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SubMAP: Aligning Metabolic Pathways

with Subnetwork Mappings

FERHAT AY,1,2 MANOLIS KELLIS,2 and TAMER KAHVECI1

ABSTRACT

We consider the problem of aligning two metabolic pathways. Unlike traditional ap-
proaches, we do not restrict the alignment to one-to-one mappings between the molecules
(nodes) of the input pathways (graphs). We follow the observation that, in nature, different
organisms can perform the same or similar functions through different sets of reactions and
molecules. The number and the topology of the molecules in these alternative sets often vary
from one organism to another. With the motivation that an accurate biological alignment
should be able to reveal these functionally similar molecule sets across different species, we
develop an algorithm that first measures the similarities between different nodes using a
mixture of homology and topological similarity. We combine the two metrics by employing
an eigenvalue formulation. We then search for an alignment between the two input path-
ways that maximizes a similarity score, evaluated as the sum of the similarities of the
mapped subnetworks of size at most a given integer k, and also does not contain any
conflicting mappings. Here we prove that this maximization is NP-hard by a reduction from
the maximum weight independent set (MWIS) problem. We then convert our problem to an
instance of MWIS and use an efficient vertex-selection strategy to extract the mappings that
constitute our alignment. We name our algorithm SubMAP (Subnetwork Mappings in
Alignment of Pathways). We evaluate its accuracy and performance on real datasets. Our
empirical results demonstrate that SubMAP can identify biologically relevant mappings that
are missed by traditional alignment methods. Furthermore, we observe that SubMAP is
scalable for metabolic pathways of arbitrary topology, including searching for a query
pathway of size 70 against the complete KEGG database of 1,842 pathways. Implementation
in C++ is available at http://bioinformatics.cise.ufl.edu/SubMAP.html.

Key words: alternative reaction sets, maximum weight independent set, metabolic pathway

alignment, one-to-many mappings, subnetwork mappings.

1. INTRODUCTION

B iological networks show how different molecules interact with each other to perform

vital functions. In the literature, the terms network and pathway are used interchangeably. Metabolic
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pathways, an important class of biological networks, represent how different compounds are transformed

through various reactions. Analyzing these pathways is essential in understanding the machinery of living

organisms.

The efforts on analyzing pathways can be classified into two types. The first type considers one pathway

at a time and explores its important properties such as its robustness (Edwards and Palsson, 2000), steady

states (Devloo et al., 2003; Garg et al., 2007; Ay et al., 2009b), modular structure (Lu et al., 2006; Schuster

et al., 2002; Ay et al., 2010), network motifs (Milo et al., 298; Wernicke and Rasche, 2006; Grochow and

Kellis, 2007), as well as its representation (Michal, 1998; Babur et al., 2010). The second type is the

comparative approach which considers multiple pathways to identify their frequent subgraphs (Koyuturk

et al., 2004; Qian and Yoon, 2009) and their alignments (Singh et al., 2008, 2007; Liao et al., 2009; Kalaev

et al., 2008; Sharan et al., 2005; Kalaev et al., 2009; Dost et al., 2007; Flannick et al., 2006; Koyuturk et al.,

2005; Pinter et al., 2005; Berg and Lassig, 2004; Dandekar et al., 1999; Tohsato and Nishimura, 2008;

Tohsato et al., 2000; Cheng et al., 2009; Ay et al., 2008, 2009a). Alignment is a fundamental type of

comparative analysis that aims to identify similar parts between pathways. For metabolic pathways, these

similarities provide insights for drug target identification (Sridhar et al., 2007; Watanabe et al., 2007),

metabolic reconstruction of newly sequenced genome (Francke et al., 2005), phylogenic reconstruction

(Clemente et al., 2005; Heymans and Singh, 2003), and identification of enzyme clusters and missing

enzymes (Ogata et al., 2000; Green and Karp, 2004).

In the literature, performing an alignment is often considered as finding one-to-one mappings between

the molecules of two pathways. In this case, the global/local pathway alignment problems are GI (Graph

isomorphism)/NP complete as the graph/subgraph isomorphism problems can be reduced to them in

polynomial time (Damaschke, 1991). A number of studies have been done to systematically align different

types of biological networks. For alignment of protein-protein interaction (PPI) networks, a number of

methods such as IsoRank (Singh et al., 2008, 2007), QNet (Dost et al., 2007), Greamlin (Flannick et al.,

2006), and that of Koyuturk et al. (2005) have been successfully applied to identify conserved parts among

PPI networks of different organisms. For metabolic pathways, Pinter et al. (2005) devised an algorithm that

aligns query pathways with specific topologies by using a graph theoretic approach. Tohsato and colleagues

proposed two algorithms for metabolic pathway alignment, one relying solely on Enzyme Commission

(EC) (Webb, 1992) numbers of enzymes and the other considering only the chemical structures of com-

pounds of the query pathways (Tohsato and Nishimura, 2008; Tohsato et al., 2000). Cheng et al. (2009)

developed a tool, MetNetAligner, for metabolic pathway alignment that allows a certain number of in-

sertions and deletions of enzymes. However, most of these methods limit the query pathways to certain

topologies, such as trees, non-branching paths or limited cycles. In order to alleviate this limitation, they

either change the topology of the networks (e.g., breaking the cycles) or only consider queries up to a

certain size which degrades their accuracy and applicability to complex networks. A number of these

methods avoid the restrictions on queries and use heuristic algorithms to scale for real size problems. For

instance, IsoRank (Singh et al., 2008, 2007) uses an iterative framework that combines topological features

of the networks and the sequence similarity of proteins to do the global alignment of two PPI networks.

They map the alignment problem to graph isomorphism and align genome-wide PPI networks of well-

studied organisms. We extended this framework in our earlier work to align metabolic pathways while

considering the interactions between non-homogenous entities such as reactions, enzymes, and compounds

(Ay et al., 2008, 2009a). These two methods showed that formulating the similarity score in this manner

and not restricting the query topologies improve accuracy and applicability of the alignment algorithm.

However, all the methods discussed above limit the possible molecule mappings to only one-to-one

mappings. As also pointed out by Deutscher et al. (2008) considering each molecule one by one fails to

reveal its function(s) in complex pathways. This restriction prevents all the above methods from identifying

biologically relevant mappings when different organisms perform the same function through a varying

number of steps. As an example, there are alternative paths for LL-2,6-diaminopimelate production in

different organisms (Watanabe et al., 2007; McCoy et al., 2006). LL-2,6-diaminopimelate is a key inter-

mediate compound since it lies at the intersection of different paths on the synthesis of L-lysine. Figure 1

illustrates two paths both producing LL-2,6-diaminopimelate starting from 2,3,4,5-tetrahydrodipicolinate.

The upper path represents the shortcut used by plants and Chlamydia to synthesize L-lysine. This shortcut

is not an option, for example, for E. coli or H. sapiens, due to the lack of the gene encoding LL-DAP

aminotransferase (2.6.1.83). E. coli and H. sapiens have to use a three-step process shown with the gray

path in Figure 1 to do this transformation. Thus, a meaningful alignment should map the two paths when
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the lysine biosynthesis pathways of human and a plant are aligned. However, since these two paths have a

different number of reactions, traditional alignment methods that are limited to one-to-one mappings fail to

identify this mapping.

For PPI networks, the idea of extending alignments beyond one-to-one mappings and allowing multiple

alignments has been proposed by Liao et al. (2009) (IsoRankN), by Sharan et al. (2005), and by Kalaev et al.

(2009) (NetworkBLAST-M). IsoRankN creates a functional similarity graph from input networks and

searches for near cliques of highly similar proteins using spectral clustering on the induced graph of

pairwise alignment scores. NetworkBLAST-M constructs a network alignment graph from queries and uses

a heuristic seed-extension method to search for conserved paths or cliques. To the best of our knowledge,

no current method explicitly allows mappings beyond one-to-one for metabolic pathways.

Our aim in this article is to design an algorithm that can accurately identify such biologically relevant

mappings by allowing one-to-many mappings of molecules in metabolic pathways. Note that, in Figure 1,

both reaction sets form linear paths. It is possible to have reaction sets with different topologies performing

a certain function (see Fig. 5 below). Therefore, we use the term subnetwork to denote all types of

topologies. Also, since we only consider the sets of reactions that are connected, we will simply use the

term subnetwork instead of connected subnetwork.

1.1. Problem definition

We consider the problem of aligning two metabolic pathways. Unlike traditional alignment approaches,

we allow aligning a molecule of one pathway to a connected subnetwork of the other. More formally, let P
and �PP be two query pathways, and k be a positive integer. We want to find the mapping between molecules

of P and �PP with the largest alignment score such that:

1. Each molecule in P(�PP) can map to a subnetwork of �PP(P) with at most k molecules.

2. Each molecule can appear in at most one mapping.

The first condition above allows one-to-many mappings. The reason for having one-to-many mappings in

our alignment is not only that they capture functionally similar parts, but also they enable us to construct

many-to-many mappings of arbitrary sizes. Identifying many-to-many mappings of molecule sets of dif-

ferent sizes is essential and is not possible with only one-to-one mappings as their combinations enforce

both sides of a many-to-many mapping to be of the same size. The second condition enforces consistency.

That is, if a molecule is already mapped alone or as a part of a subnetwork, it cannot map to another

molecule. We elaborate on consistency and the problem definition later in Section 2. Note that, allowing

one-to-many mappings in an alignment introduces new computational challenges (e.g., exponential in-

crease in the problem size, conflicting mappings) that cannot be addressed using existing methods and

hence novel methods are needed to tackle this problem.

1.2. Contributions

In this article, we propose a novel algorithm that finds subnetwork mappings in alignment of pathways.

SubMAP accounts for both the effect of pairwise similarities (homology) and the organization of pathways

(topology). This combination is motivated by its successful applications on network alignment by Singh

et al. (2007, 2008) and Ay et al. (2008, 2009a). However, allowing one-to-many mappings makes it

2.6.1.83

2.6.1.17 3.5.1.182.3.1.117

2,3,4,5−Tetrahy-
drodipicolinate

LL−2,6−Diami-
nopimelate

FIG. 1. A portion of lysine biosyn-

thesis pathway. Each reaction is re-

presented by the Enzyme Commission

(EC) number of the enzyme that cat-

alyzes it. Circles represent compounds

(intermediate compounds are not

shown). E. coli and H. sapiens (human)

use the path colored with gray with

three reactions, whereas plants and

Chlamydia achieve this transformation

directly through the path with a single

reaction shown in white.
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impossible to trivially extend these methods to our problem. Here, we describe our method that addresses

this challenge. Similar to IsoRank and our earlier work, we first formulate the alignment as an eigenvalue

problem and solve it using an iterative technique called power method. The result of the power method

provides us an eigenvector that defines a weighted bipartite graph where each node corresponds to a

molecule or a subnetwork. The edges are only between two nodes from different pathways and their

weights define the similarity of these nodes. Unlike the case of only one-to-one molecule mappings, the

nodes on the same side of the bipartite graph can be intersecting as the same molecule can appear in more

than one subnetwork. If two such intersecting nodes on one side are mapped to two different nodes of the

other side, they create inconsistent mappings for the elements of the intersection. We term such pairs of

mappings as conflicting mappings. Our aim is to extract a set of mappings that has no conflicts and

maximizes the sum of the similarity scores of the mappings. We prove that this maximization is NP-hard

(see Theorem 1). We then construct a vertex weighted conflict graph with nodes representing a mapping of

two subnetworks, one from each pathway, and edges representing a conflict between two mappings. The

weights of the nodes in this graph are the edge weights of the bipartite graph from the earlier step. At this

point, our alignment problem is equivalent to finding a maximum weight independent set (MWIS) of the

conflict graph. To extract an independent set from the conflict graph, we use a vertex-selection strategy

proposed for MWIS problem. We report the mappings that correspond to the selected set of nodes from the

conflict graph as the alignment of the query pathways. Our experiments on the metabolic pathways from

KEGG (Ogata et al., 1999) database suggest that SubMAP finds biologically meaningful alignments

efficiently. Also, SubMAP is scalable for subnetwork sizes up to three or four as it can align two real size

metabolic pathways in about a minute.

The rest of the article is organized as follows. Section 2 describes our algorithm. Section 3 presents

experimental results. Section 4 concludes the paper.

Implementation in Cþþ is available at http://bioinformatics.cise.ufl.edu/SubMAP.html.

2. OUR ALGORITHM: SUBMAP

In this section, we present our algorithm for pairwise metabolic pathway alignment that allows one-to-

many molecule mappings. We begin by introducing some notation that we use throughout this section.

Then, we formally state the problem and describe the SubMAP algorithm in detail (Table 1).

Let, P be a pathway which is represented by a directed unweighted graph G¼ (V, E). Here, we only use

the reactions of the pathway in graph representation. Hence, the vertex set V ¼fr1, r2, . . . , rng is the set of

all reactions of P. We include a directed edge eij from ri to rj in E if and only if at least one output

compound of ri is an input compound of rj. We call ri a backward neighbor of rj and rj a forward neighbor

of ri if eij 2 E. Note that reactions can be reversible (bi-directional) and hence both eij and eji can exist.

A subnetwork of a pathway is a subset of its reaction set such that the induced undirected graph of the

elements of this subset forms a connected graph. Let Ri�V be such a subnetwork of P. We define Rk, the

set of all subnetworks of P that have at most k reactions, as Rk¼fR1, R2, . . . , RNk
g where jRij � k for all

Table 1. Commonly Used Symbols in this Article

P, �PP Query metabolic pathways

k Parameter for the largest subnetwork size

ri, �rrj Reactions of query pathways

Ri, �RRj Subnetworks of query pathways

Rk, �RkRk Sets of all subnetworks with size at most k

n, m Numbers of the reactions in query pathways

Nk, Mk Numbers of all subnetworks of size at most k

jk Set of all possible one-to-many mappings for a given k

jjkj Number of all possible one-to-many mappings for a given k

S Support matrix

H Homological similarity vector

Gc Conflict graph

a Parameter adjusting relative weights of homology and topology
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i 2 [1, Nk]. Here, jRij denotes the cardinality of the reaction set Ri. Using this notation, we define a binary

relation that maps a reaction of a query pathway to a subnetwork of the other as follows:

Definition 1. Let P and �PP be two pathways and k be a positive integer. Also, let

Rk ¼fR1, R2, . . . , RNk
g and �RRk ¼f �RR1, �RR2, . . . , �RRMk

g be the sets of subnetworks with size at most k of P
and �PP respectively. We define a binary relation j between Rk and �RRk that allows one-to-many reaction

mappings as u : u � uk¼ (R1 · �RRk) [ (Rk · �RR1).

Let us denote the number of reactions of P and �PP with n and m respectively. The number of all possible

one-to-many mappings between P and �PP is:

jukj ¼ nMk þmNk � nm (1)

The alignment of P and �PP is a binary relation j that is a subset of all these possible mappings and satisfies

certain criteria that we describe next.

Recall that for a mapping (Ri, �RRj) 2 u one of the Ri or �RRj can contain more than one reaction. Reporting

this mapping as a part of our alignment implies that all the reactions of the subnetwork with multiple

reactions are aligned to a single reaction of the other. To have a consistent alignment none of the reactions

of these subnetworks can be included in any other mapping. Next, we formally define the term conflict to

characterize this property.

Definition 2. Let j be a binary relation and Ri, Ru 2 Rk and �RRj, �RRv 2 �RRk. The distinct pairs

(Ri, �RRj) 2 u and (Ru, �RRv) 2 u conflict if and only if (Ri \ Ru) [ ( �RRj \ �RRv) 6¼ /.

Conflicts can cause inconsistencies about which reaction subset of one pathway should be aligned to the

one of the other pathway. If j has a conflicting pair of elements, we say j is inconsistent. Since this is not a

desirable property, we limit our alignment to the consistent relations only.

In addition to discarding the conflicting mappings, we also need to use a meaningful scoring score in

order to gather biologically relevant alignments. One standard scoring scheme for this purpose incorporates

the homology of the aligned molecules with their topologies (Singh et al., 2007, 2008; Ay et al., 2008,

2009a). Here, we generalize this scheme to one-to-many mappings. We will elaborate on this similarity

score later in Section 2.4. Next, we state our problem formally.

Problem formulation. Given k and two pathways P and �PP, let Rk and �RRk be the sets of subnetworks

with size at most k of P and �PP respectively. We want to find the consistent binary relation

u � (R1 · �RRk) [ (Rk · �RR1) that maximizes the summation of the similarity scores of the aligned subnet-

works.

In the following, we present our algorithm SubMAP. Section 2.1 explains the enumeration of the

subnetworks of query pathways. Section 2.2 and 2.3 discuss homological and topological similarities,

respectively. Section 2.4 describes the eigenvalue formulation that combines these similarities and explains

the extraction of subnetwork mappings.

2.1. Enumeration of connected subnetworks

The first step of SubMAP is to create the sets of all connected subnetworks of size at most k for each

query pathway. Here, we describe the enumeration process for a single query pathway. Let G¼ (V, E)

represent a pathway and k be a positive integer. We construct the set of subnetworks Rk as follows. For

k¼ 0, Rk¼R0¼/ and for k¼ 1, Rk ¼R1¼V . For k> 1 we define Rk recursively by using Rk� 1. At

each recursive step we check for each reaction in V if it can be added to the already enumerated sub-

networks of size k� 1 to create a new connected subnetwork of size k. This way the kth recursive step takes

O(jVj(jRk� 1j � jRk� 2j)) time.

The size of the setRk can be exponential in k when G is dense. However, metabolic pathways are usually

sparse (on the average there are 2.5 forward neighbors per reaction). We observe that the number of

subnetworks of the metabolic pathways in our dataset for k¼ 3 is around 5jVj and for k¼ 4 is 10jVj on the

average. In Section 3.2, we provide a detailed discussion of how jRkj changes with different pathway sizes

and different k values.
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2.2. Homological similarity of subnetworks

Recall that the relation j maps a reaction to a subnetwork that can contain multiple reactions. This

necessitates computing the similarity between reaction sets. Since reactions are defined by their input and

output compounds (i.e., substrates and products) and the enzymes that catalyze them, we measure the

homological similarity between reactions using the similarities of these components.

In the literature, there are alternative pairwise similarity scores for compounds, enzymes and reactions.

Particularly, two well known measures are information content similarity for enzyme pairs (Pinter et al.,

2005) and SIMCOMP (Hattori et al., 2003) for compound pairs. We denote these measures by SimE and

SimC, respectively. We defer the readers to Ay et al. (Ay et al., 2009a) for details on computing these

similarities. Here, we utilize these similarity measures to compute the homological similarity between two

reaction sets. To calculate this, we first construct three sets for both reaction sets. These are the union of (1)

the input compounds (Ii), (2) the output compounds (Oi), and (3) the enzymes (Ei) of the reactions in each

subnetwork Ri. For instance, in Figure 1 if we take the upper path as the subnetwork Ri, then

Ei¼ {2.3.1.117, 2.6.1.17, 3.5.1.8}.

Next, we compute the similarity of each of these three set pairs and combine them using weights (i.e.,

non-negative real numbers) to calculate the homological similarity of the two reaction sets. Let W(A, B,

SimX) denote the similarity between two sets A and B with respect to the similarity score SimX, where W is

calculated as the sum of the similarities of the pairs returned by their maximum weight bipartite matching

(MWBM). Also, let ge, gi, go denote the relative weights of the similarities of enzymes, input and output

compounds respectively with the constraint geþ giþ go¼ 1. We define the similarity of the reaction sets Ri

and �RRj as

SimRSet(Ri, �RRj)¼ ceW(Ei, �EEj, SimE)þ ciW(Ii, �IIj, SimC)þ coW(Oi, �OOj, SimC) (2)

In this article, we use gi¼ go¼ 0.3 and ge¼ 0.4 as they provide a good balance between enzymes and

compounds. However, in general we prefer to leave the choice of these parameters to the user as it provides

flexibility to our method and allows it to be used in different scenarios. For instance, setting gE¼ 1 and

cCin
¼ cCout

¼ 0 means that the reaction similarities are determined by enzymes and the alignment will be

enzyme driven.

We calculate SimRSet for all possible one-to-many mappings between the subnetworks of two pathways.

Therefore, we do this calculation jjkj times in total. This way, we assess the homological similarities

between all possible subnetwork mappings. Even though this scoring can be considered a good measure of

similarity, relying solely on this score ignores the topology similarity which we explain next.

2.3. Topological similarity of subnetworks

We follow the intuition of IsoRank that if the subnetwork Ri is mapped to �RRj, then their neighbors in the

corresponding pathways should also be similar. With this motivation, we utilize the topological similarity

to favor mappings of subnetworks that induce similar topologies. We do this by extending the formulation

of IsoRank and our earlier work to account for subnetwork mappings. We first expand the neighborhood

definition of reactions to reaction subnetworks. Then, we generalize the notion of support to include

subnetwork mappings. Using these definitions, we formally describe how we calculate the support matrix

and show it on an illustrative example.

Definition 3. Let Ri, Ru 2 Rk. Then, Ru is a forward neighbor of Ri (Ru 2 FN(Ri)) if and only if there

exists ra 2 Ri and rb 2 Ru such that rb is a forward neighbor of ra or Ri \ Ru 6¼ /. Ri is a backward
neighbor of Ru(Ri 2 BN(Ru)) if and only if Ru is a forward neighbor of Ri.

Definition 4. Let Ri, Ru 2 Rk and �RRj, �RRv 2 �RRk. The mapping (Ri, �RRj) supports the mapping (Ru, �RRv) if

and only if both Rj 2 FN(Ri) and �RRv 2 FN( �RRu) or both Rj 2 BN(Ri) and �RRv 2 BN( �RRu).

Definition 5. Let P, �PP, be two pathways and Rk, �RRk be the sets of their subnetworks that have at

most k reactions. The support matrix S is a jjkj · jjkj matrix with each entry S[i,j][u,v] identifying the

fraction of the total support provided by (Ru, �RRv) mapping to (Ri, �RRj) mapping. Let N(u, v)¼ jBN(Ru))jj
BN( �RRv)j þ jFN(Ru)jjFN( �RRv)j denote the number of all possible mappings between backward neighbors of

Ru and �RRv plus the ones between their forward neighbors. Then, each entry of S is computed as:
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S[i, j][u, v]¼
1

N(u, v)
if (Ru, �RRv) supports (Ri, �RRj)

0 otherwise

�
(3)

Definition 4 states that the mapping of Ri to �RRj favors all possible mappings of forward (backward)

neighbors of Ri to those of �RRj. To see it on an example, let us consider the case when k¼ 1 and focus on the

mapping (fr3g, fr02g) in Figure 2. We see that FN(fr3g)¼ 2, FN(fr02g¼ 2, BN(fr3g)¼ 2 and BN(fr02g)¼ 1.

Then, by Definition 5 we distribute the support of the mapping (fr3g, fr02g) to 2 · 2þ 2 · 1¼ 6 other

mappings by placing 1
6

in the corresponding entries of S. Namely, these mappings are (fr1g, fr01g),
(fr2g, fr01g), (fr4g, fr03g), (fr4g, fr04g), (fr5g, fr03g) and (fr5g, fr03g).

There can be cases when one mapping does not provide support to any others. In such cases, we simply

distribute its support equally to all possible mappings (jjkj). Notice that, by construction, the entries in each

column of S sums up to 1. This is important as it ensures the stability and convergence of our algorithm as

we explain in Section 2.4. Interested reader can find a detailed description of the properties of support

matrix in a previous work of ours (Ay et al., 2009a).

Before moving into describing how we use the support matrix, it is important to explain how we create it

in our implementation. A trivial but costly way of doing this is to check each mapping against all the others

to calculate the support values. However, such an exhaustive strategy will require computing a huge matrix

S of size jjkj · jjkj. Since the creation of S will incur prohibitive computational costs, we do not construct

this matrix literally. Instead, for each mapping Ri, �RRj, we take the sets FN(Ri), FN( �RRj) and BN(Ri), BN( �RRj) to

generate only the pairs supported by Ri, �RRj. In other words, we use the sparse matrix form of the support

matrix S.

2.4. Aligning two pathways

We discussed what homology and topology similarities are and how we calculate them. In the following,

we first describe how we combine these two similarities to get a better similarity measure for subnetworks.

Then, we explain the heuristic method we use to extract the set of subnetwork mappings (i.e., the align-

ment) that maximizes the sum of the similarities of the mapped pairs.

2.4.1. Combining homology and topology. Both the homological similarities of subnetworks and

their topological organization provide us significant information for the alignment of metabolic pathways.

A good alignment algorithm needs to combine these two factors in an efficient and accurate way. Recently,

the authors of IsoRank (Singh et al., 2007, 2008) have described an iterative technique named power

method that achieves this combination. Here, we describe how we use power method to obtain this

combination for alignment of metabolic pathways with subnetwork mappings.

Let k be a given parameter and P, �PP be two pathways with connected subnetwork sets

Rk ¼fR1, R2, . . . , RNk
g and �RRk¼f�RR1, �RR2, . . . , �RRMk

g respectively. We represent the homological similarity

of all subnetwork pairs by the column vector H of size jjkj. Each entry of H denotes the homological

similarity between two subnetworks one from each pathway.

Let S be the jjkj · jjkj support matrix as described in Section 2.3. Given a parameter a 2 [0, 1] to adjust

the relative weights of homology and topology, we combine them through power method iterations as

follows:

Hiþ 1¼ aSHiþ (1� a)H0 (4)

In this equation, H0¼ H
jjHjj. We iterate this equation till Hiþ1¼Hi (i.e., it converges). When S and H0e

are both column stochastic matrices (i.e., sum of the entries of each column is one and all entries are

r2

r3

r1 r4

r'1 r'2

r'3

r'4r5

FIG. 2. Reaction-based represen-

tation of two hypothetical metabolic

pathways (a,b). An arrow from ri to

rj represents that an output of ri is

used as an input in rj.
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non-negative) this system converges to the principal eigenvector of the matrix aS þ(1� a)H0e where e is a

row vector of size jjkj with all entries equal to 1 (for proof of existence and uniqueness, see Ay et al.,

2009a). S is column stochastic by our construction since it has non-negative entries with each column

adding up to one. We ensure the column stochasticity of H0e by normalizing H0. The resulting vector Hi

gives us a combination of homological and topological similarities for each possible mapping (i.e., each

entry corresponds to a mapping score). For the choice of weight parameter a we follow the literature and

use a¼ 0.6. This value has been shown to provide a good combination of the two similarities both for PPI

networks (Singh et al., 2007, 2008) and metabolic pathways (Ay et al., 2008, 2009a).

2.4.2. Extracting subnetwork mappings. Recall that our aim is to find an alignment that maximizes

the summation of the similarity scores defined by Hi while preserving the consistency between different

mappings. In case of pairwise alignments with only one-to-one mappings, maximum weight bipartite

matching provides an optimal and an efficient way to extract the alignment (Singh et al., 2007; Ay et al.,

2009a). However, efficient heuristics are needed for this extraction phase when multiple networks are

aligned or one-to-many mappings are allowed. For aligning multiple networks, IsoRank (Singh et al., 2008)

used a greedy strategy to extract a maximum weight k-partite matching and IsoRankN (Liao et al., 2009)

employed spectral clustering to find the alignment clusters.

Here, we first show that finding an optimal alignment while allowing one-to-many mappings is NP-hard

by a reduction from the MWIS problem in bounded degree graphs. MWIS problem, even for graphs with

largest degree 3, is NP-hard (Lovasz, 1994) and there is no constant factor approximation to the optimal

solution in polynomial time (Austrin et al., 2009; Berman and Karpinski, 1999). We then describe how we

construct a conflict graph from our alignment problem and apply a greedy vertex-selection strategy to

extract a MWIS of the conflict graph which gives us the set of mappings that generates the alignment.

Theorem 1 (Finding the best alignment is NP-hard). Let P and �PP be two pathways with reaction

sets fr1, . . . , rng and f�rr1, . . . , �rrmg respectively. Let R¼fR1, R2, . . . , RNg and �RR¼f�RR1, �RR2, . . . , �RRMg be all

possible reaction subsets of P and �PP with size at most a given positive integer k. Also, let

w : (R, �RR)! [0, 1] [ f�1g be a similarity function defining the score for each mapping and the conflicts

between mappings be defined according to Definition 2. Then, finding a set of mappings (i.e., alignment)

that maximizes the sum of mapping scores (i.e., alignment score) and has no conflicting pairs is NP-hard.

Proof. We prove the NP-hardness of our problem by a reduction from the MWIS problem in bounded

degree graphs. Let G¼ (V, E, w) be a vertex weighted undirected graph with largest degree k� 1 (i.e.,

k¼ maxi¼ 1, ..., jV j deg(vi)þ 1). Let us set n¼ jVj þ jEj, m¼ jVj. We will construct two hypothetical path-

ways P and �PP through a polynomial time reduction such that their best alignment is equivalent to the

MWIS of G.

Reduction. Following from the notation we used elsewhere in this paper, let us denote the pathways P
and �PP as P ¼ (V1, E1) and �PP ¼ (V2, E2). Here, Vi and Ei (i 2 f1, 2g) denote the set of reactions (vertices)

and interactions (edges), respectively.

We initialize V1, V2, E1 and E2 as the empty set. We then insert a vertex ri in V1 for each vi 2 V .

Similarly, we insert a vertex �rri in V2 for each vi 2 V . At this point we have completed the construction of �PP
but not P. We continue by inserting a new vertex in V1 for each edge e 2 E. Thus, each vertex in V1

corresponds to either a vertex or an edge in G while each vertex in V2 corresponds to a vertex in G.

Next, we populate E1. Let ri and rj be two vertices in V1 which correspond to a vertex v in G and to an

edge e in G respectively. We include an edge between ri and rj in E1 if e has v at one of its ends in G. This

completes the construction of P.

Figure 3 illustrates the construction of the two hypothetical pathways P and �PP from a simple instance of

G. Figure 3a shows a sample graph G with four vertices. Figure 3b presents the resulting pathways. We do

not show the weights of the vertices of G to simplify Figure 3a.

Following from the construction, we ensure that there is a connected subnetwork in P that contains the

reactions corresponding to each vertex and its edges in G. For instance, in Figure 3a, the vertex labeled as

‘‘1’’ has two edges labeled as ‘‘a’’ and ‘‘b.’’ In Figure 3b, there are three reactions that have the labels

‘‘1,’’ ‘‘a,’’ and ‘‘b,’’ and they make up a (connected) subnetwork. Thus, the set of subnetworks of P with
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size up to k is guaranteed to contain each vertex of G jointly with all of its edges. Figure 3c demonstrates

this. The vertices on the left side are the subnetworks of P and those on the right side are the subnetworks

of �PP.

We complete our reduction by assigning similarities to subnetwork pairs one from P and the other from
�PP. The similarities we assign correspond to the entries of the column vector H described in Section 2.4.1.

Let Ri be a subnetwork of P that corresponds to a vertex v in G and all edges of G which have v on one

end. In Figure 3b, the subnetwork that contains the reactions labeled ‘‘1,’’ ‘‘a,’’ and ‘‘b’’ is an example to

such Ri. Also, let �RRi be the subnetwork in �PP that corresponds to vertex v as well. We assign the similarity of

Ri and �RRi as the weight of vertex v (i.e., w(v)). We repeat this process for all v 2 V . We assign the similarity

between all remaining pairs of subnetworks (Ri, �RRj) as �?. Figure 3c depicts the assignment of similarities

for the pathways in Figure 3b.

Correctness of reduction. We need to address two issues to prove the correctness of our reduction.

� Cost of reduction. For a given vertex weighted graph G, we can reduce the MWIS problem on G to our

problem in polynomial time. This is because we create one reaction for each edge and two reactions for

each vertex in G. We also create two interactions for each edge in G. Thus, we conclude that the

reduction is polynomial in the size of G.
� Equivalence of the result. Next, we prove that the optimal alignment of P and �PP produces the optimal

solution to the MWIS problem on G. An alignment is a subset of subnetwork pairs from one from P
and the other from �PP. By construction, �PP contains only subnetworks of size one. Each subnetwork of �PP
corresponds to a vertex in G. We claim that the vertices of G corresponding to the subnetworks of �PP in

the optimal alignment constitute the MWIS of G.

Clearly, the optimal alignment cannot contain a subnetwork pair whose similarity is �?. This is

because it is possible to choose an arbitrary subnetwork pair that has a positive score. Also, the optimal

alignment cannot contain two overlapping subnetworks from the same pathway as they will conflict with

each other. By construction, two subnetworks from P conflict only if they share a common reaction for the

same vertex or edge in G. For instance the subnetworks labeled ‘‘1ab’’ and ‘‘2acd’’ in Figure 3c conflict

since they both contain ‘‘a’’ in Figure 3b. The subnetworks in the optimal alignment cannot contain such

reactions. Hence, the optimal alignment constitute an independent set in G. The score of the alignment is

the sum of the weights of the corresponding vertices in G. Therefore, we conclude that by maximizing the

alignment score P and �PP, we optimally solve the MWIS problem for G. &

We demonstrate our result on the hypothetical example in Figure 3. Assume that all the vertices in Figure

3a have the same weight w. The optimal alignment of P and �PP contains the following set of subnetwork

pairs f(1ab, �11), (3ce, �33)g and has an alignment score of 2w. This is because the remaining subnetwork pairs

FIG. 3. An illustrative example

for the reduction from the MWIS

problem to the metabolic pathway

alignment problem. (a) A vertex-

weighted graph G that is an input to

the MWIS problem. Four vertices

labeled from ‘‘1’’ to ‘‘4’’ have

weights from w(1) to w(4) respec-

tively. The edges are labeled from

‘‘a’’ to ‘‘e’’ and are unweighted and

undirected. (b) Two pathways P
and �PP constructed from G. We

create one vertex for each vertex of G in both pathway P and �PP. Then, for P we add a vertex labeled with a letter for

each edge of G and add edges from it to the vertices on its both ends in G. In order to simplify the figure, we match the

label of each vertex in P with that of its corresponding vertex or edge in G. Similarly, we match the label of each vertex

in �PP with that of its corresponding vertex in G. (c) The assignment of similarity scores for subnetwork pairs one from P
and the other from �PP. Each vertex here shows a subnetwork from P or �PP. The label of each vertex lists the vertices

contained in that subnetwork. For instance, label ‘‘1ab’’ indicates the subnetwork of P that consists of the three vertices

labeled as ‘‘1,’’ ‘‘a,’’ and ‘‘b.’’ The edge weights show the similarity of the two subnetworks corresponding to the two

vertices at its end points.
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either conflict with each other or have a �? score. The optimal alignment suggests that the MWIS of G is

{1, 3}.

Construction of conflict graph: Now that we proved extracting the best alignment is NP-hard, the

next part is to describe how we tackle this problem. In the first step, we use the scores of mappings

represented by Hi and the definition of conflict (Definition 2) to create a vertex weighted undirected graph

Gc¼ (Vc, Ec, w), which we name as the conflict graph as follows. We define a one-to-one correspondence

from the mappings (Ri, �RRj) to the vertices in Vc. We also set the weight of each vertex a¼ (Ri, �RRj) 2 Vc (i.e.,

w(a)) to the similarity between Ri and �RRj as computed in Hi. We draw an undirected edge between two

vertices a¼ (Ri, �RRj) and b¼ (Ru, �RRv) if (Ri \ Ru) [ ( �RRj \ �RRv) 6¼ / (i.e., a and b conflict). For instance, in

Figure 4 there is an edge between a and b representing the fact that they conflict since reaction r1 is

common to both a and b.

Handling conflicting mappings: In the second step, we explain the greedy vertex-selection strategy we

adopt from Sakai et al. (2003) in order to extract the MWIS of Gc as our alignment. Let N(v) denote the set of

vertices that are connected to v 2 Vc. At each iteration of this algorithm, we pick a vertex v that maximizes

f (v)¼
P
8ui2N(v)

w(v)
w(ui)

. This strategy implies that a vertex is more likely to be picked if the mapping it

represents has large similarity score and conflicts with a small number of other mappings with small

similarity scores. After picking a vertex v, we put v into the resulting set and remove v and all the vertices

connected to it (i.e., v[N(v)). We also remove all the edges incident to at least one of the removed vertices.

When there are no more vertices to remove from Gc, the result set contains a maximal weight independent set.

For our alignment problem, this vertex set corresponds to a list of non-conflicting subnetwork mappings. As

an example, in Figure 4 d is the first vertex to be picked. Then, we remove d and e 2 N(d) from the graph and

insert d to the result set. Next, we pick the vertex b as f (b)¼ 0:6
0:7 4 f (a)¼ 0:7

0:6þ 0:4 4 f (c)¼ 0:4
0:7. We remove b

and a 2 N(b) and include b in the result set. Finally, only c is left and taking it into our result set, we have our

alignment as the mappings b¼ (r1, �rr2), c¼ (r3, �rr1) and d¼ (r4f�rr3, �rr4, �rr5g). Note that b and c are one-to-one

mappings, and d is a one-to-many mapping where one reaction (r4) of first pathway is aligned to three

reactions (�rr3, �rr4, �rr5) of the second pathway.

3. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the performance of SubMAP. We use the metabolic pathways

of 20 organisms taken from the KEGG database. Our dataset contains 1,842 pathways in total. The average

number of reactions per pathway is 21, and the largest pathway has 72 reactions. We also combined 12

different pathways under the metabolism of cofactors and vitamins for 10 different organisms. The average

number of reactions of the largest connected components of these 10 pathways is 98, and the biggest one

has 130 reactions.

3.1. Alternative subnetworks

Different organisms can perform the same function through different subnetworks. We name such altered

parts that have similar functions as alternative subnetworks. An accurate alignment should reveal alter-

native subnetworks in different pathways. In our first experiment, we evaluate whether SubMAP can find

them in real metabolic pathways. We align the pathway pairs which are known to contain functionally

similar parts with different reaction sets and topologies. Table 2 presents a subset of reaction subnetwork

FIG. 4. (a) Each row corresponds

to a possible mapping between

subnetworks from two hypothetical

metabolic pathways. The first col-

umn is the unique label for each

mapping. Second and third columns

are the reactions in the two subnet-

works that can be mapped. The last

column is the similarity between

two subnetworks. (b) The conflict

graph Gc for the mappings in (a).
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mappings that are found by our algorithm. Figure 5 visualizes the topologies of these mappings by using an

enzyme based representation.

The first row of Table 2 corresponds to alternative subnetworks in Figure 5a (also in Fig. 1). The reaction

R07613 represents the top path in Figure 5a that plants and Chlamydia use to produce LL-2,6-diamino-

pimelate from 2,3,4,5-tetrahydrodipicolinate. This path is discovered and reported as a shortcut on the L-

lysine synthesis path for plants and Chlamydia, which is not present in humans or E. coli (Watanabe et al.,

2007; McCoy et al., 2006). Also, Watanabe et al. (2007) suggested that, since humans lack the catalyzer of

the reaction R07613, namely LL-DAP aminotransferase (EC:2.6.1.83), this is an attractive target for the

development of new drugs (antibiotics and herbicides). When we aligned the lysine biosynthesis pathways

of H. sapiens and A. thaliana, our algorithm mapped the reaction R07613 of A. thaliana to the three

reactions that H. sapiens has to use to transform 2,3,4,5-tetrahydrodipicolinate to LL-2,6-diaminopimelate

(R02734, R04365, R04475). In other words, SubMAP successfully identified the alternative subnetworks of

different size (one for A. thaliana and three for H. sapiens) that perform the same function.

Another interesting example is the second row that is extracted from the same alignment described

above. In this case, the three reactions that can independently produce L-lysine for A. thaliana are aligned

to the only reaction that produces L-lysine for H. sapiens (Fig. 5b). R00451 is common to both organisms

and it utilizes meso-2,6-diaminopimelate to produce L-lysine. The reactions R00715 and R00716 take place

and produce L-lysine in A. thaliana in the presence of L-saccharopine (Saunders and Broquist, 1966).

For the alignment of pyruvate metabolisms of E. coli and H. sapiens, the third and fourth rows show two

mappings that are found by SubMAP. The first one maps the two-step process in E. coli that first converts

pyruvate to orthophosphate (R00199) and then orthophosphate to oxaloacetate (R00345) to the single

reaction that directly produces oxaloacetate from pyruvate (R00344) in H. sapiens (Fig. 5c). The second

one shows another mapping in which a single reaction of E. coli is replaced by two reactions of H. sapiens

(Fig. 5d). The first two rows for citrate cycle also report similar mappings for other organism pairs (Fig. 5e).

Note that all the above examples (rows 6–9 of Table 2 depicted in Fig. 5f–i) are one-to-many reac-

tion mappings and hence a merit of the new algorithm we propose here. Our algorithm SubMAP also

reports one-to-one mappings. The last row of Table 2 is an example in which one reaction of an organ-

ism is replaced by exactly one reaction of another organism. Aligning citrate cycles of H. sapiens and

Table 2. Alternative Subnetworks that Produce Same or Similar Output Compounds

from the Same or Similar Input Compounds in Different Organisms

Pathway Organisms Input comp.a Output comp.b Reaction mappingsc

Lysine biosynthesis A. thaliana 2,3,4,5-Tetra-hydrodipico. LL-2,6-Di

aminopimelate

R07613,R02734þ
R04365þR04475H. Sapiens

Lysine biosynthesis A.thaliana L-Saccharo.meso-2,6-Di. L-Lysine R00451þR00715þ
R00716,R00451H.sapiens

Pyruvate metabolism E.coli Pyruvate Oxaloacetate R00199þR00345,R00344

H.sapiens

Pyruvate metabolism E.coli Oxaloacetate Phosphoenol-pyruvate R00341,R00431þR00726

H.sapiens

Pyruvate metabolism T.acidophilum Pyruvate Acetyl-CoA R01196,R00472þ
R00216þR01257A.tumefaciens

Glycine, serine,

threonine met.

H.sapiens Glycine Serine R00945,R00751þ
R00945þR06171R.norvegicus L-Threonine

Fructose and

mannose met.

E.coli L-Fucose L-Fucose 1-p R03163þR03241,R03161

H.sapiens L-Fuculose 1-p

Citrate cycle S.aureus N315 Isocitrate 2-Oxoglutarate R00268þR01899,R00709

S.aureus COL

Citrate cycle H.sapiens Succinate Succinyl-CoA R00432þR00727,R00405

A.tumefaciens

Citrate cycle H.sapiens Isocitrate 2-Oxoglutarate R00709,R00362

A. tumefaciens Citrate Oxaloacetate

aMain input compound utilized by the given set of reactions.
bMain output compound produced by the given set of reactions.
cReactions mappings that corresponds to alternative paths. Reactions are represented by their KEGG identifiers.
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A. tumefaciens reveals that even though both the input and output compounds of the two reactions R00709

and R00362 are different, SubMAP maps these reactions (Fig. 5j). Also, if we look at the EC numbers of

the enzymes catalyzing these reactions (1.1.1.41 and 4.1.3.6) their similarity is zero (see Information

content enzyme similarity) (Ay et al., 2009a). If we were to consider only the homological similarities,

these two reactions could not have been mapped to each other. However, both of these reactions are the

neighbors of the two other reactions R01325 and R01900 that are present in both organisms. The mappings

of R01325 to R01325 and R01900 to R01900 support the mapping of their neighbors R00709 to R00362.

Therefore, by incorporating the topological similarity, our algorithm is able to find meaningful mappings

with similar topologies and distinct homologies. An algorithm not considering pathway topologies would

fail to identify such mappings.

These results suggest the following: (i) By allowing one-to-many mappings, our method identifies

functionally similar subnetworks even if they have a different number of reactions. (ii) Incorporation of

topological similarity makes it possible to find mappings that can be missed by only considering pairwise

similarities of different entities.

3.2. Number of connected subnetworks

Given the parameter k, our algorithm enumerates all connected reaction subnetworks of size at most k for

each query pathway. One question that we need to answer is: How many such subnetworks exist? Figure 6

plots this average for different pathway sizes in our dataset. When k¼ 1, the figure shows the number of

reactions. For k> 1 the results demonstrate that the number of subnetworks increase exponentially with k.

However, the increase is significantly lower than the theoretical worst case
Pk

i¼ 1

� n

i

�
(i.e., n choose i). For

instance, the number of subnetworks we obtained for n¼ 72 and k¼ 5 is around 750 times less than the

theoretical worst case. For n¼ 130 and k¼ 5 the number of subnetworks is 0.027% of the worst case.

The figure also suggests that the number of subnetworks increases as a low-degree polynomial of the size

of the pathway. This is mainly because the average number of edges (i.e., neighbors) of a node (i.e.,

FIG. 5. Visual representations

of subnetwork mappings reported

in Table 2. (a–j) Correspond to

rows 1–10 of Table 2. Enzymes are

represented by their Enzyme

Commission (EC) numbers (Webb,

1992).
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subnetwork) remains roughly the same as the size of the network increases. As a result, we conclude that

for k� 4, we can enumerate and store all the subnetworks of the pathways in KEGG dataset. In practice it is

unlikely for a single reaction to replace a subnetwork with more than three or four reactions. Therefore, we

expect that using k� 4 would be sufficient to find most of the biologically relevant alternative subnetworks.

3.3. One-to-many mappings within and across major clades

In Section 3.1, we demonstrated that our algorithm can find alternative subnetworks on a number of

examples. An obvious question that follows is: How frequent are such alternative subnetworks and what are

their characteristics? In other words, is there really a need to allow one-to-many mappings in alignment. In

this experiment, we aim to answer these questions.

We conduct an experiment as follows. We first pick nine different organisms, three from each major

phylogenic clade. These organisms are T. acidophilum, Halobacterium sp., and M. thermoautotrophicum

from Archaea; H. sapiens, R. norvegicus, and M. musculus from Eukaryota; and E. coli, P. aeruginosa, and

A. tumefaciens from Bacteria.

We then extract 10 common pathways for each of these nine organisms from KEGG. For each of these

common pathways, we choose all possible pairs of organisms

��
9

2

�
¼ 36

�
and align that specific

pathway for all organism pairs. In these alignments we exclude the self alignments and the alignment with

parameter k¼ 1 since those will definitely incur a bias favoring the number of one-to-one alignments. We

computed all possible alignments (10 · 36¼ 360) for k¼ 2, 3 and 4 (360 · 3¼ 1,080 alignments in total).

Finally, we calculated the number of four possible types of subnetwork mappings which are 1-to-1, 1-to-2,

1-to-3, and 1-to-4. We hypothesize that the metabolisms of the organisms within a clade will tend to

perform the same function through the same (or similar) sized sets of reactions while those across different

clades will perform through alternative subnetworks of varying sizes.

Table 3 summarizes the results of this experiment. The percentages of each mapping type between two

clades is shown as a row in this table. The first three rows correspond to alignments within a clade and the

last three represents alignments across two different clades. An important outcome of these results is that

there are considerably large number of one-to-many mappings between organisms of different clades. In

the extreme case (last row), nearly half of the mappings are one-to-many. The results also support our

hypothesis that one-to-one mappings are more frequent for alignments within the clades compared to across

clades due to high similarity between the organisms of the same clade. For instance, for both the first and

last row, one side of the query set is the Eukaryota. However, going from first row to last, we see around

40% decrease in the number of one-to-one mappings and 250%, 850%, and 450% increase in the number of

1-to-2, 1-to-3, and 1-to-4 mappings, respectively. Considering Archaea are single-cell microorganisms

(e.g., Halobacteria) and Eukaryota are complex organisms with cell membranes (e.g., animals and plants),

these jumps in the number of one-to-many mappings suggest that the individual reactions in Archaea are

replaced by a number of reactions in Eukaryota. These results have two major implications. (i) One-to-

many mappings are frequent in nature. To obtain biologically meaningful alignments we need to allow such
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mappings. (ii) The characteristics of the alterative subnetworks can help in inferring the phylogenic

relationship among different organisms.

3.4. Running time and memory utilization

SubMAP allows one-to-many mappings to find biologically relevant alignments. This however comes at

the expense of increased computational cost. Theoretically, this increase can be exponential in k. The worst

case happens when the pathway is highly connected. Metabolic pathways however are sparse and their

connectivity follows power law distribution ( Jeong et al., 2000). In order to understand the capabilities and

limitations of our method, we examine its performance on real datasets in terms of its running time and

memory usage.

We evaluate the performance of our method for querying a database of pathways as follows. We create a

query set by selecting 50 pathways of varying sizes from KEGG and adding it to the combined pathways

for cofactors and vitamins metabolism of 10 different organisms as described at the beginning of this

section. We then select another 50 pathways of different sizes to use as our database set for this experiment.

We pick the latter 50 pathways such that the average reactions per pathway is 21.4, which is very close to

that of the entire database. We then align each of the 60 query pathways with all the database pathways one

by one for different values of k. We measure the average running time and the average memory usage for

each query pathway and k value combination. Note that we do not present any performance comparison

with an existing method as the existing methods do not allow one-to-many mappings. However, our results

for k¼ 1 show the performance of our algorithm when we restrict it to one-to-one mappings similar to the

traditional alignment methods.

Figure 7a shows the average running time of SubMAP for query pathways with increasing number of

reactions. When k¼ 1 (i.e., only one-to-one mappings as in existing methods), it runs in less than a few

Table 3. Percentages of 1-to-1, 1-to-2, 1-to-3, and 1-to-4 Mappings in Between

and Across Three Major Clades

1-to-1 1-to-2 1-to-3 1-to-4

E-E 89.6 8.8 1.1 0.5

B-B 80.1 16.0 3.1 0.8

A-A 78.3 15.7 4.7 1.3

B-E 69.1 23.1 6.3 1.5

A-B 60.5 28.3 8.5 2.7

A-E 55.8 31.0 10.4 2.8

A, Archaea; E, Eukaryota; B, Bacteria.
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FIG. 7. (a) Average running time and (b) memory use of SubMAP when a query pathway is aligned with a database

containing 50 pathways. Pathway size is measured by the number of reactions. k is the size of the largest subnetwork

allowed.
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seconds even for the largest query pathway in our query set. As k increases, the running time increases

significantly. This is because the number of subnetworks and the average number of forward and backward

neighbors of subnetworks increase with k. We observe that our method can perform alignments in practical

time even when k¼ 4 for pathways with around 70 reactions. Hence, it is scalable for all the individual

pathways in KEGG. However, for the 10 combined pathways of cofactors and vitamins metabolism, the

running time and memory use becomes a bottleneck when we consider k> 3.

We also measure the actual memory usage of our algorithm for real pathways of varying sizes and k

values in Figure 7b. For k¼ 1 or 2, the memory usage is negligible (100 MB or less) for all pathways.

Although the memory usage increases quickly with k, it remains feasible for query pathways with around

70 reactions for k¼ 4. For k¼ 3, the biggest pathway of 130 reactions requires 1GB of memory per query

on the average. These results show that, SubMAP can run on a standard computer for aligning real-sized

metabolic pathways for k� 4.

4. CONCLUSION

In this article, we considered the problem of aligning two metabolic pathways. The distinguishing feature

of our work from the literature is that we allow mapping one molecule of one pathway to a set of molecules of

the other. To address this problem, given two metabolic pathways P and �PP and an upper bound k on the size

of the connected subnetworks, we developed the SubMAP algorithm that can find the consistent mapping of

the subnetworks of P and �PP with the maximum similarity. We transformed the alignment problem to an

eigenvalue problem. The solution to this eigenvalue problem produced a good mixture of homological and

topological similarities of the subnetworks. Using these similarity values, we constructed a vertex weighted

graph that connects conflicting mappings with an edge. Then, our alignment problem is transformed into

finding the maximum weight independent set of this graph. We employed a heuristic method that is used to

solve MWIS problem. The result of this method provided us an alignment that has no conflicting pair of

mappings (i.e., consistent). Our experiments on real datasets suggested that our method can identify bio-

logically relevant mappings of alternative subnetworks that are missed by traditional alignment methods.

Furthermore, even though SubMAP does not restrict the topologies of query pathways, it is still scalable for

real size metabolic pathways when the reaction subsets of size at most four are considered.
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