Skip to main content

Extracting Between-Pathway Models from E-MAP Interactions Using Expected Graph Compression

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6044))

Abstract

Genetic interactions (such as synthetic lethal interactions) have become quantifiable on a large-scale using the epistatic miniarray profile (E-MAP) method. An E-MAP allows the construction of a large, weighted network of both aggravating and alleviating genetic interactions between genes. By clustering genes into modules and establishing relationships between those modules, we can discover compensatory pathways. We introduce a general framework for applying greedy clustering heuristics to probabilistic graphs. We use this framework to apply a graph clustering method called graph summarization to an E-MAP that targets yeast chromosome biology. This results in a new method for clustering E-MAP data that we call Expected Graph Compression (EGC). We validate modules and compensatory pathways using enriched Gene Ontology annotations and a novel method based on correlated gene expression. EGC finds a number of modules that are not found by any previous methods to cluster E-MAP data. EGC also uncovers core submodules contained within several previously found modules, suggesting that EGC can reveal the finer structure of E-MAP networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, M., Ball, C., Blake, J., et al.: Gene Ontology: tool for the unification of biology. Nature Genetics 25(1), 25–29 (2000)

    Article  Google Scholar 

  2. Bandyopadhyay, S., Kelley, R., Krogan, N.J., Ideker, T.: Functional maps of protein complexes from quantitative genetic interaction data. PLoS Comput. Biol. 4(4), e1000065 (2008)

    Google Scholar 

  3. Berriz, G., King, O., Bryant, B., Sander, C., Roth, F.: Characterizing gene sets with FuncAssociate. Bioinformatics 19(18), 2502–2504 (2003)

    Article  Google Scholar 

  4. Brady, A., Maxwell, K., Daniels, N., Cowen, L.J.: Fault tolerance in protein interaction networks: Stable bipartite subgraphs and redundant pathways. PLoS ONE 4(4), e5364 (2009)

    Google Scholar 

  5. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On finding graph clusterings with maximum modularity. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 121–132. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Cherry, J., Adler, C., Ball, C., et al.: SGD: Saccharomyces genome database. Nucleic Acids Research 26(1), 73 (1998)

    Article  Google Scholar 

  7. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 66111 (2004)

    Article  Google Scholar 

  8. Collins, S., Kemmeren, P., Zhao, X., et al.: Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6(3), 439 (2007)

    Google Scholar 

  9. Collins, S.R., Miller, K.M., Maas, N.L., et al.: Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446(7137), 806–810 (2007)

    Article  Google Scholar 

  10. Hartman, J.L., Garvik, B., Hartwell, L.: Principles for the buffering of genetic variation. Science 291(5506), 1001–1004 (2001)

    Article  Google Scholar 

  11. Hescott, B.J., Leiserson, M.D.M., Cowen, L.J., Slonim, D.K.: Evaluating between-pathway models with expression data. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 372–385. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Hibbs, M.A., Hess, D.C., Myers, C.L., Huttenhower, C., Li, K., Troyanskaya, O.G.: Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioinformatics 23(20), 2692–2699 (2007)

    Article  Google Scholar 

  13. Ihmels, J., Collins, S.R., Schuldiner, M., Krogan, N.J., Weissman, J.S.: Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss. Mol. Syst. Biol. 3 (2007)

    Google Scholar 

  14. Kelley, R., Ideker, T.: Systematic interpretation of genetic interactions using protein networks. Nature Biotechnology 23(5), 561–566 (2005)

    Article  Google Scholar 

  15. Leach, S., Gabow, A., Hunter, L., Goldberg, D.S.: Assessing and combining reliability of protein interaction sources. In: Pac. Symp. Biocomput., pp. 433–444 (2007)

    Google Scholar 

  16. Ma, X., Tarone, A.M., Li, W.: Mapping genetically compensatory pathways from synthetic lethal interactions in yeast. PLoS ONE 3(4) (2008)

    Google Scholar 

  17. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21(suppl. 1) (June 2005)

    Google Scholar 

  18. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded error. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data, pp. 419–432. ACM, New York (2008)

    Chapter  Google Scholar 

  19. Navlakha, S., Schatz, M.C., Kingsford, C.: Revealing biological modules via graph summarization. Journal of Computational Biology 16(2), 253–264 (2009)

    Article  Google Scholar 

  20. Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  21. Pan, X., Yuan, D.S., Xiang, D., Wang, X., Sookhai-Mahadeo, S., Bader, J.S., Hieter, P., Spencer, F., Boeke, J.D.: A robust toolkit for functional profiling of the yeast genome. Mol. Cell 16(3), 487–496 (2004)

    Article  Google Scholar 

  22. Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34(Database Issue), D535 (2006)

    Google Scholar 

  23. Tong, A.H., Evangelista, M., Parsons, A.B., et al.: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550), 2364–2368 (2001)

    Article  Google Scholar 

  24. Tong, A.H., Lesage, G., Bader, G.D., et al.: Global mapping of the yeast genetic interaction network. Science 303(5659), 808–813 (2004)

    Article  Google Scholar 

  25. Ulitsky, I., Shamir, R.: Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks. Mol. Syst. Biol. 3 (April 2007)

    Google Scholar 

  26. Ulitsky, I., Shlomi, T., Kupiec, M., Shamir, R.: E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions. Mol. Syst. Biol. 4 (July 2008)

    Google Scholar 

  27. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction from protein-protein interaction networks. Nature Biotechnology 21(6), 697–700 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kelley, D.R., Kingsford, C. (2010). Extracting Between-Pathway Models from E-MAP Interactions Using Expected Graph Compression. In: Berger, B. (eds) Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science(), vol 6044. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12683-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12683-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12682-6

  • Online ISBN: 978-3-642-12683-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics