0.016 7
Expected size 4.450 4.472 4474 4493 0.014 7
Worst case | 4.447 4.486 4487 4519 0.020 7
u=20

Entropy 4.394 4.423 4426 4.455 0.031 7
Most parts 4.424 4.431 4.427 4.451 0.0Q9 7
Expected size 4.427 4.454 4455 4481 0.017 7
Worst case 4.429 4.453 4451 4.486 0.047 7
u=30

Entropy 4.380 4.413 4410 4.443 0.020 6
Most parts 4.393 4.416 4416 4.435 0.015 7
Expected sizg 4.426 4.453 4456 4.491 0.019 7
Worst case | 4.434 4.459 4461 4.477 0.013 7
u=40

Entropy 4.372 4.398 4399 4.426 0.017 7
Most parts 4,383 4.424 4427 4.448 0.020 7
Expected size 4.418 4.457 4455 4491 0.0233 7
Worst case 4.424 4.458 4.457 4490 0.032 7
u=50

Entropy 4.365 4.397 4.393 4.438 0.020 6
Most parts 4,400 4.424 4,422 4.454 0.017 7
Expected size 4.419 4.453 4453 4.495 0.022 7
Worst case | 4.431 4.456 4.457 4.474 0.012 6

Table 4: Statistics for the average number of guesses ffareift maximum sizeg
of subsets of consistent guesses. The horizontal linessa@ as before to indicate
statistical independent, with the exception of one caseyufe- 10 the expected size
and worst case are not independent.

Is there a statistical difference between the differensstibizes? To answer this
we look at only the two best strategies in more detilfropyand most parts and
compare their performances for the different subset sizeand using the complete
set, case whep = », as presented in tablé 3. These results are given in[table 5 an
[6. From this analysis it may be concluded that a set size-6f20 is sufficiently large
and not statistically different from using the entire setohsistent guesses. This is
actually quite a large reduction is the set size, which iiaB80 on average after the

first guess, then 55, followed by 12 [1].

[p=] min mean median max stdqv.

10 | 4.438 4.468 4476 4.483 0.01
20 | 4.394 4.423 4.426 4.455 0.0%
30 | 4380 4.413 4410 4.443 0.07
40 | 4372 4.398 4399 4.426 0.01
50 | 4.365 4.397 4.393 4.438 0.07
00 4.383 4.408 4.408 4.424 0.01

NO~NOF,O®

Table 5: No statistical advantage is gained when using aizetarger tharu = 30
when using thentropystrategy. However, there is also no statistically diffeebe-
tweenu = 20 and bothu = 30 andu = « (the only cases not indicated by the horizontal
lines).

[u=] min mean median max stddv.

10 | 4429 4.454 4454 4477 0.016
20 | 4.424 4.431 4.427 4.451 0.009
30 | 4393 4.416 4416 4.435 0.015
40 | 4.383 4.424 4427 4.448 0.030
7
3

50 | 4.400 4.424 4.422 4.454 0.01
00 4.383 4.410 4412 4.430 0.0%

Table 6: No statistical advantage is gained when using azetssger tharu = 20 for
themost partsstrategy. However, there is a statistical difference betwe= 20 and
U = oo (the only case not indicated by the horizontal lines.

This implies that, at least in this case, using a subset ofdingbination pool that
is around ¥10th of the total size potentially yields a result that is asdjas using the
whole set; even as algorithmically finding 20 tentative Sohs is harder than finding
a single one, using this in stochastic search algorithmbk ascthe EDA mentioned
above or an evolutionary algorithm holds the promise of caimly the accuracy of
exhaustive search algorithms with the speed of an EDA or anl&Any case, for
spaces bigger thak = 6,¢ = 4 there is no other option, and this 1/10 gives at least
a rule of thumb. How this proportion grows with search spaze & still an open
question.

6 Discussion and Conclusion

In this paper we have tried to study and compare the diffdreutistic strategies for the
simplest version of Mastermind in order to come up with a reetaspired algorithm
that is able to beat them in terms of running time and scatgbirhe main problem
with heuristic strategies is that they need to have the whesch space in memory;
even the most advanced ones that run over it only once wibinecunwieldy as soon

10

as/ or k increase. However, evolutionary algorithms have alreasinlproved[10] to
scale much better, the only problem being that their peréoree as players is no better
than a random player.

In this paper, after improving (or maybe just clarifying)nistic and deterministic
algorithms with an random choice of a combination to playhaee incorporated the
simplest of those strategies to an estimation of distrdsutilgorithm (the so-called
local entropy which takes into account the amountsafrprisethe new combination
implies); results are promising, but still fall short of thest heuristic strategies, which
take into account the partition of search space created tly @@mbination. That is
why we have tried to compute the subset that would be able tairobesults that
are indistinguishable, in the statistical sense, fromehastained with the whole set,
coming up with a subset whose size is around 10% of the whade lmging thus less
computational intensive and easily incorporated into aiwionary algorithm.

However, how this is incorporated within the evolutionalgosithm remains to be
seen, and will be one of our future lines of work. So far, dis&to consistency and
entropy are combined in an aggregative fitness functiongtradity of partitions in-
duced will also have to be taken into account; however, tasreseveral ways of doing
this: putting consistent solutions in amchive in the same fashion that multiobjec-
tive optimization algorithms do, leave them into the pogiolaand take the quality of
partitions as another objective, not to mention the evohary parameter issues them-
selves: population size, operator rate. Our objectivehigm sense, will be not only to
try and minimize the number of average/median games play&dalso to minimize
the proportion of the search space examined to find the fihaico.

All the tests and algorithms have been implemented usinlyltittab package, and
are available as open source source software with a GPLckc&om the authors.
The evolutionary algorithm and several mastermind stiesegre also available from
CPAN; most results and configuration files needed to compieta tare available from
the group’s CVS server.

Acknowledgements

This paper has been funded in part by the Spanish MICYT pti®)dcHNES (Spanish
Ministerio de Educaciony Ciencia - TIN2007-68083) and Z098-06491-C04-01 and
the Junta de Andalucia PO6-TIC-02025 and P0O7-TIC-0304é.alithors are also very
grateful to the traffic jams in Granada, which allowed ligé$ moments of discussion
and interaction over this problem.

References

[1] Berghman, L., Goossens, D., Leus, R.: Efficient solu-
tions for Mastermind wusing genetic algorithms. Comput-
ers and Operations ResearcB6(6), 1880-1885 (2009). URL

http://www.scopus.com/inward/record.url?eid=2-s2.0-56549123376&partnerID=40

11

http://www.scopus.com/inward/record.url?eid=2-s2.0-56549123376&partnerID=40

[2] Bernier, J.L., Herraiz, C.1., Merelo-Guervos, JQImeda, S., Prieto, A.: Solving
mastermindusing GAs and simulated annealing: a case of dynamic camistra
optimization. In: Proceedings PPSN, Parallel Problem i&glfrom Nature 1V,
no. 1141 in Lecture Notes in Computer Science, pp. 554-568n&er-Verlag
(1996).http://citeseer.nj.nec.com/context/1245314/0

[3] Bestavros, A., Belal, A.: Mastermind, a game of diagscsirategies. Bul-
letin of the Faculty of Engineering, Alexandria Universi{¢986). URL
citeseer.ist.psu.edu/bestavros86émastermind.html. Avail-
able fromhttp://www.cs.bu.edu/fac/best/res/papers/alybull86.ps

[4] Irving, R.W.: Towards an optimum mastermind strategyurdal of Recreational
Mathematicsl1(2), 81-87 (1978-79)

[5] Kendall, G., Parkes, A., Spoerer, K. A survey of NP-
complete puzzles. ICGA JournaB1(1), 13-34 (2008). URL
http://www.scopus.com/inward/record.url?eid=2-s2.0-42949163946&partnerID=40.
Cited By (since 1996) 1

[6] Knuth, D.E.: The computer as Master Mind. J. Recreatidhahematics9(1),
1-6 (1976-77)

[7] Kooi, B.: Yet another Mastermind strat-
egy. ICGA Journal 28(1), 13-20 (2005). URL
http://www.scopus.com/inward/record.url?eid=2-s2.0-33646756877&partnerID=40

[8] Koyama, K., Lai, T.W.: An optimal Mastermind strategy.Recreational Mathe-
matics25(4) (1993/1994)

[9] Merelo-Guervos, J.J., Carpio, J., Castillo, P., RjvaM., Romero, G.: Finding a
needle in a haystack using hints and evolutionary compurtathe case of genetic
mastermind. In: A.S.W. Scott Brave (ed.) Late breaking papethe GECCO99,
pp. 184-192 (1999)

[10] Merelo-Guervbs, J.J., Castillo, P., Rivas, V.. Fimglia needle in a
haystack using hints and evolutionary computation: theeca$ evo-
lutionary MasterMind. Applied Soft Computin@(2), 170-179 (2006).
http://www.sciencedirect.com/science/article/B6W86-4FHOD6P-1/2/40a99%afa8e9c7
http://dx.doi.org/10.1016/3.asoc.2004.09.003

[11] Merelo-Guervos, J.J., Castillo, P.A., Alba, E..
Algorithm::Evolutionary, a flexible Perl module for evolutionary
computation. Soft Computing (2009). DOI 10.1007/s00509-0504-3. To be
published, accesible @tttp://s1.ugr.es/000K

[12] Muhlenbein, H., Paass, G.: From recombination of geteethe estimation of
distributions: I. binary parameters. Lecture notes in cotepsciencd 141, 178—
187 (1996)

12

http://citeseer.nj.nec.com/context/1245314/0
citeseer.ist.psu.edu/bestavros86mastermind.html
http://www.scopus.com/inward/record.url?eid=2-s2.0-42949163946&partnerID=40
http://www.scopus.com/inward/record.url?eid=2-s2.0-33646756877&partnerID=40
http://www.sciencedirect.com/science/article/B6W86-4FH0D6P-1/2/40a99afa8e9c7734baae340abecc113a
http://dx.doi.org/10.1016/j.asoc.2004.09.003
http://sl.ugr.es/000K

[13] Neuwirth, E.: Some strategies for mastermind. Zeitiscfur Operations Re-
search. Serie B6(8), B257-B278 (1982)

[14] Stuckman, J., Zhang, G.Q.: Mastermind is np-compl&eRR abs/cs/0512049

(2005)
[15] Wikipedia: Mastermind (board game) —
Wikipedia, The Free Encyclopedia (2009). URL

http://en.wikipedia.org/w/index.php?title=Mastermind_ (board_game) &0ldid=3176
[Online; accessed 9-October-2009]

13

http://en.wikipedia.org/w/index.php?title=Mastermind_(board_game)&oldid=317686771

	Introduction
	State of the art
	Comparison of heuristic strategies
	Estimation of distribution algorithm using local entropy
	Heuristics based on a subset of consistent guesses
	Discussion and Conclusion

