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Abstract. We present the design and evaluation of Panoramic, a tool
that enables end-users to specify and verify an important family of com-
plex location events. Our approach aims to reduce or eliminate criti-
cal barriers to deployment of emerging location-aware business activity
monitoring applications in domains like hospitals and office buildings.
Panoramic does not require users to write code, understand complex
models, perform elaborate demonstrations, generate test location traces,
or blindly trust deterministic events. Instead, it allows end-users to spec-
ify and edit complex events with a visual language that embodies natural
concepts of space and time. It also takes a novel approach to verifica-
tion, in which events are extracted from historical sensor data traces
and then presented with intelligible, hierarchical visualizations that rep-
resent uncertainty with probabilities. We build on our existing software
for specifying and detecting events while enhancing it in non-trivial ways
to facilitate event specification and verification. Our design is guided by
a formative study with 12 non-programmers. We also use location traces
from a building-scale radio frequency identification (RFID) deployment
in a qualitative evaluation of Panoramic with 10 non-programmers. The
results show that end-users can both understand and verify the behavior
of complex location event specifications using Panoramic.

1 Introduction

Intelligent behavior in location-aware computing is driven by location events.
Applications detect events by dynamically evaluating spatio-temporal relation-
ships among people, places, and things. For example, a location-aware to-do list
might detect simple events like “Alice is near the library” to trigger reminders.
In contrast, many new applications for real-time location systems (RTLS) rely
on complex events that contain sequences of interactions [1, 27]. For example,
a hospital workflow tracker may log a “cardiology exam” whenever a patient is
detected exiting the hospital after meeting with a cardiologist and then spending
time with a nurse and an electrocardiogram machine. With the RTLS market
expected to soon exceed $2 billion US [15], support for complex events is crucial.
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A fundamental part of support for complex events is event specification; users
must be able to specify new events to meet their evolving needs. Applications
achieve this by leveraging event detection systems (e.g., context-aware comput-
ing infrastructures) that allow new events to be formally specified in some man-
ner. However, while existing systems allow developers to specify new events using
low-level APIs [3, 30, 33] or a declarative query language [10, 14], dependence on
developers is a costly inconvenience for both individuals and organizations. In-
deed, a recent survey of location systems in hospitals cited the cost of tuning
vendor software to site requirements as a critical barrier to deployment [34]. A
compelling alternative is to allow direct specification of complex events by end-
users. This is challenging, however, because it requires translation of high-level
concepts into conditions on diverse, low-level, and uncertain sensor data. Un-
fortunately, existing systems for end-user event specification are either limited
by inexpressive interfaces [17, 24] or require iterative and potentially unfeasible
training demonstrations for machine learning models [8].

It is equally important that end-users be able to verify event specifications
and debug those that do not work. Verification is difficult because it requires
a system to produce high-level evidence of a specification’s behavior over sen-
sor traces that may be too complex for an end-user tool to generate. Moreover,
because bugs can occur at the sensor level (e.g., calibration errors) or in the spec-
ification design, users must be able to understand detected events and evaluate
their relationship to sensor data. This is impractical or impossible when events
are specified with inscrutable machine learning models or when they do not rep-
resent uncertainty. As such, existing systems for end-user event specification are
limited by inadequate support for verification and debugging.

We present Panoramic, a web-based tool that enables end-users to specify
and verify complex location events. Panoramic does not require users to write
code, understand complex models, perform elaborate demonstrations, generate
test traces, or blindly trust deterministic events. Instead, it offers an intuitive
visual language for specification and an intelligible verification interface that
uses readily available historical sensor data. Specifically, we contribute:
1. A significant upgrade to our existing event detection system, Cascadia [37];

we facilitate event specification and verification by integrating Lahar [28], a
new type of probabilistic event detector (Section 3).

2. Extensions that prevent errors and increase the expressive power of Scenic,
our existing event specification tool. Our changes are guided by a formative
user study with 12 non-programmers (Sections 3 and 4).

3. A novel approach to verification that leverages both historical sensor traces
and a user’s knowledge of past events while explicitly but intuitively repre-
senting the probabilistic nature of sensor data and events (Section 5).

4. Verification interface widgets that provide end-users with an intelligible and
hierarchical visualization of context. The widgets also allow users to distin-
guish sensor errors from errors in a specification’s design (Section 5).

5. A qualitative evaluation of event verification in Panoramic with 10 non-
programmers. The study uses actual radio frequency identification (RFID)
location traces collected from a building-scale deployment (Section 7).
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Fig. 1. The Panoramic system architecture. Events are iteratively specified
in Panoramic, detected over historical location traces by Cascadia, and then
displayed in Panoramic’s verification interface.

2 The RFID Ecosystem

We design and evaluate Panoramic using RFID traces, an increasingly common
type of location data [29, 34]. Our deployment, the RFID Ecosystem, models an
enterprise RTLS deployment using 47 EPC Gen-2 RFID readers (160 antennas)
installed throughout our 8,000 m2 building. In addition, more than 300 passive
(e.g., unpowered) tags carrying unique identifiers are attached to people and
objects. When a tag passes an antenna it may wirelessly transmit its identifier
to a reader, which in turn creates and sends a timestamped tag read event of the
form (antenna location, tag ID, time) to a server for storage and processing.
However, our antennas are only deployed in corridors (not inside offices), and
past work has shown that factors like RF-absorbency and mobility in an everyday
environment may prevent tags from being read [36, 39]. Thus, like many location
systems, the RFID Ecosystem may produce sporadic, imprecise location streams.

3 Specifying and Detecting Events

In this section, we describe Cascadia, Scenic, and extensions we make to support
Panoramic. We also present a taxonomy for the events Panoramic can specify.

3.1 Integrating Lahar into Cascadia

Cascadia is a system for specifying, detecting, and managing RFID events [37]. It
accepts declarative event specifications and detects the specified events over in-
coming RFID data, producing one event stream per specification. Cascadia copes
with uncertainty by transforming intermittent RFID streams into smoothed,
probabilistic Markovian Streams (MStreams) [19] that capture both the uncer-
tainty of a tag’s location at each time step (e.g., a distribution over which rooms
the tag might be in) and the correlations between a tag’s possible locations (e.g.,
distributions over entire paths through a building). MStreams abstract away the
complexities of sporadic and imprecise data to expose a more uniform model
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Fig. 2. Cascadia transforms raw, uncertain location data into smoothed,
probabilistic Markovian streams over which Lahar detects complex events.

of location over which event specifications are expressed, thus considerably sim-
plifying the requirements of an event specification language. At the heart of
Cascadia is the PEEX event detection engine, which uses an SQL-like event
specification language and extracts probabilistic events from MStreams.

We upgrade Cascadia by replacing PEEX with the Lahar event detection en-
gine. Lahar’s query language is based on regular expressions that are represented
internally with finite state machines (FSMs). The language’s pattern matching
constructs, together with standard query predicates, offer a more intuitive way
to express sequential spatio-temporal events. This streamlines translation from
Panoramic specifications into Lahar queries and provides end-users with an eas-
ily comprehended mental model of the event detection process. Lahar produces
a single probabilistic query signal for each MStream it processes. The query sig-
nal for an event specification, or event signal, consists of timestep-probability
pairs <t,p> which indicate that the event occurred at timestep t with prob-
ability p (see Figure 2). Each probability p is derived from an MStream using
well-established query answering techniques for probabilistic databases [19, 28].

Lahar is an evolving research prototype that is currently limited to answering
event queries over a single MStream. Panoramic, however, creates event speci-
fications that reference multiple MStreams (e.g., multiple people and objects).
As such, we developed a new Event Manager module for Cascadia that answers
queries over multiple MStreams. The Event Manager translates specifications
into sets of single MStream queries after which it orchestrates their execution
with Lahar and merges the resulting event signals. This module also manages
metadata on MStreams and caches intermediate event signals for reuse when
answering other queries. Overall, our upgrades make Cascadia more expressive
and provide cleaner semantics because all queries map to state machines.
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Fig. 3. The event specification interface employs a storyboard metaphor.

3.2 Enhancing Scenic

Scenic is a tool that allows end-users to specify events for PEEX [37, 38]. It uses
an iconic visual language designed to support common location events and their
composition through sequencing and conjunction. A storyboard layout describes
how people and objects enact an event through a sequence of movements between
places (see Figure 3). Users drag and drop Actors (people, objects and places)
and Primitives (instantaneous events) onto Scenes. A Sequence of Scenes specifies
a complex event as a sequence of spatio-temporal sub-events. Actors are specified
using other end-user tools discussed in prior work [38].

While end-users understood Scenic [37], translation of specifications into
PEEX queries was complex and imposed awkward constraints on the interface.
For example, only certain combinations of Primitives could appear in a Scene
and transitions between Scenes had to be of fixed length (e.g., one second). By
designing Panoramic to target Lahar, we were able to remove these constraints
and add several new features that increase expressiveness (see Figure 3). We
added explicit Connectors between Actors and Primitives, enabling any combi-
nation of Primitives to appear within a single Scene. We also added Transitions
between Scenes that are set explicitly by the user as occurring either instantly
(i.e., in one timestep) or over time (i.e., some time may pass before the next
scene occurs). Finally, we included simple constraints on absolute time (e.g.,
“before 12pm on Weekdays”) as a convenience.

3.3 Supported Events

In a survey of location events in pervasive computing applications [37] we found
that six instantaneous events were used most often: with, without, inside, outside,
near, and far; and that these events were frequently composed using conjunction,
repetition, and sequencing. A large fraction of these events can be expressed in
Panoramic and translated directly into FSM queries for Lahar. We now describe
and illustrate the set of location events Panoramic supports.
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Fig. 4. A Single Scene event: “I’m in my office ”, translates into a single state
FSM that enters the accept state whenever the user is inside his office.

Fig. 5. A Consecutive Sequence event: “I enter my office”, translates into a
linear FSM that enters accept state when Scenes are satisfied consecutively.

Single Scene Events Single Scene events use connected Primitves and Ac-
tors to describe a set of instantaneous events that occur simultaneously. Scenes
including one person or object (i.e., one MStream) can be translated into a FSM
query having a single accept state and a single incoming edge that is satisfied
when the Scene’s Primitives are true (see Figure 4). When the Scene includes
multiple people or objects, the Event Manager breaks the query into multiple
single-state FSM queries, answers each, and merges the results by assuming their
mutual independence and computing their conjunction. The set of events that
can be represented by a single Scene is greatly extended by Connectors. Single
Scene events form the basis of all location-aware computing applications and are
sufficient to account for 24% of events recorded in the survey.

Consecutive Sequences Consecutive Sequences contain Scenes separated
by instantaneous Transitions. They are translated into linear FSM queries that
have a single accept state preceded by a sequence of states and edges as shown
in Figure 5. In the case of multiple objects or people, the Event Manager pro-
cesses each Scene as though it were a Single Scene event, joins the results into
a composite stream of independent events, and then runs a linear FSM query
that corresponds to the Sequence. Consecutive Sequences are useful for detect-
ing state transitions like entering or exiting a place, approaching an object, or
beginning a trajectory; such events account for another 42% of surveyed events.

Sequences with Gaps Sequences may also contain Transitions that allow
time (and potentially other events) to pass between one Scene and the next.
Panoramic translates these Sequences into linear FSMs having a self-loop edge
that is satisfied by the negation of the condition on the edge which leads to the
next state. For example, the self-loop edge in Figure 6 ensures that the FSM
remains in “pre-meeting” state until Alice, Nikhil, and Prof. Chen are all in
Prof. Chen’s office. Sequences with gaps represent a class of events not previ-
ously supported by Cascadia, thus increasing the flexibility and expressiveness
of specifications. They also account for another 11% of the events in our survey.
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Fig. 6. A Sequence event with a gap: “Alice, Nikhil and Prof. Chen begin a meeting
in Prof. Chen’s office”. This event occurs as soon as the last participant enters
the office. A FSM with a self-loop is used to wait for the last participant.

Disjunctions of Sequences A disjunction of Sequences may represent dif-
ferent orderings of instantaneous events or alternate paths in a workflow. While
such events comprise less than 5% of events in the surveyed literature, they are
of growing importance in emerging domains like workflow monitoring in hospi-
tals [27]. Panoramic does not directly support disjunctions, but users may specify
multiple Sequences and compose their disjunction within an application. Here
we stress that Cascadia has the capability to support disjunctions of Sequences
and that we plan to extend Panoramic to directly specify them in future work.

Actor variables also create disjunctions of Sequences. Most surveyed events
can be usefully modified with variables. For example, instead of “Alice meets
Nikhil in her office”, one could express “Two researchers meet in any room”.
These events are translated into a disjunction of Sequences where the variables
in each Sequence are replaced with a different combination of possible values.
This is effective for events with few variables that range over a limited domain.

Unsupported Events There are another 18% of surveyed events for which
Panoramic provides limited or no support. This includes repeating sequences,
which can be translated into FSMs with cycles. These queries are computa-
tionally difficult to answer over probabilistic data, but can be approximated
by unrolling the cycle. Other common and unsupported location events involve
precise 3D location and events involving speed of transition (i.e., velocity).

3.4 Formative Evaluation

In addition to the move from PEEX to Lahar, the design of Panoramic’s event
specification interface was driven by a formative user study. In this study, 12 non-
programmers were given a brief tutorial on Panoramic and asked to complete
a series of event specification tasks while talking aloud. Each task presented
participants with an example application and usage scenario for which they
were asked to specify an appropriate event. After participants declared a task
complete, a researcher would then review the produced specification and explain
exactly how Panoramic would interpret it. Participants could then revise their
specification if the researcher’s explanation did not match their intention.

As a result of the study, we identified a variety of usability and expressivity
problems which we addressed with the design features presented above. However,
we also observed several more fundamental problems regarding user ability to
understand and verify the behavior of a created specification. We discuss these
problems in the next section.
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4 Problems in Specifying an Event

Even with the enhancements to the Scenic interface, users encountered a variety
of difficulties while authoring an event specification with Panoramic. Here, we
summarize and discuss those most frequently observed in our formative study.

4.1 Syntax Errors
Nearly all participants produced one or more syntactically illegal specification.
Most syntax errors were the result of forgotten connections or targeting er-
rors while rapidly creating a Scene. In a few cases, participants made mistakes
because they did not clearly understand how Actors and Primitives could be
connected. We addressed these problems with three new features (see Figure 3).
First, we constrained the interface to allow only legal connections between Ac-
tors and Primitives, thereby eliminating the possibility of syntax errors. We also
added an information panel below each Scene that displays English explanations
for fully connected Primitives in that Scene. Finally, we included a status flag
in the information panel that shows a green checkmark when a Scene is legally
specified or an under construction symbol when more work needs to be done. If
more work is needed, the information panel provides a hint as to what elements
(e.g., Actors, Primitives, Connectors) are needed to complete the Scene.

4.2 Design Problems
A problem encountered by 3 of the first 5 participants was in deciding on a
specification design that would meet the task’s requirements. While 1 participant
had difficulty reasoning about what needed to be specified, others knew what
they wanted to specify but weren’t sure how the available widgets could be
composed to do it. To address both of these problems, we introduced event
templates, stock specifications that provide examples of common events with
their usage scenarios - at least one for every type of event in the taxonomy.
The last 7 participants in our formative study were provided with a library of
templates during the study session; those that encountered design challenges
were able to use the template library to decide on a design.

4.3 Problems with Timing
Half of the participants chose to revise a completed specification due to prob-
lems with timing. These problems consisted in use of the wrong Transition type
(e.g., instantly instead of over time) or in using one Scene when two Scenes were
needed. For example, a participant intended to specify “the custodian leaves the
lab and goes to the closet” as two Scenes separated by an instantaneous Tran-
sition. This specification was flawed because a custodian cannot move instantly
between rooms. Another participant used a single Scene to tell a context-aware
notifier to send her an email when a meeting occurs. While the single Scene would
effectively detect a meeting and send an email, it would also occur repeatedly
throughout the meeting, causing many emails to be sent. Event templates helped
to reduce problems with timing, but some more subtle problems remained, forc-
ing participants to revise their specifications. We therefore developed additional
solutions to timing problems which we present in Section 5.
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4.4 Tuning the Level of Specificity

A critical challenge faced by all participants while designing and revising their
specifications was to determine the appropriate level of specificity. Some partic-
ipants routinely under-specified events by leaving out Actors or Primitives. One
explained her under-specification by saying “I wanted it to cover every case so I
only need one event,” another simply explained that it took two revisions before
he realized that another object was needed. Over-specification was also common.
In such cases, participants often explained that they added non-essential Actors,
Primitives, or Scenes because they weren’t confident that Panoramic would de-
tect the intended event without them. For example, one participant constrained
a “group meeting” event to occur only when all group members were together
in a room with laptops and coffee mugs. He explained that “they could be in the
room for some other reason, but if they all have laptops and coffee then they’re
probably in a meeting.” Whether an event is over or under specified, the result
is a specification that does not fit the user’s intention.

While mismatches in specificity may be less of a problem when users are
reasoning about events in their own life with which they are intimately familiar,
some tuning is likely to be required whenever a new event is specified. Many
participants adopted a trial and error methodology when specifying an event,
using the researcher’s explanation to “test” an event’s behavior over multiple
design iterations. This motivated the design of additional interface components
that support users in understanding and verifying the behavior of a specification.
We discuss these components in the next section.

5 Understanding and Verifying Events

In response to the problems discussed in the previous section, we extended
Panoramic to support end-users in understanding and verifying their event speci-
fications. Here we face the hard problem of generating test data for specifications.
Our approach is to allow users to assess the correctness of a specification by run-
ning it on historical data. We use Cascadia to detect the event together with the
timeline-based and map-based widgets presented below to visualize the results.
The advantage of this approach is that it does not require complex simulations
or synthetic data which may not be truly representative. Instead, it reveals the
behavior of the event on real, readily available sensor data. The obvious con-
straint is that the tested event must have already been recorded by user’s RFID
deployment. This is a reasonable sacrifice for scenarios like hospitals and office
environments where both simple events and complex workflows occur repeatedly.

5.1 Timeline Overview

We developed a timeline widget (see Figure 7) that provides a rapid overview
of detected event results as horizontal bars in a timeline where a bar’s start
and end points correspond to a detected event. Events are organized in groups
of sub-events (e.g., sub-sequences, Scenes, Primitives) in order to provide an
in-depth explanation as to why an event was or was not detected. Each group
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Fig. 7. The timeline reviews the event “Alice enters her office with her helmet”.

of events is displayed in its own band, with one band for the event itself along
with its sub-sequences, and one band for each Scene with its Primitives. By
correlating the sub-event bars with the presence or absence of an event bar, users
can gain an understanding of how each sub-event contributes to or detracts from
the detection of the event. For under-specified events, this process can reveal
that frequently occurring sub-events result in a larger than intended number
of detections. In the case of over-specification, it can show a user that absent
sub-events are preventing the event from being detected. Timing problems are
also visible as unexpectedly long or short event durations.

The timeline further facilitates the verification process with exploratory brows-
ing functions. The timeline can be dragged left or right to move through time,
and two zoomed-out bands (one for hours and one for days) provide additional
context for large datasets. By default, event bands are rendered with minute-
level granularity but may be zoomed in or out using the mouse scroll wheel.
Checkbox labels on the left side of each band describe the contents of each sub-
event group in that band. The bars representing a sub-event can be shown or
hidden from the timeline view by checking or unchecking that sub-event’s check-
box. Selecting a checkbox label will highlight all occurrences of an event and
its sub-events in the timeline. Finally, clicking a bar in the timeline brings up
a bubble containing a thumbnail image of the corresponding event or sub-event
along with an English description and precise timing information.

The timeline-based design is particularly well-suited for display of sequential
data and allows users to leverage their natural ability for reasoning about tem-
poral events [16]. With a suitably large dataset, we anticipate that the timeline
view can help users to quickly gather evidence of a specification’s behavior.
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Filtering Event Signals The timeline must present a simple, discrete view of
the complex probabilistic data it displays. As such, we take several steps to trans-
form raw event signals from Lahar into discrete event streams that are amenable
to visualization. First, because the probability of a true event occurrence may
vary widely, we identify and flag all local maxima in a signal as potential event
occurrences. We then filter out all spikes (i.e., peaks lasting less than 2 seconds)
from this set. Spikes are unlikely to correspond to a true event because they
are faster than any action humans commonly perform. They may occur in an
entered-room event signal, for example, when a user passes but does not enter the
room. After removing spikes, we transform the remaining “humps” into discrete
events having the same duration and which can be displayed on the timeline.

5.2 Detailed Playback

Though it provides a useful overview and a direct look at the cause for Sequence
and Scene events, the timeline does not explain why a given Primitive event does
or does not occur. This is a crucial question when working with real historical
sensor traces because missed RFID readings can lead to false positives or neg-
atives that are indistinguishable from unexpected behavior in the timeline. For
example, a “group meeting” event may match a user’s intention but fail to work
in practice because one group member’s RFID tag is routinely missed. Using
only the timeline, it would be impossible to distinguish an absent group member
from a tag that needs to be replaced. To help users identify problems that are
rooted in sensor errors rather than in a specification, we developed a map-based
trace playback widget. The widget allows a user to semantically drill-down into
any point in the timeline and review both the sensor trace and the MStream
starting at that time.

The playback widget renders at the right side of the timeline (see Figures 1
and 8) whenever a user clicks the “Cue Playback” button in the pop-up bubble
for a timeline bar. At the same time, a playback cursor appears over the timeline
to designate the current time in the trace to be replayed. Users may also be
interested in portions of the timeline that contain no detected events, as such,
they can drag the timeline to any location to cue playback there. Standard video
controls (e.g., pause, play, stop, rewind and fast-forward) provide a familiar
interface for reviewing segments of the trace. Playback occurs in a collection of
map panels that show RFID readings and MStream data (i.e., particles from the
particle filter) overlaid on a map of the RFID deployment. The timeline scrolls
synchronously with the map-based playback. Each such panel follows a particular
person or object from the trace, automatically panning and switching floors as
needed. The user may also choose to show multiple traces in a single map panel
by selecting checkboxes above the map that correspond to additional traces.
RFID readings and MStream data may be switched on and off in a given map
panel using the “Show Data” and “Show Model” checkboxes. Unneeded map
panels can be collapsed to facilitate side-by-side comparison of traces. Labels at
the top of the playback widget show the current time in the trace and summarize
the collection of people and objects being viewed in the trace.
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Fig. 8. The playback widget reviews traces for Alice and her helmet. Per-
son and helmet icons represent raw location data. Particle icons display a
probability distribution over a tracked entity’s possible locations.

6 Implementation

Panoramic’s event specification and verification interfaces are entirely web-based
and built using the Google Web Toolkit [12]. The playback widget was built using
Google Maps [11], and a customized version of MIT’s Simile Timeline [31] was
used to implement the timeline widget. In total, Panoramic contains 152 Java
classes that control the interface and orchestrate AJAX communication with a
server. An additional 42 classes were added to Cascadia to support translation
and execution of Panoramic events with Lahar.

7 Evaluation

We ran a qualitative study of Panoramic’s event verification capabilities with 10
non-programmers. Participants were offered $20 to perform 60 minutes of event
verification tasks. In addition to a 10 minute tutorial, participants were prepared
with a background story that described a week in the life of Alice, a fictional
student. The story included precise information on events that occurred (e.g.,
“group meeting on Monday at 11”) as well as information on events that often
occur (e.g., “Nikhil often stops by Alice’s office to talk”). Each task included a
specification, a description of the application and usage scenario for which Alice
created the specification, and the corresponding detected events from the week
of Alice’s data. Participants were asked to talk aloud as they used Panoramic
in combination with what they knew about Alice’s week to decide how each
specification worked, whether it met her needs, and how it could be fixed.
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The week of historical data was spliced together from traces collected in the
RFID Ecosystem and for which we have ground truth information on when and
where events occurred. We combined a set of high fidelity traces with a small
number of highly ambiguous traces (e.g., traces with a large number of missed
tag reads). The first four tasks were presented in random order with one task
having a specification that clearly succeeded over the week of data and three that
failed because they were over-specified, under-specified, or contained a timing
error. A fifth task contained a specification that should have met Alice’s needs
but was not detected over the week’s data as a result of ambiguous sensor traces.

7.1 Observations and Enhancements

Overall, participants were able to complete the tasks, averaging 15-20 minutes
for the task involving ambiguous traces and 10-15 minutes for all other tasks.
All participants understood the behavior of specifications and could distinguish
sensor errors from specification errors. Participants were also able to grasp the
intended behavior of a specification both from the usage scenario and from the
specification itself. As such, they used the timeline and playback widgets as a
means for verifying intuitions about a specification’s behavior rather than for ex-
ploring its overall behavior. Moreover, though overconfident participants initially
declared a flawed specification to be correct in 6 of 50 tasks, they quickly changed
their minds after comparing the timeline to their knowledge and intuitions about
events. All participants were comfortable using Panoramic and several remarked
that it was fun or “like a game”. However, while they did not encounter any crit-
ical barriers to task completion, many participants faced recurring difficulties for
which we have developed preliminary solutions (see Figure 9).

First, participants often checked the timeline for consistency with the events
they knew occurred during Alice’s week. In many cases the first question they
tried to answer was “how many times was the event detected?”. The timeline
does not directly answer this question, so participants had to scroll through the
week to count event occurrences. We addressed this problem by adding a count
for each event beside that event’s label at the left side of the timeline.

The task involving an under-specified event required participants to further
constrain the specification by adding an object. This was difficult because the set
of available objects was buried in the specification interface, leaving participants
unsure of what objects were available. Moreover, without the ability to review
traces for other Actors alongside the currently loaded trace, it was difficult to
decide whether or not another Actor was relevant to an event. While this problem
may be less critical when users reason about people and objects they know, we
did introduce a new section to the legend at the top of the playback panel that
shows other Actors which may be relevant to the event. By clicking the checkbox
next to an Actor, users can load a new map panel that plays the trace for that
Actor. The set of displayed Actors is currently chosen as those that are proximate
to, or move in the same time window as the currently loaded trace. This is a
reasonable compromise to the unscalable alternative of displaying every possible
Actor because proximate or moving Actors are likely to be more relevant.
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Fig. 9. Enhancements to the timeline and playback widgets.

Two additional recurring frustrations were voiced by participants when using
the playback widget. First, they had difficulty understanding the visualization of
the MStream as a set of particles. After explaining the particles as “Panoramic’s
guess at where a person or object is,” participants were better able to understand
but still had difficulty reasoning about sensor errors and missed detections as a
result of ambiguity. As such, we changed our rendering of particles to include an
opacity level that corresponds to a particle’s probability. This helped the last 8
of 10 participants to identify sensor errors in the ambiguous trace 3-5 minutes
faster than the 2 who did not have this feature available. A second difficulty
was that participants felt it was difficult to correlate the trace playback with
the events in the timeline. Although the timeline was animated to correspond to
the trace, participants were uncomfortable looking back and forth between the
trace and the timeline. One participant explained her difficulty with the playback
widget by saying “it shows where Panoramic thinks the people are, but not what
it thinks about the events, you have to keep looking back at the timeline to see
the events, that’s hard”. This problem could be addressed in future work by
arranging the timeline below the playback widget, or by embedding pop-ups in
the playback maps that mark when and where events occur.

7.2 Limitations

Panoramic currently has several key limitations. First, while it supports spec-
ifications with Actor variables, verification of such events is tedious because
users may need to review multiple sets of historical traces - one for each possi-
ble parameterization of the variables. Panoramic is also limited by its minimal
support for debugging suggestions. While a list of potentially relevant Actors is
useful, more intelligent suggestions could be made by assessing the how sensi-
tive the event detection results are to slight changes in a specification. Finally,
Panoramic’s reliance on historical data may be problematic for events that sel-
dom occur. Here it may be possible to automatically generate synthetic test data
for a particular specification using techniques similar in spirit to recent work by
Olston et al. [25]. Future work will address these and other limitations.
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8 Related Work

Here we review and discuss a variety of end-user software engineering techniques
for sensor systems. We focus on specification and verification of events, omitting
discussion of techniques that specify event-triggered behaviors.

Specification Languages Event specification systems for end-users are
difficult to design because they must lower the barrier to entry without com-
promising expressive power. One approach is to create a specification language
with abstractions that represent high-level concepts in the target application
domain. For example, early systems like PARCTAB [35], Stick-e Notes [26], and
SPECs [17] used scripts to describe primitive location events. More recent work
with Semantic Streams [40] and probabilistic context-free grammars [22] can de-
tect some complex and even uncertain events in sensor networks. While these
systems use data processing techniques similar to those in Cascadia, they expose
languages that are not well-suited to end-users.

Specification Interfaces Several systems have made specification more
accessible with graphical interfaces that declaratively specify events. EventMan-
ager [24] used four drop-down boxes to specify a small set of primitive location
events. CAMP [33] specifies non-sequence (i.e., instantaneous) events with a
magnetic poetry interface that answers the questions: who, what, where and
when. The Topiary [20] design tool also specifies instantaneous events, but uses
an interface with an active map and a storyboard. Panoramic is quite similar
to iCAP [32], a visual interface for specifying spatio-temporal sequence events.
However, CAMP, iCAP, and Topiary are all less expressive than Panoramic be-
cause they rely on custom-coded event detection modules instead of a flexible
event detection engine like Lahar. Moreover, they do not explicitly support event
detection over uncertain sensor data like Panoramic.

Programming by Demonstration Another approach is programming by
demonstration (PBD), in which users supply example sensor traces to train an
event detector. a CAPpella [8] is a PBD system that allows users to train a Dy-
namic Bayesian Network with labeled sensor traces. Apart from low detection
rates, a CAPpella is difficult to use in our motivating scenarios because it requires
5 or more traces for training. Other systems focus on detecting simpler events
with fewer examples and rapid feedback. For example, Crayons [9] and Eye-
patch [23] enabled users to rapidly train visual classifiers using a demonstration-
feedback loop. The Exemplar system [13] employs a similar loop featuring an
algorithm that requires only one demonstration. Exemplar focuses on expos-
ing an intelligible and editable visualization of its model, addressing the fact
that automatically learned models are often inscrutable [5, 18]. These prior PBD
methods become impractical for complex events that involve the simultaneous
movement of people and objects.

Verifying Specifications Past work has shown that end-users must be able
to verify that a specification works as intended [5, 18]. Verification identifies three
broad categories of error: (1) syntactic errors that make specifications illegal or
ambiguous, (2) semantic errors that make valid specifications behave in unex-
pected ways, and (3) sensor errors that cause event detectors to erroneously
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detect or miss events. Most languages and declarative interfaces use interactive
visual feedback (e.g., error flags, prompts for disambiguation) to cope with syn-
tactic errors [20, 32]. Semantic errors are often identified by testing with sensor
traces (as discussed below). However, both CAMP and Panoramic can reveal
semantic errors in non-sequence events by generating high-level English descrip-
tions - in Panoramic these are descriptions of Primitives. Most systems provide
no support for identifying sensor problems beyond what may be inferred from
detection errors. In contrast, Panoramic directly supports discovery of sensor er-
rors by providing a visualization that correlates sensor data with detected (and
missed) events.

Trace-Driven Debugging Test traces are commonly generated using either
Wizard of Oz [20, 32], in which the user simulates sensor traces with a special
interface, or demonstration [8, 13], in which the user enacts an event while record-
ing it with sensors. Both of these techniques become prohibitively demanding
for complex events. The Wizard of Oz approach also fails to capture the impact
of uncertainty in real sensor data. Panoramic avoids these problems by using
pre-recorded traces. Moreover, though other systems could adopt Panoramic’s
approach, they do not provide the support for archiving, exploration, and visu-
alization of uncertain events and sensor data that Panoramic does. Debugging
also requires that users correct erroneous specifications. This is a simple matter
of modifying the specification in declarative interfaces like iCAP and Panoramic.
It is much less straightforward in PBD systems [5], and may require that entirely
new sets of demonstrations be recorded.

Intelligible Context Models Several papers have established and articu-
lated the need for intelligible models of context [4, 6, 21]. A few systems have also
explored support for intelligible context. Cheverst et al. [6] supported users with
scrutable decision tree rules and context histories. The PersonisAD [2] frame-
work allowed developers to access supporting evidence for context items. Dey
and Newberger [7] support intelligibility in the Context Toolkit using Situation
components that expose application logic to developers and designers. Panoramic
adds to this body of work by providing an intelligible, scrutable context model
for complex location events. Moreover, Panoramic contributes a context man-
agement system that directly copes with uncertainty using probabilities while
not requiring users to explicitly specify probability thresholds.

9 Conclusion

In this paper we presented the design and evaluation of Panoramic, an end-
user tool for specifying and verifying RFID events. Our design leverages and
extends the Cascadia system and the Scenic tool in significant ways, and is
informed by feedback from a formative study with 12 non-programmers. We also
contributed the design of an interface for verifying complex location events that
was motivated by problems observed in the formative study. We evaluated our
verification interface with 10 non-programmer study participants and found that
in spite of minor difficulties with the interface, all users were able to complete five
representative verification tasks. Overall, we have presented a tool that satisfies
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a growing need in a way that is accessible to end-users and which works in spite
of inevitable sensor errors. Moreover, we demonstrated techniques that support
intelligible context for applications that use complex location events.
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