Skip to main content

Algorithms for Detecting Significantly Mutated Pathways in Cancer

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6044))

Abstract

Recent genome sequencing studies have shown that the somatic mutations that drive cancer development are distributed across a large number of genes. This mutational heterogeneity complicates efforts to distinguish functional mutations from sporadic, passenger mutations. Since cancer mutations are hypothesized to target a relatively small number of cellular signaling and regulatory pathways, a common approach is to assess whether known pathways are enriched for mutated genes. However, restricting attention to known pathways will not reveal novel cancer genes or pathways. An alterative strategy is to examine mutated genes in the context of genome-scale interaction networks that include both well characterized pathways and additional gene interactions measured through various approaches. We introduce a computational framework for de novo identification of subnetworks in a large gene interaction network that are mutated in a significant number of patients. This framework includes two major features. First, we introduce a diffusion process on the interaction network to define a local neighborhood of “influence” for each mutated gene in the network. Second, we derive a two-stage multiple hypothesis test to bound the false discovery rate (FDR) associated with the identified subnetworks. We test these algorithms on a large human protein-protein interaction network using mutation data from two recent studies: glioblastoma samples from The Cancer Genome Atlas and lung adenocarcinoma samples from the Tumor Sequencing Project. We successfully recover pathways that are known to be important in these cancers, such as the p53 pathway. We also identify additional pathways, such as the Notch signaling pathway, that have been implicated in other cancers but not previously reported as mutated in these samples. Our approach is the first, to our knowledge, to demonstrate a computationally efficient strategy for de novo identification of statistically significant mutated subnetworks. We anticipate that our approach will find increasing use as cancer genome studies increase in size and scope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelson, H.: Notch signaling and cancer: emerging complexity. Semin. Cancer Biol. 14, 317–319 (2004)

    Article  Google Scholar 

  2. Bader, G.D., Donaldson, I., Wolting, C., Ouellette, B.F., Pawson, T., Hogue, C.W.: BIND–The Biomolecular Interaction Network Database. Nucleic Acids Res. 29, 242–245 (2001)

    Article  Google Scholar 

  3. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate. J. Royal Statistical Society, Series B 57, 289–300 (1995)

    MATH  MathSciNet  Google Scholar 

  4. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29(4), 1165–1188 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D., Ideker, T.: Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140 (2007)

    Article  Google Scholar 

  6. Chung, F.: The heat kernel as the pagerank of a graph. Proceedings of the National Academy of Sciences 104(50), 19735 (2007)

    Article  Google Scholar 

  7. Collins, B.J., Kleeberger, W., Ball, D.W.: Notch in lung development and lung cancer. Semin. Cancer Biol. 14, 357–364 (2004)

    Article  Google Scholar 

  8. Ding, L., et al.: Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455(7216), 1069–1075 (2008)

    Article  Google Scholar 

  9. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. The Mathematical Association of America (1984)

    Google Scholar 

  10. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29, 2001 (1999)

    MathSciNet  Google Scholar 

  11. Greenman, C., et al.: Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007)

    Article  Google Scholar 

  12. Hahn, W.C., Weinberg, R.A.: Modelling the molecular circuitry of cancer. Nat. Rev. Cancer 2(5), 331–341 (2002)

    Article  Google Scholar 

  13. Hescott, B.J., Leiserson, M.D.M., Cowen, L.J., Slonim, D.K.: Evaluating between-pathway models with expression data. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 372–385. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Hochbaum, D.S. (ed.): Approximation algorithms for NP-hard problems. PWS Publishing Co., Boston (1997)

    Google Scholar 

  15. Hodges, E., et al.: Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39, 1522–1527 (2007)

    Article  Google Scholar 

  16. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(suppl. 1), S233–S240

    Google Scholar 

  17. Jensen, L.J., et al.: STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009)

    Google Scholar 

  18. Jones, S., et al.: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897), 1801–1806 (2008)

    Article  Google Scholar 

  19. Jonsson, P.F., Bates, P.A.: Global topological features of cancer proteins in the human interactome. Bioinformatics 22, 2291–2297 (2006)

    Article  Google Scholar 

  20. Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000)

    Article  Google Scholar 

  21. Karni, S., Soreq, H., Sharan, R.: A network-based method for predicting disease-causing genes. J. Comput. Biol. 16, 181–189 (2009)

    Article  Google Scholar 

  22. Keshava Prasad, T.S., et al.: Human Protein Reference Database–2009 update. Nucleic Acids Res. 37, D767–D772 (2009)

    Google Scholar 

  23. Kirsch, A., Mitzenmacher, M., Pietracaprina, A., Pucci, G., Upfal, E., Vandin, F.: An efficient rigorous approach for identifying statistically significant frequent itemsets. In: PODS, pp. 117–126 (2009)

    Google Scholar 

  24. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete structures. In: Proceedings of the ICML, pp. 315–322 (2002)

    Google Scholar 

  25. Lin, J., et al.: A multidimensional analysis of genes mutated in breast and colorectal cancers. Genome Res. 17, 1304–1318 (2007)

    Article  Google Scholar 

  26. Liu, M., et al.: Network-based analysis of affected biological processes in type 2 diabetes models. PLoS Genet. 3, e96 (2007)

    Google Scholar 

  27. Lovász, L.: Random walks on graphs: A survey (1993)

    Google Scholar 

  28. Ma, X., Lee, H., Wang, L., Sun, F.: CGI: a new approach for prioritizing genes by combining gene expression and protein-protein interaction data. Bioinformatics 23, 215–221 (2007)

    Article  Google Scholar 

  29. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21(suppl. 1), i302–i310 (2005)

    Google Scholar 

  30. Nacu, S., Critchley-Thorne, R., Lee, P., Holmes, S.: Gene expression network analysis and applications to immunology. Bioinformatics 23, 850–858 (2007)

    Article  Google Scholar 

  31. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216), 1061–1068 (2008)

    Google Scholar 

  32. Parsons, D.W., et al.: An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897), 1807–1812 (2008)

    Article  Google Scholar 

  33. Qi, Y., Suhail, Y., Lin, Y.Y., Boeke, J.D., Bader, J.S.: Finding friends and enemies in an enemies-only network: a graph diffusion kernel for predicting novel genetic interactions and co-complex membership from yeast genetic interactions. Genome Res. 18, 1991–2004 (2008)

    Article  Google Scholar 

  34. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004)

    Google Scholar 

  35. Shuai, T.-P., Hu, X.: Connected set cover problem and its applications. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 243–254. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  36. Sjoblom, T., et al.: The consensus coding sequences of human breast and colorectal cancers. Science 314(5797), 268–274 (2006)

    Article  Google Scholar 

  37. Tsuda, K., Noble, W.S.: Learning kernels from biological networks by maximizing entropy. Bioinformatics 20(suppl. 1), i326–i333 (2004)

    Google Scholar 

  38. Ulitsky, I., Karp, R.M., Shamir, R.: Detecting disease-specific dysregulated pathways via analysis of clinical expression profiles. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 347–359. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  39. Vogelstein, B., Kinzler, K.W.: Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004)

    Article  Google Scholar 

  40. Wood, L.D., et al.: The genomic landscapes of human breast and colorectal cancers. Science 318(5853), 1108–1113 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vandin, F., Upfal, E., Raphael, B.J. (2010). Algorithms for Detecting Significantly Mutated Pathways in Cancer. In: Berger, B. (eds) Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science(), vol 6044. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12683-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12683-3_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12682-6

  • Online ISBN: 978-3-642-12683-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics