Skip to main content

Surface-Based Imaging Methods for High-Resolution Functional Magnetic Resonance Imaging

  • Conference paper
Book cover Computational Modeling of Objects Represented in Images (CompIMAGE 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6026))

  • 707 Accesses

Abstract

Functional magnetic resonance imaging (fMRI) has become an exceedingly popular technique for studies of human brain activity. Typically, fMRI is performed with >3-mm sampling, so that the imaging data can be regarded as two-dimensional samples that roughly average through the typically 1.5—4-mm thickness of cerebral cortex. The use of higher spatial resolutions, <1.5-mm sampling, complicates the use of fMRI, as one must now consider activity variations within the depth of the brain. We present a set of surface-based methods to exploit the use of high-resolution fMRI for depth analysis. These methods utilize white-matter segmentations coupled with deformable-surface algorithms to create a smooth surface representation at the gray-white interface. These surfaces provide vertex positions and surface normals, vector references for depth calculations. That information enables averaging schemes that can increase contrast-to-noise ratio, as well as permitting the direct analysis of depth profiles of functional activity in the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajaj, C.L., Xu, G.: Anisotropic diffusion of surfaces and functions on surfaces. ACM Trans. Graph. 22, 4–32 (2003)

    Article  Google Scholar 

  2. Braitenberg, V., Schutz, A.: Anatomy of Cortex. Springer, Berlin (1991)

    Google Scholar 

  3. Desbrun, M., Meyer, M., Schröder, P., Barr, A.: Discrete differential-geometry operator for triangulated 2-manifolds. In: Proceedings of Visual Mathematics 2002, Berlin, Germany (2002)

    Google Scholar 

  4. Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA 97, 11050–11055 (2000)

    Article  Google Scholar 

  5. Glover, G.H.: Simple analytic spiral K-space algorithm. Magn. Reson. Med. 42, 412–415 (1999)

    Article  Google Scholar 

  6. Glover, G.H., Lai, S.: Self-navigated spiral fMRI: Interleaved versus single-shot. Magn. Reson. Med. 39, 361–368 (1998)

    Article  Google Scholar 

  7. Glover, G.H., Law, C.S.: Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn. Reson. Med. 46, 515–522 (2001)

    Article  Google Scholar 

  8. Moon, C.H., Fukuda, M., Park, S.H., Kim, S.G.: Neural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution. J. Neurosci. 27, 6892–6902 (2007)

    Article  Google Scholar 

  9. Nestares, O., Heeger, D.J.: Robust multiresolution alignment of MRI brain volumes. Magn. Reson. Med. 43, 705–715 (2000)

    Article  Google Scholar 

  10. Ogawa, S., Menon, R.S., Kim, S.G., Ugurbil, K.: On the characteristics of functional magnetic resonance imaging of the brain. Annu. Rev. Biophys. Biomol. Struct. 27, 447–474 (1998)

    Article  Google Scholar 

  11. Ress, D., Glover, G.H., Liu, J., Wandell, B.: Laminar profiles of functional activity in the human brain. NeuroImage 34, 74–84 (2007)

    Article  Google Scholar 

  12. Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics. SIAM, Chicago (2002)

    Google Scholar 

  13. Schneider, K.A., Kastner, S.: Visual responses of the human superior colliculus: a high-resolution functional magnetic resonance imaging study. J. Neurophysiol. 94, 2491–2503 (2005)

    Article  Google Scholar 

  14. Schneider, K.A., Richter, M.C., Kastner, S.: Retinotopic organization and functional subdivisions of the human lateral geniculate nucleus: a high-resolution functional magnetic resonance imaging study. J. Neurosci. 24, 8975–8985 (2004)

    Article  Google Scholar 

  15. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(suppl.1), S208–S219 (2004)

    Article  Google Scholar 

  16. Xu, G., Pan, Q., Bajaj, C.L.: Discrete surface modeling using partial differential equations. Computer Aided Geometric Design 23(2), 125–145 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage 31, 1116–1128 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ress, D., Dhandapani, S., Katyal, S., Greene, C., Bajaj, C. (2010). Surface-Based Imaging Methods for High-Resolution Functional Magnetic Resonance Imaging. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Represented in Images. CompIMAGE 2010. Lecture Notes in Computer Science, vol 6026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12712-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12712-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12711-3

  • Online ISBN: 978-3-642-12712-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics