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Abstract. This paper studies a bio-inspired framework, iNet-EGT, to
build autonomous adaptive network applications. In iNet-EGT, each ap-
plication is designed as a set of agents, each of which provides a functional
service and possesses biological behaviors such as migration, replication
and death. iNet-EGT implements an adaptive behavior selection mech-
anism for agents. It is designed after an immune process that produces
specific antibodies to antigens (e.g., viruses) for eliminating them. iNet-
EGT models a set of network conditions (e.g., workload and resource
availability) as an antigen and an agent behavior as an antibody. iNet-
EGT allows each agent to autonomously sense its surrounding network
conditions (an antigen) and select a behavior (an antibody) according to
the conditions. This behavior selection process is modeled as a series of
evolutionary games among behaviors. It is theoretically proved to con-
verge to an evolutionarily stable (ES) equilibrium; a specific (i.e., ES)
behavior is always selected as the most rational behavior against a par-
ticular set of network conditions. This means that iNet-EGT allows every
agent to always perform behaviors in a rational and adaptive manner.
Simulation results verify this; agents invoke rational (i.e., ES) behaviors
and adapt their performance to dynamic network conditions.

Key words: Artificial immune systems, Evolutionary game theory,
Biologically-inspired networking, Autonomous and adaptive networks

1 Introduction

Network applications face critical challenges such as autonomy–the ability to
operate with minimal human intervention and adaptability–the ability to adjust
their operations to dynamic changes in network conditions such as workload and
resource availability. In order to address these challenges, this paper investigates
a biologically-inspired framework to design autonomous adaptive network ap-
plications. Based on an observation that various biological systems (e.g., bee
colonies) have successfully attained autonomy and adaptability, the authors of
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the paper believe that, if network applications are designed after key biological
mechanisms, they may be able to attain autonomy and adaptability as well.

In this paper, each network application is designed as a decentralized group
of software agents. This is analogous to a bee colony (an application) consisting
of multiple bees (agents). Each agent implements a functional service and fol-
lows biological behaviors such as migration, replication and death. This paper
focuses on an adaptive behavior selection mechanism for agents. The proposed
mechanism, called iNet-EGT, is designed after immunological antigen-antibody
reaction, which produces antibodies specific to antigens (e.g., viruses) for elimi-
nating them. iNet-EGT models a set of network conditions (e.g., workload and
resource availability) as an antigen and an agent behavior as an antibody. Each
agent contains iNet-EGT as its behavior selection mechanism. iNet-EGT al-
lows each agent to autonomously sense its surrounding network conditions (an
antigen) and select a behavior (an antibody) suitable for the sensed conditions.
For example, agents may invoke the replication behavior at the network hosts
that accept a large number of user requests for their services. This leads to the
adaptation of agent availability; agents can improve their throughput.

In iNet-EGT, antigen-antibody reaction (i.e., behavior selection) process is
modeled with evolutionary game theory. Each agent contains a set (or pop-
ulation) of behaviors. In a behavior selection process, randomly-selected two
behaviors play a game. Each game distinguishes a winning and a losing behavior
according to their payoff values computed based on the current network con-
ditions. The winner replicates itself and increases its share in the population.
The loser disappears in the population. Through multiple games performed re-
peatedly in the population the population state (behavior distribution) changes.
Through theoretical analysis, iNet-EGT guarantees that the population state
converges to an equilibrium where the population is occupied by only one type
of behaviors, called strictly dominant behaviors. Each agent invokes a strictly
dominant behavior as the most rational behavior against the current network
conditions.

iNet-EGT theoretically proves that the population state is evolutionarily sta-
ble (ES) when it is on an equilibrium. An ES state is the state that, regardless
of the initial population state, the population state always converges to. In this
state, no other behaviors except strictly dominant one can dominate the popula-
tion. Given this property, iNet-EGT guarantees that all agents deterministically
invoke a specific ES behavior under a particular set of network conditions. Sim-
ulation results verify this theoretical analysis; agents seek equilibria to invoke
ES behaviors and adapt their performance to dynamic network conditions.

2 Backgroud: Evolutionary Game Theory

Game theory studies strategic selection of behaviors in interactions among ra-
tional players. In a game, given a set of strategies, each player strives to find a
strategy that optimizes its own payoff depending on the others’ strategy choices.
Game theory seeks such strategies for all rational players as a solution, called
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Nash equilibrium (NE), where no players can gain extra payoff by unilaterally
changing his strategy.

Evolutionary game theory (EGT) is an application of game theory to biolog-
ical contexts to analyze population dynamics and stability in biological systems.
In EGT, games are played repeatedly by players randomly drawn from the pop-
ulation [1, 2]. In general, EGT considers two major evolutionary mechanisms:
mutation, which injects varieties on genes, and selection, which favors some vari-
eties over others based on their fitness to the environment. Mutation is considered
in the notion of evolutionarily stable strategies (ESS), which is a refinement of
NE. Selection is considered in the replicator dynamics (RD) model.

2.1 Evolutionarily Stable Strategies

ESS is a key concept in EGT. A population following such a strategy is invincible.
Specifically, suppose that the initial population is programmed to play a certain
pure or mixed strategy x (the incumbent strategy). Then, let a small population
share of players ε ∈ (0, 1) play a different pure or mixed strategy y (the mutant
strategy). Hence, if a player is drawn to play the game, the probabilities that its
opponent plays the incumbent strategy x and the mutant strategy y are 1 − ε
and ε, respectively. The player’s payoff of such a game is the same as that of a
game where the player plays the mixed strategy w = εy + (1− ε)x. The payoffs
of players with strategies x and y given that the opponent adopts strategy w are
denoted by U(x,w) and U(y, w), respectively.

Definition 1. A strategy x is called evolutionarily stable if, for every strategy
y 6= x, a certain ε̄ ∈ (0, 1) exists, such that the inequality

U(x, εy + (1− ε)x) > U(y, εy + (1− ε)x) (1)

holds for all ε ∈ (0, ε̄).

In the special case where the payoff function is linear, U(x,w) and U(y, w)
can be written as the expected payoffs for players with strategies x and y, and
Equation (1) yields

(1− ε)U(x, x) + εU(x, y) > (1− ε)U(y, x) + εU(y, y) (2)

If ε is close to zero, Equation (2) yields either

U(x, x) > U(y, x), or (3)

U(x, x) = U(y, x) and U(x, y) > U(y, y) (4)

Hence, it becomes obvious that an ESS must be a NE; otherwise, Equation
(3) or (4) do not hold.
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2.2 Replicator Dynamics

The replicator dynamics, first proposed by Taylor and Jonker [4], specifies how
population shares associated with different pure strategies evolve over time.
In replicator dynamics players are programmed to play only pure strategies.
To define the replicator dynamics, consider a large but finite population of
players programmed to play pure strategy k ∈ K, where K is the set of
strategies. At any instant t, let λk(t) ≥ 0 be the number of players pro-
grammed to play pure strategy k. The total population of players is given by
λ(t) =

∑
k∈K λk(t). Let xk(t) = λk(t)/λ(t) be the fraction of players using pure

strategy k at time t. The associated population state is defined by the vec-
tor x(t) = [x1(t), · · · , xk(t), · · · , xK(t)]. Then, the expected payoff of using pure
strategy k given that the population is in state x is U(k,x) and the population
average payoff, that is the payoff of a player drawn randomly from the popula-
tion, is U(x,x) =

∑K
k=1 xk · U(k,x). Suppose that payoffs are proportional to

the reproduction rate of each player and, furthermore, that a strategy profile is
inherited. This leads to the following dynamics for the population shares xk

ẋk = xk · [U(k,x)− U(x,x)] (5)

where xk is the time derivative of xk. The equation states that populations with
better (worse) strategies than average grow (shrink). However, there are cases
when even a strictly dominated strategy may gain more than average. Hence, it
is not a priori clear whether if such strategies get wiped out in the replicator
dynamics. The following theorem answers this question [1]:

Theorem 1. If a pure strategy k is strictly dominated then ξk(t, x0)t→∞ → 0,
where ξk(t, x0)is the population at time t and x0 is the initial state.

