Skip to main content

The Implementation of Polarizable and Flexible Models in Molecular Dynamics Simulations

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5976))

Abstract

We discuss a new methodology for implementing polarizable and flexible molecular models - the fluctuating charge and intramolecular potential (fCINTRA) method - in Molecular Dynamics (MD) simulations. An example has been provided for ethanol. In these models, all potential parameters depend on the local electrostatic field generated by the other molecules in the system. A methodology for extracting field-dependent intramolecular potentials from ab initio calculations is discussed, and the parameters controlling the energetics of intramolecular motion are directly coupled to the field experienced by the atoms in a molecule. Variability in the atomic charges is introduced via the fluctuating charge model of Rick et al. [S. Rick, et al., J. Chem. Phys. 1994, 101, (7), 6141-6156.]. Atomic charge fluctuations are much faster than atomic motion and, for practical reasons, a multiple time steps algorithm is required. In the implementation of MD simulations for this model, the Message Passing Interface (MPI) has been used. The simulation algorithm is complex for the fCINTRA model. However, with the help of load sharing, minimization of interprocessor communications, and code optimization, the overall simulation time is acceptable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mackerell, A.D.: Empirical force fields for biological macromolecules: Overview and issues. Journal of Computational Chemistry 25(13), 1584–1604 (2004)

    Article  Google Scholar 

  2. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids, 1st edn. Oxford University Press, New York (1987)

    MATH  Google Scholar 

  3. Shirts, M.R., Pitera, J.W., Swope, W.C., Pande, V.S.: Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins. Journal of Chemical Physics 119(11), 5740–5761 (2003)

    Article  Google Scholar 

  4. Car, R., Parrinello, M.: Unified Approach for Molecular-Dynamics and Density-Functional Theory. Physical Review Letters 55(22), 2471–2474 (1985)

    Article  Google Scholar 

  5. Spohr, E.: Some recent trends in computer simulations of aqueous double layers. Electrochimica Acta, 23–27 (2003)

    Google Scholar 

  6. Gao, J.L., Habibollazadeh, D., Shao, L.: A polarizable intermolecular potential function for simulation of liquid alcohols. Journal of Physical Chemistry 99(44), 16460–16467 (1995)

    Article  Google Scholar 

  7. Lamoureux, G., MacKerell, A.D., Roux, B.: A simple polarizable model of water based on classical Drude oscillators. Journal of Chemical Physics 119(10), 5185–5197 (2003)

    Article  Google Scholar 

  8. Lamoureux, G., Roux, B.: Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm. Journal of Chemical Physics 119(6), 3025–3039 (2003)

    Article  Google Scholar 

  9. Noskov, S.Y., Lamoureux, G., Roux, B.: Molecular dynamics study of hydration in ethanol-water mixtures using a polarizable force field. Journal of Physical Chemistry B 109(14), 6705–6713 (2005)

    Article  Google Scholar 

  10. Rick, S.W., Stuart, S.J., Berne, B.J.: Dynamical fluctuating charge force-fields - Application to liquid water. Journal of Chemical Physics 101(7), 6141–6156 (1994)

    Article  Google Scholar 

  11. Svishchev, I.M., Kusalik, P.G., Wang, J., Boyd, R.J.: Polarizable point-charge model for water: Results under normal and extreme conditions. Journal of Chemical Physics 105(11), 4742–4750 (1996)

    Article  Google Scholar 

  12. Cicu, P., Demontis, P., Spanu, S., Suffritti, G.B., Tilocca, A.: Electric-field-dependent empirical potentials for molecules and crystals: A first application to flexible water molecule adsorbed in zeolites. Journal of Chemical Physics 112(19), 8267–8278 (2000)

    Article  Google Scholar 

  13. Wang, S.H., Cann, N.M.: Polarizable and flexible model for ethanol. Journal of Chemical Physics 126(21), 214502 (2007)

    Article  Google Scholar 

  14. Politzer, P., Boyd, S.: Molecular dynamics simulations of energetic solids. Structural Chemistry 13(2), 105–113 (2002)

    Article  Google Scholar 

  15. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Weiner, P.: A New Force-Field for Molecular Mechanical Simulation of Nucleic-Acids and Proteins. Journal of the American Chemical Society 106(3), 765–784 (1984)

    Article  Google Scholar 

  16. Ryckaert, J.P., Bellemans, A.: Molecular-Dynamics of Liquid Normal-Butane Near its Boiling-Point. Chemical Physics Letters 30(1), 123–125 (1975)

    Article  Google Scholar 

  17. Rappe, A.K., Goddard, W.A.: Charge Equilibration for Molecular-Dynamics Simulations. Journal of Physical Chemistry 95(8), 3358–3363 (1991)

    Article  Google Scholar 

  18. Patel, S., Brooks, C.L.: CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. Journal of Computational Chemistry 25(1), 1–15 (2004)

    Article  Google Scholar 

  19. Jorgensen, W.L.: Optimized Iintermolecular Potential Functions for Liquid Alcohols. Journal of Physical Chemistry 90(7), 1276–1284 (1986)

    Article  Google Scholar 

  20. Yeh, I.C., Berkowitz, M.L.: Ewald summation for systems with slab geometry. Journal of Chemical Physics 111(7), 3155–3162 (1999)

    Article  Google Scholar 

  21. Hoover, W.G.: Canonical dynamics – equilibrium phase-space distributions. Physical Review A 31(3), 1695–1697 (1985)

    Article  Google Scholar 

  22. Nose, S.: A unified formulation of the constant temperature molecular-dynamics methods. Journal of Chemical Physics 81(1), 511–519 (1984)

    Article  Google Scholar 

  23. Tuckerman, M., Berne, B.J., Martyna, G.J.: Reversible multiple time scale molecular-dynamics. Journal of Chemical Physics 97(3), 1990–2001 (1992)

    Article  Google Scholar 

  24. Andersen, H.C.: Rattle- A Velocity Version of the Shake Algorithm for Molecular-Dynamics Calculations. Journal of Computational Physics 52(1), 24–34 (1983)

    Article  MATH  Google Scholar 

  25. Brown, D., Clarke, J.H.R., Okuda, M., Yamazaki, T.: A Domain Decomposition Parallelization Strategy for Molecular-Dynamics Simulations on Distributed Memory Machines. Computer Physics Communications 74(1), 67–80 (1993)

    Article  Google Scholar 

  26. Mason, D.R.: Faster neighbour list generation using a novel lattice vector representation. Computer Physics Communications 170(1), 31–41 (2005)

    Article  Google Scholar 

  27. Rapaport, D.C.: Large-Scale Molecular-Dynamics Simulation Using Vector and Parallel Computers. Computer Physics Reports 9(1), 1–53 (1988)

    Article  Google Scholar 

  28. Cressman, E., Das, B., Dunford, J., Pecheanu, R., Huh, Y., Nita, S., Paci, I., Zhao, C., Wang, S., Cann, N.M.: MCMD program (unpublished)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, S., Cann, N.M. (2010). The Implementation of Polarizable and Flexible Models in Molecular Dynamics Simulations. In: Mewhort, D.J.K., Cann, N.M., Slater, G.W., Naughton, T.J. (eds) High Performance Computing Systems and Applications. HPCS 2009. Lecture Notes in Computer Science, vol 5976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12659-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12659-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12658-1

  • Online ISBN: 978-3-642-12659-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics