
Software Engineering Techniques for the
Development of Systems of Systems

Radu Calinescu and Marta Kwiatkowska

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

{Radu.Calinescu, Marta.Kwiatkowska}@comlab.ox.ac.uk

Abstract. This paper investigates how existing software engineering
techniques can be employed, adapted and integrated for the develop-
ment of systems of systems. Starting from existing system-of-systems
(SoS) studies, we identify computing paradigms and techniques that
have the potential to help address the challenges associated with SoS
development, and propose an SoS development framework that com-
bines these techniques in a novel way. This framework addresses the
development of a class of IT systems of systems characterised by high
variability in the types of interactions between their component systems,
and by relatively small numbers of such interactions. We describe how
the framework supports the dynamic, automated generation of the sys-
tem interfaces required to achieve these interactions, and present a case
study illustrating the development of a data-centre SoS using the new
framework.

1 Introduction

The functionality and flexibility underpinning today’s applications in areas rang-
ing from transportation and healthcare to aerospace and defence can no longer
be provided by a monolithic information system, however complex this might be.
Instead, the required capabilities can only be achieved through employing collec-
tions of collaborative, heterogeneous and autonomously-operating systems—or
systems of systems.

The crucial importance of many systems of systems and the high rates of
late delivery, over-spending and failure associated with their development have
prompted the initiation of research programmes for the investigation of this new
class of systems [18, 24, 38, 41] and its extensions [15, 35, 42]. The results of this
research provide valuable insights into the distinguishing features of systems of
systems [3, 5, 28, 36], the challenges posed by their unprecedented size, diversity,
variability, complexity, unforeseen interactions and emergent behaviour [15, 22,
27, 37], and some of the high-level principles and practices to be employed in
their development [6, 26, 27, 36].

Most importantly for the progress of the field, broad agreement has been
reached on the main features that set systems of systems apart from traditional,
monolithic systems:

– The components of a system of systems (SoS) possess a level of operational
autonomy that allows them to pursue their own, local objectives, indepen-
dently and in addition to contributing to the global SoS objective(s) [5, 27].

– The components of a system of systems are often developed, procured and
managed independently [26, 36].

– SoS components may belong to multiple open and evolving systems of sys-
tems that they could join and leave dynamically [5, 6, 18, 37].

– The behaviour of a system of systems cannot be fully predicted from the
behaviour of its component systems [3, 26, 27, 37].

Additionally, an SoS subclass that typifies key information systems of the future—
i.e., the so-called large-scale complex (IT) systems [35] or ultra-large-scale sys-
tems [15, 42]—is characterised by incomplete and continually changing require-
ments and components, and by regarding failures as normal events.

The challenges associated with the development of systems of systems are
tremendous. They include the need to ensure the interoperability of a vastly
diverse range of components [6, 36], to convey global objectives to SoS compo-
nents in meaningful ways [15, 18], to achieve these objectives predictably and
dependably in a dynamically changing environment [35, 42], and to attain high
levels of SoS longevity [15, 37].

These major advances in the understanding of systems of systems laid the
foundation for essential work to identify high-level principles and practices gov-
erning their development [6, 15, 26, 27, 36]. Our paper takes this work further
by investigating for the first time ways in which existing software engineer-
ing techniques can contribute to the development of IT systems of systems.
Thus, computer science paradigms including formal analysis and verification,
model-driven and component-based development, service-oriented architectures
and policy-based autonomic computing are analysed for compliance with the rec-
ommended SoS development principles, and for their ability to help address SoS
engineering challenges. The results of this analysis are presented in Section 2.

In Section 3, we describe a new approach to integrating these techniques
within a framework that extends the authors’ previous work on quantitative
analysis and verification [31, 33, 34], model-driven development [12] and self-*
computing [7, 8, 10] to the realm of systems of systems. Our framework sup-
ports the development of IT systems of systems by enabling the online, auto-
mated generation of the interfaces that the system components of an SoS employ
to inter-operate with the other systems within the same SoS. To achieve this,
the systems to be integrated within an SoS are augmented with an autonomic
computing policy engine that exposes their global parameters through runtime-
generated interfaces defined by user-specified policies. This idea was originally
introduced in [8], and in this paper we provide a formal description of the types
of policies that can be used for this purpose and of how they can be realised in
practice.

Its ability to dynamically generate new interfaces for the system components
of an SoS makes our framework particularly suitable for the development of
systems of systems characterised by high variability in the types of interactions

2

between SoS component systems, and by relatively small numbers of such in-
teractions. Therefore, the capabilities of the framework are illustrated using a
case study that involves the development of a data-centre SoS with these char-
acteristics, and which is based on a series of real-world use cases that one of the
authors encountered in his previous work on a commercial system for data-centre
resource management [9, 11]. To add to the readability of the paper, this case
study is presented as a running example spread over the next three sections.

A prototype version of the framework was implemented as an extension of our
generic autonomic computing framework from [13]. Section 4 describes the novel
features of this prototype implementation, and the combination of dynamic code
generation, model-based development and dynamic reconfiguration techniques
employed to support these features. Finally, Section 5 describes various types of
IT systems of systems that can be developed using the framework, and Section 6
summarises our results and discusses a number of future research directions.

2 Software Engineering Techniques for SoS Development

This section examines existing software engineering paradigms and techniques
that could help tackle some of the challenges associated with the development
of systems of systems, and which are therefore likely to be part of the SoS
development frameworks of the future. A summary of this analysis is presented
in Table 1.

1. Service-oriented architectures (SOA) SoS development involves the in-
tegration and secure interoperation of vastly diverse technical systems [3, 5, 6, 15,
18, 26, 37]. Thanks to their platform independence, loose coupling and support
for security, SOA solutions [46] represent strong candidates for implementing new
computer systems or front-ends to legacy systems that need to be integrated into
an SoS.

2. Policy-based autonomic computing Ecosystems, cities and economies are
often pointed out as examples of effective systems of systems. A common charac-
teristic of all these systems of systems is the way in which their global objectives
are specified through high-level incentives, rewards and penalties rather than by
setting concrete, precise targets [15, 35, 36]. Thus, the behaviour of ecosystems
is governed by laws of nature. The development and everyday life of cities are
subject to common or civil laws and regulations. The evolution of economies
is guided by taxation policies. If these successful real-world examples are to
be followed, techniques will be required that can convey the global objectives
of systems of systems as high-level policies to their autonomous components.
(Policy-based) autonomic computing addresses the development of systems that
can manage themselves based on a set of high-level policies [30], and therefore
represents an ideal paradigm for developing the computer-system components
of an SoS.

3

3. Formal analysis and verification A major concern of systems of systems is
their ability to achieve an overall objective in predictable and dependable ways,
through the collaboration of component systems with different (and potentially
conflicting) local goals [15, 35, 39]. Formal analysis and verification, and in par-
ticular model checking [16], quantitative model checking [34] and quantitative
analysis and verification [31, 33], comprise a range of techniques that could be
used or adapted for use in the verification of SoS policies, and ultimately for SoS
dependability management and assurance.

4. Model-driven development and code generation The open, evolving
nature of systems of systems allows their components to join and leave dy-
namically [35, 39]. Having SoS components collaborate with peer systems whose
characteristics are often unknown until runtime is a major challenge. A com-
bination of model-driven development and runtime code generation in which a
dynamically acquired model of a peer system is used to generate the necessary
interfaces and logic for collaborating with this peer system [13] represents a
promising approach to addressing this challenge.

5. Component-based development SoS engineering requires the integration
of existing and future commercial, open-source and proprietary systems, and
component-based development provides techniques that can help achieve this
goal [1, 2, 17].

6. Dynamic reconfiguration Systems of systems are required to adapt con-
tinually to changes in their environment, structure and objectives [6, 26]. Recent
advances in the study of dynamically reconfigurable software and hardware [19,
23] provide promising approaches for the development of the computer systems
to be incorporated into the systems of systems of the future.

7. Online machine learning The levels of self-management that SoS com-
ponents must achieve in impossible to anticipate circumstances are significantly
beyond what can be pre-programmed into a computer system [22, 35, 42]. The
online use of techniques specific to machine learning [4] is therefore likely to play
a major role in the development of computer-based SoS components.

8. Resource discovery In the era of mobile computing, SoS components are
expected to actively seek partner systems and establish collaborations with them,
thus joining (and leaving) loosely-coupled federations of systems on a regular
basis [5, 15, 35]. The rich spectrum of resource1 discovery techniques employed
by today’s distributed (e.g., grid- and web-based) computer systems [43] can be
used as a basis for the development of techniques to support these capabilities.

1 The terms resource and component are used interchangeably in the paper.

4

Table 1. Software engineering techniques that can help address SoS challenges

...

Service-oriented architectures

...

Policy-based autonomic computing

...

Formal analysis and verification

...

Model-driven development/code generation
...

Component-based development

...

Dynamic reconfiguration

...

Online machine learning

...

Resource discovery

...
Techniques and paradigms

.........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

.........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

...

.........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

.........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

.........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

.........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

.........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

.........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

.........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

.........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

.........................
...........
..........

.........................
...........
..........

.........................
...........
..........

.........................
...........
..........

.........................
...........
..........

.........................
...........
..........

.........................
...........
..........

.........................
...........
..........

.........................
...........
..........

.........................
...........
..........

.........................
...........
..........

.........................
...........
..........

.........................
...........
..........

.........................
...........
..........

in
te

ro
p
er

a
b
il
it
y,

se
cu

ri
ty

d
ep

en
d
a
b
il
it
y
(a

ss
u
ra

n
ce

)

co
ll
a
b
o
ra

ti
o
n

g
lo

b
a
l-
o
b
je

c
ti

v
e

sp
e
c
ifi

c
a
ti

o
n

p
re

d
ic

ta
b
il
it
y

a
d
a
p
ti

b
il
it
y

lo
n
g
ev

it
y

fl
ex

ib
il
it
y

SoS challenges

3 A Framework for System-of-Systems Development

3.1 Overview

Our approach to integrating the software engineering techniques analysed in
the previous section involves the use of a reconfigurable policy engine with the
structure in Figure 1.2 The SOA implementation of this policy engine as a
web service (described in Section 4) takes a model of a system and a set of
policies, and ensures that the system achieves the objectives specified by these
policies through adapting continually to changes in its environment.

When a running instance of the policy engine is dynamically reconfigured
by means of a system model, its runtime code generator employs model-
driven development techniques to generate manageability adaptor proxies,
i.e., software components whose monitor and control interfaces allow the engine
to read and to modify the parameters of the system components, respectively.
This functionality is described in our previous work [8, 13]. Additionally, the
policy engine in [8, 13] supports all types of policies that are standard in policy-
based autonomic computing [44, 45], and uses resource discovery tech-

2 The use of these techniques is emphasised in bold text in the framework overview.

5

Fig. 1. Reconfigurable policy engine

niques to identify the system components to which these policies need to be ap-
plied. Component-based development techniques introduced in Section 3.3
are employed to integrate multiple autonomic IT systems into an autonomic
system of systems.

Furthermore, we recently extended our policy engine with the ability to em-
ploy online formal analysis and verification techniques for the implemen-
tation of a powerful class of autonomic computing policies [10]. Finally, we are
in the process of augmenting our framework with online machine learning
capabilities by integrating it with the work presented in [20].

The remainder of this section provides brief presentations of how each soft-
ware engineering technique was or, in the case of online machine learning, will be
integrated into the SoS development framework. References to full descriptions

6

of these integrations are provided for those interested in learning more about
the framework.

1. Service-oriented architectures (SOA) For the reasons explained in Sec-
tion 2, the components of the framework were implemented as web services.
This applies to the autonomic computing policy engine from Figure 1, as well
as to the software adaptors between the policy engine and the existing, legacy
components that the engine is managing.

Because systems of systems comprise components that are often unknown
until run time, the policy engine was provided with the capability to handle
such components through run-time reconfiguration. This required the extensive
use of techniques available only in an object-oriented programming environment,
including reflection, polymorphism, automated generation of web-service proxies,
and generic programming. Based on these requirements, J2EE and .NET were
selected as candidate platforms for the framework, with .NET being eventually
preferred due to its better handling of dynamic proxy generation and its slightly
easier-to-use implementation of reflection.

A detailed description of the SOA implementation of the framework, and of
several case studies involving the development of monolithic autonomic systems
using the framework are available in [13].

2. Policy-based autonomic computing All standard types of autonomic
computing policies [29, 44, 45] are supported by the framework. A formal de-
scription and simple examples of these policies are provided in Section 3.2. For
real-world applications of each policy type within the scope of the framework,
the reader should refer to [8].

3. Formal analysis and verification One type of autonomic computing policy
supported by the framework is termed a utility-function policy. This policy spec-
ifies a multi-objective optimisation to be performed through continually adapt-
ing the configuration of a system to its workload and environment. Examples of
utility-function policies taken from [10] are:

– optimise the parameters of a dynamically power-managed disk drive to achieve
user-specified trade-offs between the response time and the power consump-
tion of the disk drive, under variable workload;

– optimise the allocation of data-centre servers to clusters of different priorities
and variable workloads, subject to using the fewest possible servers and to
ensuring user-prescribed levels of cluster availability, in the presence of data-
centre component failures and repairs.

To achieve such policies, the system model used to configure the policy en-
gine includes a precise mathematical description of the system behaviour, and
formally-specified quantitative properties derived from the multi-objective func-
tions are exhaustively analysed at runtime to identify optimal system configura-
tions. This analysis is performed using PRISM—a free, open-source tool for the

7

formal modelling and analysis of real-time and stochastic systems [31, 32] that
an extensive, independent survey [25] ranked as the most effective tool for the
quantitative analysis of large system models.

For the latter of the above-mentioned policies, for instance, PRISM was used
to calculate the “probability that a cluster can handle its workload success-
fully” (i.e., the expected cluster availability) for each possible configuration of
the cluster. This calculation was performed automatically whenever there was a
significant change in the cluster workload, and the configuration that achieved
the user-prescribed availability using the fewest servers was chosen.

A full description of the use of quantitative analysis within our policy engine
is available from [10].

4. Model-driven development and code generation Given that many
systems of systems are characterised by dynamically changing components, the
policy engine at the core of our framework was designed to handle IT com-
ponents whose attributes are unknown until run time. This unique capability
necessitates the run-time use of model-driven and automated code generation
techniques within the policy engine. Thus, two software artefacts are generated
automatically based on the system model supplied to a running instance of the
policy engine: (a) data types (i.e., classes) for the new types of IT components;
and (b) proxies for the adaptor web services associated with the new component
types. This code generation process is discussed in detail in [13].

5. Component-based development In this paper, we define formally a new
type of autonomic computing policy that supports adaptive component-based
development. Originally suggested in [8], this resource-definition policy specifies
how the high-level sensors and high-level effectors interfaces of the policy engine
should expose the system under its control as a single component, thus enabling
its integration into a system of systems.

Figure 2 depicts the generic architecture of an SoS built around an extension
of the policy engine from [13] that supports resource-definition policies. Each
of the top-level autonomic-enabled components 1 to N in this architecture is a
system managed by an appropriately configured instance of the policy engine.
At the SoS level, the policy engine instances expose the state and configuration
of their systems, employ resource discovery to identify peer SoS components,
and collaborate with these. At the local level, the policy engines organise het-
erogeneous collections of components into a single system. These collections can
comprise legacy components whose interfaces are accessed through manageability
adaptors [13] and autonomic-enabled components (i.e., new systems that expose
sensor and effector interfaces permitting their direct management by the pol-
icy engine, or other instances of the top-level autonomic-enabled components in
Figure 2).

The theoretical foundation, implementation and applications of resource-
definition policies are presented in Sections 3.3, 4 and 5, respectively.

8

Fig. 2. System-of-systems architecture

6. Dynamic reconfiguration When supplied with a new system model, the
policy engine within our framework becomes capable of managing the previously
unknown IT components whose characteristics are described in this model. This
dynamic reconfiguration of a running instance of the engine involves the auto-
mated synthesis of component-specific software artefacts for each IT component
specified in the system model, as already mentioned earlier in this section and
described in depth in [8, 13].

7. Online machine learning In a future version of the policy engine, online
machine learning will be employed to continually improve the accuracy of the
formal behavioural model that the engine uses to implement autonomic comput-
ing policies. The approach that we are working on involves learning the actual
values of the model parameters from the observed behaviour of the SoS compo-
nents. This extension of the framework builds on the research described in [20]
and is being carried out jointly with its authors.

8. Resource discovery The resource discovery mechanism employed by the
framework has two parts. First, the framework includes a resource discovery web
service that policy engine instances can query to identify the locations of the
components they are required to manage—namely the URLs of the web-service
adaptors that enable the engine to inter-operate with existing SoS components.
Additionally, each such adaptor comprises a SupportedResource web method
that policy engine instances call to discover the type of resource that the adaptor
is exposing, as explained in detail in [8].

9

We will start the detailed presentation of the framework in the next section,
where we formally define the system model from Figure 1 and the standard types
of autonomic computing policies supported by the policy engine. This will be
followed in Section 3.3 by the specification of the resource-definition policies that
underlie the component-based development of IT systems of systems using our
framework.

3.2 System Model and Standard Autonomic Computing Policies

The system model used to configure the policy engine from Figure 1 is a tuple
that defines the n ≥ 1 resources of the system and their behaviour:

M = (R1, R2, . . . , Rn, f), (1)

where Ri, 1 ≤ i ≤ n is a formal specification for the ith system resource, and f
is a model of the known behaviour of the system. Each resource specification Ri

represents a named sequence of mi ≥ 1 resource parameters, i.e.,

Ri = (resIdi, Pi1, Pi2, . . . , Pimi),∀1 ≤ i ≤ n, (2)

where resIdi is an identifier used to distinguish between different types of re-
sources. Finally, for each 1 ≤ i ≤ n, 1 ≤ j ≤ mi, the resource parameter Pij is a
tuple

Pij = (paramId ij ,ValueDomainij , typeij) (3)

where paramId ij is a string-valued identifier used to distinguish the different
parameters of a resource; ValueDomainij is the set of possible values for Pij ; and
typeij ∈ {ReadOnly, ReadWrite} specifies whether the policy engine can only
read or can both read and modify the value of the parameter. The parameters
of each resource must have different identifiers, i.e.,

∀1≤ i≤n • ∀1≤j < k ≤mi • paramId ij 6= paramId ik

We further define the state space S of the system as the Cartesian product of
the value domains of all its ReadOnly resource parameters, i.e.,

S = ×
1≤i≤n

×
1≤j≤mi

typeij=ReadOnly

ValueDomainij (4)

Similarly, the configuration space C of the system is defined as the Cartesian
product of the value domains of all its ReadWrite resource parameters, i.e.,

C = ×
1≤i≤n

×
1≤j≤mi

typeij=ReadWrite

ValueDomainij (5)

With this notation, the behavioural model f from (1) is a partial function3

f : S × C 7→ S

3 A partial function on a set X is a function whose domain is a subset of X. We use
the symbol 7→ to denote partial functions.

10

such that for any (s, c) ∈ domain(f), f(s, c) represents the expected future state
of the system if its current state is s ∈ S and its configuration is set to c ∈ C.
Presenting classes of behavioural models that can support the implementation
of different autonomic computing policies is beyond the scope of this paper; for
a description of such models see [8, 10].

The standard types of autonomic policies described in [29, 44, 45] can be
defined using this notation as follows:

1. An action policy specifies how the system configuration should be changed
when the system reaches certain state/configuration combinations:

paction : S × C 7→ C. (6)

Note that an action policy can be implemented even when domain(f) = ∅ in
(1).

2. A goal policy partitions the state/configuration combinations for the system
into desirable and undesirable:

pgoal : S × C → {true, false}, (7)

with the policy engine requested to maintain the system in an operation area
for which pgoal is true.

3. A utility policy associates a value with each state/configuration combination,
and the policy engine should adjust the system configuration such as to
maximise this value:

putility : S × C → R. (8)

Example 1 To illustrate the application of the notation introduced so far, con-
sider the example of an autonomic data-centre comprising a pool of nServers ≥
0 servers that need to be partitioned among the N ≥ 1 services that the data-
centre can provide. Assume that each such service has a priority and is subjected
to a variable workload. The model (1) for this system can be expressed as a tuple

M = (ServerPool ,Service1, . . . ,Servicen, f) (9)

where the models for the server pool and for a generic service i, 1 ≤ i ≤ N , are
given by:

ServerPool = ("serverPool",
("nServers", N, ReadOnly),
("partition", NN , ReadWrite))

Servicei = ("service",
("priority", N+, ReadOnly),
("workload", N, ReadOnly))

(10)

The state and configuration spaces of the system are S = N × (N+ × N)N and
C = NN , respectively. For simplicity, we will consider that the workload of
a service represents the minimum number of operational servers it requires to

11

achieve its service-level agreement. Sample action, goal and utility policies for the
system are specified below by giving their values for a generic data-centre state
s = (n, p1, w1, p2, w2, . . . , pN , wN) ∈ S and configuration c = (n1, n2, . . . , nN) ∈
C:

paction(s, c) = (dαw1e, dαw2e, . . . , dαwNe) (11)

pgoal(s, c)=∀1≤ i≤N •(ni >0 =⇒ (∀1≤j≤N • pj >pi =⇒ nj =dαwje)) (12)

putility(s, c)=


−∞, if

N∑
i=1

ni >n

N∑
i = 1

wi > 0

piu(wi, ni)− ε
N∑

i=1

ni, otherwise
(13)

We will describe each of these policies in turn. First, the action policy (11)
prescribes that dαwie servers are allocated to service i, 1 ≤ i ≤ N , at all times.
Notice how a redundancy factor α ∈ (1, 2) is used in a deliberately simplistic
attempt to increase the likelihood that at least wi servers will be available for
service i in the presence of server failures. Also, the policy is (over)optimistically
assuming that n≥

∑N
i=1dαwie at all times.

The goal policy (12) specifies that the desirable state/configuration combi-
nations of the data-centre are those in which service i, 1 ≤ i ≤ N , is allocated
servers only if all services of higher priority have already been allocated dαwie
servers.

u : R+ × R+ → [0, 1]

u(w, n) =


0, if n < (2− α)w

n−(2−α)w
2(α−1)w , if (2− α)w ≤ n ≤ αw

1, if n > αw

α ∈ (1, 2)

u(w0, n)

0

1

w0 αw0(2− α)w0

n

Fig. 3. Sample function u for Example 1 (the graph shows u for a fixed value w0 of its
first argument)

Finally, the utility policy requires that the value of the expression in (13) is
maximised. The value −∞ in this expression is used to avoid the configurations
in which more servers than the n available are allocated to the services. When
this is not the case, the value of the policy is given by the combination of two
sums. The first sum encodes the utility u(wi, ni) of allocating ni servers to each
service i with wi > 0, weighted by the priority pi of the service. By setting ε to a
small positive value (i.e., 0 < ε � 1), the second sum ensures that from all server
partitions that maximise the first sum, the one that uses the smallest number of

12

servers is chosen at all times. A sample function u is shown in Figure 3; a more
realistic u and a matching behavioural model f from (9) are described in [8].

3.3 Resource-definition policies for runtime interface generation

UsingR to denote the set of all resource models with the form in (2), and E(S, C)
to denote the set of all expressions defined on the Cartesian product S × C, we
can now give the generic form of a resource-definition policy as

pdef : S × C → R× E(S, C)q, (14)

where, for any (s, c) ∈ S × C,

pdef(s, c) = (R,E1, E2, . . . , Eq). (15)

In this definition, R represents the resource that the policy engine is required
to synthesise, and the expressions E1, E2, . . . , Eq specify how the engine will
calculate the values of the q ≥ 0 ReadOnly parameters of R as functions of (s, c).
Assuming that q > 0 and the value domain for the ith ReadOnly parameter of
R, 1 ≤ i ≤ q is ValueDomaini, we have Ei : S × C → ValueDomaini.

Example 2 Consider again the autonomic data-centre from Example 1. A sample
resource-definition policy that complements the utility policy in (13) is given by

pdef(s, c) = (("dataCentre",
("id",String , ReadOnly)
("maxUtility", R, ReadOnly),
("utility", R, ReadOnly)),

"dataCentre A",

max
(x1,x2,...,xN)∈NN

∑1≤i≤N
wi>0 piu(wi, xi),∑1≤i≤N

wi>0 piu(wi, ni))

(16)

This policy requests the synthesis of a resource termed a "dataCentre". This re-
source comprises three ReadOnly parameters: id is a string-valued identifier with
the constant value "dataCentre A", while maxUtility and utility represent
the maximum and actual utility values associated with the autonomic data-
centre when it implements the utility policy (13). (The term ε

∑N
i=1 ni from the

policy definition is insignificant, and was not included in (16) for simplicity.) Ex-
posing the system through this synthesised resource enables an external policy
engine to monitor how close the data-centre is to achieving its maximum utility.

Note that the generic form of a resource-definition policy (14)-(15) allows users
to request the policy engine to synthesise different types of resources for different
state/configuration combinations of the system. While the preliminary use cases
that we have studied so far can be handled using resource-definition policies in
which the resource model R from (15) is fixed for all (s, c) ∈ S×C, we envisage

13

that this capability will be useful for more complex applications of resource-
definition policies.

We will next explore the semantics and applications of ReadWrite (i.e., con-
figurable) parameters in synthesised resources. These are parameters whose iden-
tifiers and value domains are specified through a resource-definition policy, but
whose values are set by an external entity such as another policy engine. Because
these parameters do not correspond to any element of the managed resources
within the autonomic system, the only way ensure that they have an influence
on an individual system from the SoS architecture in Figure 2 is to take them
into account within the set of policies implemented by the policy engine as-
sociated with that system. This is achieved by redefining the state space S of
the system. Thus, in the presence of resource-definition policies requesting the
synthesis of high-level resources with a non-empty set of ReadWrite parameters
{P synth

1 , P synth
2 , . . . , P synth

r }, the state space definition (4) is replaced by:

S =

 ×
1≤i≤n

×
1≤j≤mi

typeij=ReadOnly

ValueDomainij

×

(
×

1≤i≤r
ValueDomainsynth

i

)
,

(17)

where ValueDomainsynth
i represents the value domain of the ith synthesised re-

source parameter P synth
i , 1 ≤ i ≤ r.

Example 3 Consider again our running example of an autonomic data-centre.
The resource-definition policy in (16) can be extended to allow a peer data-centre
(such as a data-centre running the same set of services within the same security
domain) to take advantage of any spare servers:

p′def(s, c) = (("dataCentre",
("id",String , ReadOnly)
("maxUtility", R, ReadOnly),
("utility", R, ReadOnly)),
("nSpare", N, ReadOnly)),
("peerRequest", NN , ReadWrite)),

"dataCentre A",

max
(x1,x2,...,xN)∈NN

∑1≤i≤N
wi>0 piu(wi, xi),∑1≤i≤N

wi>0 piu(wi, ni),

n−
∑N

i=1 ni)

(18)

The synthesised resource has two new parameters: nSpare represents the number
of servers not allocated to any (local) service; and peerRequest is a vector
(nl

1, n
l
2, . . . , n

l
N) that a remote data-centre can set to request that the local data-

centre assigns nl
i of its servers to service i, for all 1≤ i≤N .

14

To illustrate how this is achieved, we will consider two data-centres that
each implements the policy in (18), and which have access to each other’s
"dataCentre" resource as shown in the lower half of Figure 5 from one of the
next sections of the paper. For simplicity, we will further assume that the data-
centres are responsible for disjoint sets of services (i.e., there is no 1 ≤ i ≤ N
such that wi > 0 for both data-centres). To ensure that the two data-centres
collaborate, we need policies that specify how each of them should set the
peerRequestr parameter of its peer, and how it should use its own peerRequestl

parameter (which is set by the other data-centre). The "dataCentre" parame-
ters have been annotated with the superscripts l and r to distinguish between
identically named parameters belonging to the local and remote data-centre,
respectively. Before giving a utility policy that ensures the collaboration of the
two data-centres, it is worth mentioning that the state of each has the form
s = (n, p1, w1, p2, w2, . . . , pN , wN , nr, nl

1, n
l
2, . . . , n

l
N) (cf. (17)); and the system

configuration has the form c = (n1, n2, . . . , nN , nr
1, n

r
2, . . . , n

r
N). The utility pol-

icy to use alongside policy (18) is given below:

p′utility(s, c) =



−∞, if
N∑

i=1

ni >n ∨
N∑

i=1

nr
i >nr

N∑
i = 1

wi > 0

piu(wi, ni + nr
i)− ε

N∑
i=1

ni−

−λ
N∑

i=1

nr
i + µ

N∑
i = 1

nl
i > 0

min
(
1, ni

nl
i

) , otherwise

(19)

where 0 < ε � λ, µ � 1 are user-specified constants. The value −∞ is used
to avoid the configurations in which more servers than available (either locally
or from the remote data-centre) are allocated to the local services. The first
two sums in the expression that handles all other scenarios are similar to those
from utility policy (13), except that ni + nr

i rather than ni servers are being
allocated to any local service i for which wi > 0. The term −λ

∑N
i=1n

r
i ensures

that the optimal utility is achieved with as few remote servers as possible, and
the term µ

∑1≤i≤N

nl
i>0

min(1, ni

nl
i

) requests the policy engine to allocate local servers

to services for which nl
i >0. Observe that the contribution of a term µmin(1, ni

nl
i

)

to the overall utility increases as ni grows from 0 to nl
i, and stays constant if ni

increases beyond nl
i. Together with the utility term −ε

∑N
i=1ni, this determines

the policy engine to never allocate more than the requested nl
i servers to service

i. Small positive constants are used for the weights ε, λ and µ so that the
terms they belong to are negligible compared to the first utility term. Further,
choosing ε� λ ensures that using a local server decreases the utility less than
using a remote one; and setting ε�µ ensures that allocating up to nl

i servers to
a service i at the request of the remote data-centre increases the system utility.

Finally, note that because the requests for remote servers and the alloca-
tion of such servers take place asynchronously, there is a risk that the pa-

15

rameter values used in policy (19) may be out of date.4 However, this is not
a problem, as the allocation of fewer or more remote servers than ideally re-
quired is never decreasing the utility value for a data-centre below the value
achieved when the data-centre operates in isolation. Additionally, local servers
are never used for remote services at the expense of the local services because∑1≤i≤N

wi>0 piu(wi, ni) � µ
∑1≤i≤N

nl
i>0

min(1, ni/nl
i)) in the utility expression.

4 Prototype Implementation

The policy engine introduced in [13] was extended with the ability to handle
the new type of autonomic computing policy. Implemented as a model-driven,
service-oriented architecture with the characteristics presented in [12], the policy
engine from [13] can manage IT resources whose model is supplied to the engine
in a runtime configuration step. The IT resource models are represented as XML
documents that are instances of a pre-defined meta-model encoded as an XML
schema [12, 13]. This choice was motivated by the availability of numerous off-
the-shelf tools for the manipulation of XML documents and XML schemas—a
characteristic largely lacking for the other technologies we considered. The policy
engine is implemented as a .NET web service, and takes advantage of object-
oriented technology features such as polymorphism, reflection5 and generics6 in
its handling of IT resources whose characteristics are unknown until runtime.

The manageability adaptors from Figure 2 are implemented by the framework
in [13] as web services that specialise a generic, abstract web service Manage-
dResource〈〉. For each type of resource in the system, a manageability adaptor
is built in two steps. First, a class (i.e., a data type) Ti is generated from the
resource model (2) that will be used to configure the policy engine. Second, the
manageability adaptor ManagedTi for resources of type Ti is implemented by
specialising our generic ManagedResource〈〉 adaptor, i.e., ManagedTi : Manage-
dResource〈Ti〉. This process is described in [13].

Adding support for the implementation of the resource-definition policy in
(14)–(15) involved extending the policy engine described above with the following
functionality:

1. Automated generation of a .NET class T for the synthesised resource R from
(15). This class is built by including a field and the associated getter/setter
methods for each parameter of R. The types of these fields are given by the
value domains of the resource parameters.

4 In practical scenarios that we investigated this happened very infrequently relative
to the time required to solve the linear optimisation problem (19) automatically
within the policy engine.

5 Reflection is an object-oriented programming technique that allows the runtime dis-
covery and creation of objects based on their metadata [40].

6 Generics or generic programming represents an object-oriented programming tech-
nique enabling code to be written in terms of data types unknown until runtime
[21].

16

resource synthesised from policy (18)manually implemented manageability

ManagedDataCentre :
ManagedResource〈dataCentre〉

service

priority : unsigned
workload : unsigned

serverPool

ManagedServerPool :
ManagedService :

ManagedResource〈service〉

dataCentre

id : String
maxUtility : double
utility : double
nSpare: unsigned
peerRequest : unsigned[1..N]

adaptors

generic autonomic computing framework from [3]

ManagedResource〈〉 :
System.Web.Services.WebService

Fig. 4. Class diagram for Example 4

2. Automated creation of an instance of T. Reflection is employed to create an
instance of T for the lifespan of the resource-definition policy. The ReadOnly
fields of this object are updated by the policy engine using the expressions
E1, E2, . . . , Eq whenever the object is accessed by an external entity.

3. Automatic generation of a manageability adaptor web service ManagedT
: ManagedResource〈T〉. The web methods provided by this manageability
adaptor allow entities from outside the autonomic system (e.g., external
policy engines) to access the object of type T maintained by the policy
engine. The fields of this object that correspond to ReadOnly parameters of
R can be read, and those corresponding to ReadWrite parameters can be
read and modified, respectively.

The .NET components generated in steps 1 and 3 are deployed automatically,
and made accessible through the same Microsoft IIS instance as the policy en-
gine. The synthesised IT resource is available as soon as the engine completes
its handling of the resource-definition policy.

Example 4 Returning to our running example of an autonomic data-centre,
the class diagram in Figure 4 depicts the manageability adaptors in place after
policy (18) was supplied to the policy engine. Thus, the ManagedServerPool and
ManagedService classes in this diagram represent the manageability adaptors
implemented manually for the ServerPool and Service resources described in
Example 1. The other manageability adaptor derived from ManagedResource〈〉

17

(i.e., ManagedDataCentre) was synthesised automatically by the policy engine as
a result of handling the resource-definition policy.

Also shown in the diagram are the classes used to represent instances of the
IT resources within the system—serverPool and service for the original autonomic
system, and dataCentre for the resource synthesised from policy (18). Notice the
one-to-one mapping between the fields of these classes and the parameters of
their associated resources (described in Examples 1 and 3).

autonomic data-centre

top-level
autonomic
manager

dashboard

service service service service
autonomic data-centre

synthesised
"dataCentre"

resource

synthesised
"dataCentre"

resource

Fig. 5. Autonomic system of systems for Example 5

5 System of Systems Development

System-of-systems application development using the framework described in
Sections 3 and 4 involves supplying resource-definition policies to existing auto-
nomic systems whose policy engines support the new policy type. Hierarchical
systems of systems can then be built by setting a higher-level policy engine to
monitor and/or control the resources synthesised as a result of implementing
these policies. Alternatively, the original autonomic systems can be configured
to collaborate with each other by means of the synthesised resource sensors and
effectors. Hybrid applications comprising both types of interactions mentioned
above are also possible, as illustrated by the following example.

Example 5 The policy engine from Section 4 was used to simulate an autonomic
system of systems comprising the pair of autonomic data-centres described in

18

Fig. 6. Dashboard for isolated data-centre (top) and for identical data-centre operating
as part of the autonomic system of systems from Figure 5 (bottom)

Example 3, and a top-level policy engine that monitors and summarises their
performance using a dashboard resource (Figure 5). The policies implemented
by the policy engines local to each data-centre are policies (18)–(19) from Ex-

19

ample 3. The top-level policy engine implements a simple action policy that
periodically copies the values of the maxUtility and utility parameters of the
"dataCentre" resources synthesised by the data-centres into the appropriate
ReadWrite parameters of the dashboard. For brevity, we do not give this policy
here; a sample action policy was presented earlier in Example 1.

We used the data-centre resource simulators from [8], and implemented the
dashboard resource as an ASP.NET web page provided with a manageability
adaptor built manually as described in Section 4 and in [13]. Separate series of
experiments for 20-day simulated time periods were run for two scenarios. In the
first scenario, the data-centres were kept operating in isolation, by blocking the
mechanisms they could use to discover each other. In the second scenario, the
data-centres were allowed to discover each other, and thus to collaborate through
implementing policy (19). Figure 6 depicts typical snapshots of the dashboard
for both scenarios and for one of the data-centres; the same simulated service
workloads were used in both experiments shown. As expected from the analysis
in Example 3, the system achieves higher utility when data-centre collaboration
is enabled, thus allowing data-centres to utilise each other’s spare servers.

6 Conclusion

A common finding of SoS studies is that existing techniques and tools are unable
to address the whole spectrum of challenges associated with the development of
systems of systems [3, 15, 22, 27]. Notwithstanding the disparity between what
can be achieved using current approaches and these challenges, the SoS devel-
opment frameworks of the future are likely to incorporate some of today’s soft-
ware engineering techniques or adapted, enhanced variants of them. This paper
examined techniques that are candidates for this role, including formal anal-
ysis and verification, model-driven development, service-oriented architectures,
component-based development and policy-based autonomic computing. Having
first identified the SoS challenge(s) that each such technique can help address, we
then proposed a new approach to combining these techniques into a framework
for the development of a class of IT systems of systems.

The administrators of an SoS developed using our framework can specify
at run time how the SoS components inter-operate with each other. To handle
runtime changes in this specification, our framework employs a combination of
model-based and online code generation techniques to automatically build and
deploy the interfaces necessary to support new types of inter-operation among
SoS components. This capability is particularly useful given that SoS components
often belong to open, evolving systems of systems that they could join and
leave dynamically [5, 6, 18, 37]. Additionally, our framework is suitable for the
development of IT systems of systems that need to adapt their inter-component
interactions to changes in the SoS global objectives and/or context.

The automation of time-demanding processes such as the run-time synthesis
of the interfaces between SoS component systems and the reconfiguration of the
policy engine represents a key benefit of the framework. The use of an earlier

20

version of the framework to develop monolithic autonomic systems yielded a
tenfold reduction in development time [14], and preliminary experiments with
its extended prototype presented in Section 4 indicate that significant reductions
are also possible in the case of systems of systems.

In the current version of our SoS development framework, the dynamically
generated interfaces among SoS component systems can be used only in asyn-
chronous mode, and involve periodical polling by the reconfigurable policy en-
gines within the SoS. For this reason, the systems of systems whose development
is currently supported by the framework are those characterised by asynchronous
and relatively infrequent interactions between SoS component systems. A tempo-
rary workaround for this limitation is to mix dynamically generated component
interfaces suffering from this constraint with statically implemented interfaces.
For a long-term solution, we are investigating the possibility to use a notifica-
tion mechanism within our reconfigurable policy engine in order to support the
runtime specification of synchronous SoS component interfaces.

Additional areas of future work include the validation of the proposed frame-
work within new application domains, the development of SoS-specific online
machine learning techniques, the synthesis of high-level SoS policies from speci-
fications, and the design of metrics for the assessment of global SoS effectiveness.

Acknowledgement

This work was partly supported by the UK Engineering and Physical Sciences
Research Council Grant EP/F001096/1.

References

1. Robert Allen and David Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, July 1997.

2. Farhad Arbab. Abstract behavior types: a foundation model for components and
their composition. Science of Computer Programming, 55(1–3):3–52, March 2005.

3. Y. Bar-Yam et al. The characteristics and emerging behaviors of
system-of-systems. Complex physical, biological and social systems
project report, New England Complex Systems Institute, January 2004.
http://necsi.org/education/oneweek/winter05/NECSISoS.pdf.

4. Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2007.

5. John Boardman and Brian Sauser. System of systems – the meaning of of. In Pro-
ceedings of the 2006 IEEE/SMC International Conference on System of Systems
Engineering, pages 118–123, 2006.

6. Lisa Brownsword, David Fisher, Ed Morris, James Smith, and Patrick
Kirwan. System-of-systems navigator: An approach for managing
system-of-systems interoperability. Technical Report CMU/SEI-2006-
TN-019, Carnegie Mellon Software Engineering Institute, April 2006.
http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tn019.pdf.

21

7. R. Calinescu. Towards a generic autonomic architecture for legacy resource man-
agement. In K. Elleithy, editor, Innovations and Advanced Techniques in Systems,
Computing Sciences and Software Engineering, pages 410–415. Springer, 2008.

8. R. Calinescu. General-purpose autonomic computing. In M. Denko et al., editors,
Autonomic Computing and Networking, pages 3–20. Springer, 2009.

9. R. Calinescu and J.M.D. Hill. System providing methodology for policy-based
resource allocation, July 2005. US Patent Application 20050149940.

10. R. Calinescu and M. Kwiatkowska. Using quantitative analysis to implement auto-
nomic IT systems. In Proceedings of the 31st International Conference on Software
Engineering (ICSE’09), May 2009.

11. Radu Calinescu. Challenges and best practices in policy-based autonomic archi-
tectures. In Proceedings of the 3rd IEEE International Symposium on Dependable,
Autonomic and Secure Computing (DASC 2007), pages 65–74, Columbia, Mary-
land, USA, 2007.

12. Radu Calinescu. Model-driven autonomic architecture. In Proceedings of the 4th
IEEE International Conference on Autonomic Computing, Jacksonville, Florida,
June 2007.

13. Radu Calinescu. Implementation of a generic autonomic framework. In D. Green-
wood et al., editors, Proceedings 4th International Conference on Autonomic and
Autonomous Systems (ICAS’08), pages 124–129. IEEE Computer Society Press,
March 2008.

14. Radu Calinescu and Marta Kwiatkowska. CADS*: Computer-aided development
of self-* systems. In Marsha Chechik and Martin Wirsing, editors, Fundamental
Approaches to Software Engineering (FASE 2009), volume 5503 of Lecture Notes
in Computer Science, pages 421–424. Springer, March 2009.

15. Carnegie Mellon Software Engineering Institute. Ultra-Large-Scale Systems.
The Software Challenge of the Future. Carnegie Mellon University, 2006.
http://www.sei.cmu.edu/uls/files/ULS Book2006.pdf.

16. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, 2000.

17. Ivica Crnkovic and Magnus Larsson, editors. Building Reliable Component-Based
Software Systems. Artech House Publishers, 2002.

18. William A. Crossley. System of Sytems: An Introduction of Purdue University
Schools of Engineering’s Signature Area. In Proceedings of the Engineering Systems
Symposium, 2004. http://esd.mit.edu/symposium/pdfs/papers/crossley.pdf.

19. Tarek El-Ghazawi, Esam El-Araby, Miaoqing Huang, Kris Gaj, Volodymyr Kin-
dratenko, and Duncan Buell. The promise of high-performance reconfigurable
computing. Computer, 41(2):69–76, February 2008.

20. Ilenia Epifani, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli. Model
evolution by runtime adaptation. In Proceedings of the 31st International Confer-
ence on Software Engineering (ICSE 2009), pages 111–121, May 2009.

21. R. Garcia et al. A comparative study of language support for generic programming.
ACM SIGPLAN Notices, 38(11):115–134, November 2003.

22. Greg Goth. Ultralarge systems: Redefining software engineering? IEEE Software,
25(3):91–94, May/June 2008.

23. Markus Hannebauer. Autonomous Dynamic Reconfiguration in Multi-agent Sys-
tems. Springer, 2002.

24. Integration of Software-Intensive Systems (ISIS) Initiative: Addressing System-of-
Systems Interoperability. http://www.sei.cmu.edu/isis.

22

25. D.N. Jansen et al. How fast and fat is your probabilistic model checker? An
experimental comparison. In K. Yorav, editor, Hardware and Software: Verification
and Testing, volume 4899 of LNCS, pages 69–85. Springer, 2008.

26. Jeremy M. Kaplan. A new conceptual framework for net-centric, enterprise-
wide, system-of-systems engineering. Defense & Technology Papers 30,
US Center for Technology and National Security Policy, July 2006.
http://www.ndu.edu/ctnsp/Def Tech/DTP%2030%20A%20New%20Conceptual
%20Framework.pdf.

27. Charles Keating. Research foundations for system of systems engineering. In 2005
IEEE International Conference on Systems, Man and Cybernetics, volume 3, pages
2720–2725, 2005.

28. Charles Keating, Ralph Rogers, Resit Unal, David Dryer, Andres Sousa-Poza,
Robert Safford, William Peterson, and Ghaith Rabadi. System of systems en-
gineering. Engineering Management Journal, 15(3):36–45, September 2003.

29. J. O. Kephart and W. E. Walsh. An artificial intelligence perspective on autonomic
computing policies. In Proc. 5th IEEE Intl. Workshop on Policies for Distributed
Systems and Networks, 2004.

30. Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
IEEE Computer Journal, 36(1):41–50, January 2003.

31. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic model checking in
practice: Case studies with PRISM. ACM SIGMETRICS Performance Evaluation
Review, 32(4):16–21, 2005.

32. M. Kwiatkowska, G. Norman, and D. Parker. Quantitative analysis with the prob-
abilistic model checker PRISM. Electronic Notes in Theoretical Computer Science,
153(2):5–31, 2005.

33. Marta Kwiatkowska. Quantitative verification: Models, techniques and tools.
In Proc. 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE, pages 449–458. ACM Press, September 2007.

34. Marta Kwiatkowska, Gethin Norman, and David Parker. Stochastic model check-
ing. In M. Bernardo and J. Hillston, editors, Formal Methods for the Design
of Computer, Communication and Software Systems: Performance Evaluation
(SFM’07), volume 4486 of LNCS (Tutorial Volume), pages 220–270. Springer, 2007.

35. LSCITS Consortium. Large-Scale Complex Information Technology Systems Ini-
tiative. http://www.lscits.org.

36. Mark W. Maier. Architecting principles for systems-of-systems. Systems Engineer-
ing, 1(4):267–284, February 1999.

37. Abe Meilich. System of systems engineering (SoSE) and architecture challenges in
a net centric environment. In Proceedings of the 2006 IEEE/SMC International
Conference on System of Systems Engineering, pages 1–5, 2006.

38. US National Centers for Systems of Systems Engineering (NCSOSE).
http://www.eng.odu.edu/ncsose/.

39. Steven W. Popper, Steven C. Bankes, Robert Callaway, and Daniel De-
Laurentis. System of systems symposium: Report on a summer conver-
sation. In Proceedings of the 1st System of Systems Symposium, 2004.
http://www.potomacinstitute.org/academiccen/SoS%20Summer%20Conversation
%20report.pdf.

40. Jonathan M. Sobel and Daniel P. Friedman. An introduction to reflection-oriented
programming. In In Proceedings of Reflection96, 1996.

41. US System of Systems Engineering Center of Excellence (SoSECE).
http://www.sosece.org.

23

42. US Industry/University Collaborative Research Center for Ultra-Large-Scale
Software-Intensive Systems (ULSSIS). http://ulssis.cs.virginia.edu.

43. Koen Vanthournout, Geert Deconinck, and Ronnie Belmans. A taxonomy for
resource discovery. Personal and Ubiquitous Computing, 9(2):81–89, March 2005.

44. W.E. Walsh et al. Utility functions in autonomic systems. In Proc. 1st Intl. Conf.
Autonomic Computing, pages 70–77, 2004.

45. S.R. White et al. An architectural approach to autonomic computing. In Proc.
1st IEEE Intl. Conf. Autonomic Computing, pages 2–9. IEEE Computer Society,
2004.

46. O. Zimmermann et al. Perspectives on Web Services: Applying SOAP, WSDL and
UDDI to Real-World Projects. Springer, 2005.

24

