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0 Eagle Strategy Using Lévy Walk and Firefly Algorithms For

Stochastic Optimization

Xin-She Yang∗

Department of Engineering,University of Cambridge,

Trumpinton Street, Cambridge CB2 1PZ, UK

Suash Deb, Department of Computer Science & Engineering,

C. V. Raman College of Engineering, Bidyanagar, Mahura, Janla,

Bhubaneswar 752054, INDIA

Abstract

Most global optimization problems are nonlinear and thus difficult to solve, and they
become even more challenging when uncertainties are present in objective functions and
constraints. This paper provides a new two-stage hybrid search method, called Eagle
Strategy, for stochastic optimization. This strategy intends to combine the random
search using Lévy walk with the firefly algorithm in an iterative manner. Numerical
studies and results suggest that the proposed Eagle Strategy is very efficient for stochas-
tic optimization. Finally practical implications and potential topics for further research
will be discussed.
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1 Introduction

To find the solutions to any optimization problems, we can use either conventional
optimization algorithms such as the Hill-climbing and simplex method, or heuristic
methods such as genetic algorithms, or their proper combinations. Modern meta-
heuristic algorithms are becoming powerful in solving global optimization problems
[4, 6, 7, 9, 20, 21, 22], especially for the NP-hard problems such as the travelling
salesman problem. For example, particle swarm optimization (PSO) was developed
by Kennedy and Eberhart in 1995 [8, 9], based on the swarm behaviour such as fish and
bird schooling in nature. It has now been applied to find solutions for many optimization
applications. Another example is the Firefly Algorithm developed by the first author
[20, 21] which has demonstrated promising superiority over many other algorithms. The
search strategies in these multi-agent algorithms are controlled randomization and ex-
ploitation of the best solutions. However, such randomization typically uses a uniform
distribution or Gaussian distribution. In fact, since the development of PSO, quite a
few algorithms have been developed and they can outperform PSO in different ways
[21, 23].
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On the other hand, there is always some uncertainty and noise associated with all
real-world optimization problems. Subsequently, objective functions may have noise and
constraints may also have random noise. In this case, a standard optimization problem
becomes a stochastic optimization problem. Methods that work well for standard opti-
mization problems cannot directly be applied to stochastic optimization; otherwise, the
obtained results are incorrect or even meaningless. Either the optimization problems
have to be reformulated properly or the optimization algorithms should be modified
accordingly, though in most cases we have to do both [3, 10, 19]

In this paper, we intend to formulate a new metaheuristic search method, called
Eagle Stategy (ES), which combines the Lévy walk search with the Firefly Algorithm
(FA). We will provide the comparison study of the ES with PSO and other relevant
algorithms. We will first outline the basic ideas of the Eagle Strategy, then outline
the essence of the firefly algorithm, and finally carry out the comparison about the
performance of these algorithms.

2 Stochastic Multiobjective Optimization

An ordinary optimization problem, without noise or uncertainty, can be written as

min
x∈ℜd

fi(x), (i = 1, 2, ..., N) (1)

subject to φj(x) = 0, (j = 1, 2, ..., J),

ψk(x) ≤ 0, (k = 1, 2, ...,K), (2)

where x = (x1, x2, ..., xd)
T is the vector of design variables.

For stochastic optimization problems, the effect of uncertainty or noise on the design
variable xi can be described by a random variable ξi with a distribution Qi [10, 19].
That is

xi 7→ ξi(xi), (3)

and
ξi ∼ Qi. (4)

The most widely used distribution is the Gaussian or normal distribution N(xi, σi) with
a mean xi and a known standard deviation σi. Consequently, the objective functions
fi become random variables fi(x, ξ).

Now we have to reformulate the optimization problem as the minimization of the
mean of the objective function fi(x) or µfi

min
x∈ℜd

{µf1 , ..., µfN }. (5)

Here µfi = E(fi) is the mean or expectation of fi(ξ(x)) where i = 1, 2, ..., N . More
generally, we can also include their uncertainties, which leads to the minimization of

min
x∈ℜd

{µf1 + λσ1, ..., µfN + λσN}, (6)

where λ ≥ 0 is a constant. In addition, the constraints with uncertainty should be
modified accordingly.

In order to estimate µfi , we have to use some sampling techniques such as the Monte
Carlo method. Once we have randomly drawn the samples, we have

µfi ≈
1

Ni

Ni
∑

p=1

fi(x, ξ
(p)), (7)

where Ni is the number of samples.



3 Eagle Strategy

The foraging behaviour of eagles such as golden eagles or Aquila Chrysaetos is inspiring.
An eagle forages in its own territory by flying freely in a random manner much like the
Lévy flights. Once the prey is sighted, the eagle will change its search strategy to an
intensive chasing tactics so as to catch the prey as efficiently as possible. There are two
important components to an eagle’s hunting strategy: random search by Lévy flight (or
walk) and intensive chase by locking its aim on the target.

Furthermore, various studies have shown that flight behaviour of many animals and
insects has demonstrated the typical characteristics of Lévy flights [5, 14, 12, 13]. A
recent study by Reynolds and Frye shows that fruit flies or Drosophila melanogaster,
explore their landscape using a series of straight flight paths punctuated by a sudden
900 turn, leading to a Lévy-flight-style intermittent scale-free search pattern. Studies
on human behaviour such as the Ju/’hoansi hunter-gatherer foraging patterns also show
the typical feature of Lévy flights. Even light can be related to Lévy flights [2]. Sub-
sequently, such behaviour has been applied to optimization and optimal search, and
preliminary results show its promising capability [12, 14, 16, 17].

3.1 Eagle Strategy

Now let us idealize the two-stage strategy of an eagle’s foraging behaviour. Firstly, we
assume that an eagle will perform the Lévy walk in the whole domain. Once it finds a
prey it changes to a chase strategy. Secondly, the chase strategy can be considered as
an intensive local search using any optimization technique such as the steepest descent
method, or the downhill simplex or Nelder-Mead method [11]. Obviously, we can also
use any efficient metaheuristic algorithms such as the particle swarm optimization (PSO)
and the Firefly Algorithm (FA) to do concentrated local search. The pseudo code of
the proposed eagle strategy is outlined in Fig. 1.

The size of the hypersphere depends on the landscape of the objective functions. If
the objective functions are unimodal, then the size of the hypersphere can be about the
same size of the domain. The global optimum can in principle be found from any initial
guess. If the objective are multimodal, then the size of the hypersphere should be the
typical size of the local modes. In reality, we do not know much about the landscape
of the objective functions before we do the optimization, and we can either start from
a larger domain and shrink it down or use a smaller size and then gradually expand it.

On the surface, the eagle strategy has some similarity with the random-restart hill
climbing method, but there are two important differences. Firstly, ES is a two-stage
strategy rather than a simple iterative method, and thus ES intends to combine a good
randomization (diversification) technique of global search with an intensive and efficient
local search method. Secondly, ES uses Lévy walk rather than simple randomization,
which means that the global search space can be explored more efficiently. In fact,
studies show that Lévy walk is far more efficient than simple random-walk exploration.

The Lévy walk has a random step length being drawn from a Lévy distribution

Lévy ∼ u = t−λ, (1 < λ ≤ 3), (8)

which has an infinite variance with an infinite mean. Here the steps of the eagle motion
is essentially a random walk process with a power-law step-length distribution with a
heavy tail. The special case λ = 3 corresponds to Brownian motion, while λ = 1 has
a characteristics of stochastic tunneling, which may be more efficient in avoiding being
trapped in local optima.

For the local search, we can use any efficient optimization algorithm such as the
downhill simplex (Nelder-Mead) or metaheuristic algorithms such as PSO and the firefly
algorithm. In this paper, we used the firefly algorithm to do the local search, since the
firefly algorithm was designed to solve multimodal global optimization problems [21].



Eagle Strategy

Objective functions f1(x), ..., fN (x)
Initial guess x

t=0

while (||xt+1 − x
t|| > tolerance)

Random search by performing Lévy walk
Evaluate the objective functions
Intensive local search with a hypersphere

via Nelder-Mead or the Firefly Algorithm
if (a better solution is found)

Update the current best
end if

Update t = t+ 1
Calculate means and standard deviations

end while

Postprocess results and visualization

Figure 1: Pseudo code of the Eagle Strategy (ES).

3.2 Firefly Algorithm

We now briefly outline the main components of the Firefly Algorithm developed by
the first author [20], inspired by the flash pattern and characteristics of fireflies. For
simplicity in describing the algorithm, we now use the following three idealized rules: 1)
all fireflies are unisex so that one firefly will be attracted to other fireflies regardless of
their sex; 2) Attractiveness is proportional to their brightness, thus for any two flashing
fireflies, the less brighter one will move towards the brighter one. The attractiveness
is proportional to the brightness and they both decrease as their distance increases. If
there is no brighter one than a particular firefly, it will move randomly; 3) The brightness
of a firefly is affected or determined by the landscape of the objective function. For a
maximization problem, the brightness can simply be proportional to the value of the
objective functions.

In the firefly algorithm, there are two important issues: the variation of light inten-
sity and formulation of the attractiveness. For simplicity, we can always assume that
the attractiveness of a firefly is determined by its brightness which in turn is associated
with the encoded objective function.

In the simplest case for maximum optimization problems, the brightness I of a firefly
at a particular location x can be chosen as I(x) ∝ f(x). However, the attractiveness β
is relative, it should be seen in the eyes of the beholder or judged by the other fireflies.
Thus, it will vary with the distance rij between firefly i and firefly j. In addition, light
intensity decreases with the distance from its source, and light is also absorbed in the
media, so we should allow the attractiveness to vary with the degree of absorption. In
the simplest form, the light intensity I(r) varies according to the inverse square law
I(r) = Is

r2
where Is is the intensity at the source. For a given medium with a fixed light

absorption coefficient γ, the light intensity I varies with the distance r. That is

I = I0e
−γr, (9)

where I0 is the original light intensity.
As a firefly’s attractiveness is proportional to the light intensity seen by adjacent

fireflies, we can now define the attractiveness β of a firefly by

β = β0e
−γr2, (10)

where β0 is the attractiveness at r = 0.



Firefly Algorithm

Objective function fp(x), x = (x1, ..., xd)
T

Initial population of fireflies xi (i = 1, ..., n)
Light intensity Ii at xi is determined by fp(xi)
Define light absorption coefficient γ
while (t <MaxGeneration)

for i = 1 : n all n fireflies
for j = 1 : i all n fireflies
if (Ij > Ii)

Move firefly i towards j (d-dimension)
end if

Vary β via exp[−γr]
Evaluate new solutions and update
end for j

end for i
Rank the fireflies and find the current best
end while

Postprocess results and visualization

Figure 2: Pseudo code of the firefly algorithm (FA).

The distance between any two fireflies i and j at xi and xj , respectively, is the
Cartesian distance

rij = ||xi − xj || =

√

√

√

√

d
∑

k=1

(xi,k − xj,k)2, (11)

where xi,k is the kth component of the spatial coordinate xi of ith firefly. In the 2-D
case, we have

rij =
√

(xi − xj)2 + (yi − yj)2. (12)

The movement of a firefly i is attracted to another more attractive (brighter) firefly
j is determined by

xi = xi + β0e
−γr2ij(xj − xi) + α (rand− 1

2
), (13)

where the second term is due to the attraction. The third term is randomization with
a control parameter α, which makes the exploration of the search space more efficient.

We have tried to use different values of the parameters α, β0, γ [20, 21], after some
simulations, we concluded that we can use β0 = 1, α ∈ [0, 1], γ = 1, and λ = 1 for
most applications. In addition, if the scales vary significantly in different dimensions
such as −105 to 105 in one dimension while, say, −0.001 to 0.01 along the other, it is
a good idea to replace α by αSk where the scaling parameters Sk(k = 1, ..., d) in the d
dimensions should be determined by the actual scales of the problem of interest.

There are two important limiting cases when γ → 0 and γ → ∞. For γ → 0, the
attractiveness is constant β = β0 and the length scale Γ = 1/

√
γ → ∞, this is equivalent

to say that the light intensity does not decrease in an idealized sky. Thus, a flashing
firefly can be seen anywhere in the domain. Thus, a single (usually global) optimum
can easily be reached. This corresponds to a special case of particle swarm optimization
(PSO) discussed earlier. Subsequently, the efficiency of this special case could be about
the same as that of PSO.

On the other hand, the limiting case γ → ∞ leads to Γ → 0 and β(r) → δ(r) (the
Dirac delta function), which means that the attractiveness is almost zero in the sight of
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Figure 3: Ackley’s function for two independent variables with a global minimum f∗ = 0 at
(0, 0).

other fireflies or the fireflies are short-sighted. This is equivalent to the case where the
fireflies roam in a very foggy region randomly. No other fireflies can be seen, and each
firefly roams in a completely random way. Therefore, this corresponds to the completely
random search method. As the firefly algorithm is usually in somewhere between these
two extremes, it is possible to adjust the parameter γ and α so that it can outperform
both the random search and PSO.

4 Simulations and Comparison

4.1 Validation

In order to validate the proposed algorithm, we have implemented it in Matlab. In our
simulations, the values of the parameters are α = 0.2, γ = 1, λ = 1, and β0 = 1. As an
example, we now use the ES to find the global optimum of the Ackley function

f(x) = −20 exp[−1

5

√

√

√

√

1

d

d
∑

i=1

x2i ]− exp[
1

d

d
∑

i=1

cos(2πxi)] + 20 + e, (14)

where (d = 1, 2, ...) [1]. The global minimum f∗ = 0 occurs at (0, 0, ..., 0) in the domain
of −32.768 ≤ xi ≤ 32.768 where i = 1, 2, ..., d. The landscape of the 2D Ackley function
is shown in Fig. 3, while the landscape of this function with 2.5% noise is shown in Fig.
4

The global minimum in 2D for a given noise level of 2.5% can be found after about
300 function evaluations (for 20 fireflies after 15 iterations, see Fig. 5).

4.2 Comparison of ES with PSO

Various studies show that PSO algorithms can outperform genetic algorithms (GA)
[7] and other conventional algorithms for solving many optimization problems. This is
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Figure 4: Ackley’s 2D function with Gaussian noise.

partially due to that fact that the broadcasting ability of the current best estimates
gives better and quicker convergence towards the optimality. A general framework
for evaluating statistical performance of evolutionary algorithms has been discussed in
detail by Shilane et al. [15].

Now we will compare the Eagle Strategy with PSO for various standard test func-
tions. After implementing these algorithms using Matlab, we have carried out extensive
simulations and each algorithm has been run at least 100 times so as to carry out mean-
ingful statistical analysis. The algorithms stop when the variations of function values
are less than a given tolerance ǫ ≤ 10−5. The results are summarized in the following
table (see Table 1) where the global optima are reached. The numbers are in the format:
average number of evaluations (success rate), so 12.7±1.15(100) means that the average
number (mean) of function evaluations is 12.7× 103 = 12700 with a standard deviation
of 1.15× 103 = 1150. The success rate of finding the global optima for this algorithm is
100%. Here we have used the following abbreviations: MWZ for Michalewicz’s function
with d = 16, RBK for Rosenbrock with d = 16, De Jong for De Jong’s sphere function
with d = 256, Schwefel for Schwefel with d = 128, Ackley for Ackley’s function with
d = 128, and Shubert for Shubert’s function with 18 minima. In addition, all these test
functions have a 2.5% of Gaussian noise, or σ = 0.025. In addition, we have used the
population size n = 20 in all our simulations.

We can see that the ES is noticeably more efficient in finding the global optima
with the success rates of 100%. Each function evaluation is virtually instantaneous on
a modern personal computer. For example, the computing time for 10,000 evaluations
on a 3GHz desktop is about 5 seconds. Even with graphics for displaying the locations
of the particles and fireflies, it usually takes less than a few minutes. Furthermore, we
have used various values of the population size n or the number of fireflies. We found
that for most problems n = 15 to 50 would be sufficient. For tougher problems, larger
n such as n = 100 or 250 can be used, though excessively large n should not be used
unless there is no better alternative, as it is more computationally extensive.
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Figure 5: The initial locations of the 20 fireflies (left) and their locations after 15 iterations
(right). We have used γ = 1.

Table 1: Comparison of algorithm performance

PSO (×103) ES (×103)

Easom 185.9 ± 3.1(97) 12.7 ± 1.15(100)
MWZ 346.1 ± 8.0(98) 36.1 ± 3.5(100)

Rosenbrock 1637 ± 79(98) 75± 6.4(100)
De Jong 852± 16(100) 70.7 ± 7.3(100)
Schwefel 726.1 ± 25(97) 99± 6.7(100)
Ackley 1170 ± 19(92) 54± 5.2(100)

Rastrigin 3973 ± 64(90) 151 ± 14(100)
Easom 863.7 ± 55(90) 76± 11(100)

Griewank 2798 ± 63(92) 134± 9.1(100)
Shubert 1197 ± 56(92) 32± 2.5(100)

5 Conclusions

By combining Lévy walk with the firefly algorithm, we have successfully formulated a
hybrid optimization algorithm, called Eagle Strategy, for stochastic optimization. After
briefly outlining the basic procedure and its similarities and differences with particle
swarm optimization, we then implemented and compared these algorithms. Our sim-
ulation results for finding the global optima of various test functions suggest that ES
can significantly outperform the PSO in terms of both efficiency and success rate. This
implies that ES is potentially more powerful in solving NP-hard problems.

However, we have not carried out sensitivity studies of the algorithm-dependent
parameters such as the exponent λ in Lévy distribution and the light absorption coef-
ficient γ, which may be fine-tuned to a specific problem. This can form an important
research topic for further research. Furthermore, other local search algorithms such
as the Newton-Raphson method, sequential quadratic programming and Nelder-Mead
algorithms can be used to replace the firefly algorithm, and a comparison study should
be carried out to evaluate their performance. It may also show interesting results if
the level of uncertainty varies and it can be expected that the higher level of noise will
make it more difficult to reach optimal solutions.

As other important further studies, we can also focus on the applications of this



hybrid algorithm on the NP-hard traveling salesman problem. In addition, many engi-
neering design problems typically have to deal with intrinsic inhomogeneous materials
properties and such uncertainty may often affect the design choice in practice. The
application of the proposed hybrid algorithm in engineering design optimization may
prove fruitful.
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patterns. Human Ecol., 35, 129-138 (2007).

[6] Deb, K.: Optimisation for Engineering Design. Prentice-Hall, New Delhi, (1995).

[7] Goldberg, D. E.: Genetic Algorithms in Search, Optimisation and Machine Learn-
ing. Reading, Mass.: Addison Wesley (1989).

[8] Kennedy, J. and Eberhart, R. C.: Particle swarm optimization. Proc. of IEEE In-
ternational Conference on Neural Networks, Piscataway, NJ. pp. 1942-1948 (1995).

[9] Kennedy J., Eberhart R., Shi Y.: Swarm intelligence. Academic Press, (2001).

[10] Marti, K.: Stochastic Optimization Methods. Springer, (2005).

[11] Nelder, J. A. and Mead, R.: A simplex method for function minimization. Com-
puter Journal, 7, 308-313 (1965).
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