On the other hand, it should be noted that the ratio xk/x` of two population
shares xk > 0 and x` > 0 increases with time if the strictly dominated strategy
k gains a higher payoff than the strictly dominated strategy `. This is a direct
result of Equation (5) and may be expressed analytically via

d

dt

[
xk
x`

]
= [U(k,x)− U(`,x)]

xk
x`

(6)

¿From Equation (6), it is evident that even suboptimal strategies could tem-
porarily increase their share before being wiped out in the long run. However,
there is a close connection between NE and the steady states of the replicator
dynamics, which is states where the population shares do not change their strate-
gies over time. Thus, since in NE all strategies have the same average payoff,
every NE is a steady state. The reverse is not always true: Steady states are not
necessarily NE, e.g., any state where all players use the same pure strategy is a
steady state, but, it is not stable [1].

In this paper, a single fixed-sized population model is used; also, discrete
time (i.e., generational) model is assumed.
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3 iNet-EGT

This section describes how iNet-EGT is designed after an immunological process.

3.1 The Natural Immune System

The immune system is an adaptive defense mechanism to regulate the body
against dynamic environmental changes such as antigen invasions. Through
a number of interactions among various white blood cells (e.g., macrophages
and lymphocytes) and molecules (e.g., antibodies), the immune system evokes
antigen-antibody reaction to produce antibodies specific to detected antigens. In
each interaction, an antibody stimulates or suppresses another one based on its
affinity to an antigen.

Through the stimulation and suppression relationships, antibodies dynami-
cally change their population. For example, a stimulated/suppressed antibody
replicates/dies and increases/decreases its population. The population of spe-
cific antibodies rapidly increases following the recognition of an antigen and
decreases again after eliminating the antigen. Through this self-regulation mech-
anism, adaptive immune response is an emergent product of interactions among
antibodies.

3.2 Immunologically-inspired Adaptation Behavior Selection

An agent contains iNet-EGT as its own immune system. iNet-EGT implements
an adaptive behavior selection mechanism for an agent by following antigen-
antibody reaction in the natural immune system. It is designed to allow each
agent to autonomously sense a set of its surrounding network conditions (an
antigen) and adaptively perform a behavior (an antibody) suitable for the con-
ditions (Figure 1).

In iNet-EGT, an antigen consists of network conditions: C = {c1, c2, · · · , cL}
where L denotes the number of network conditions that each agent senses. For
example, C = {100 : Workload, 35 : ResourceUtilization} may mean 100 user
requests per minute as workload and 35% memory utilization as resource utiliza-
tion. Each antibody represents one of behavior types (e.g., migration, replication
and death): B = {b1, b2, · · · , bM} where M denotes the number of behavior types
that each agent invokes.

In iNet-EGT, behavior selection (i.e., antigen-antibody reaction) is modeled
based on evolutionary game theory. iNet-EGT executes an evolutionary game
in a population of behaviors (antibodies) and determines one of the behaviors
to be invoked by an agent. After initializing the population, randomly-selected
two behaviors repeatedly play games in the population. Each game distinguishes
a winning behavior and a losing behavior according to their fitness (or payoff)
values that are computed based on the current network conditions. The loser
disappears in the population. The winner replicates itself and increases its share
in the population. The winner is also mutated at a certain probability in order to



6 Chonho Lee et al.

AgentiNet-EGT Antibody(Behavior)An antigen(A set of network conditions)e.g.,C1: WorkloadC2: Resource utilization
C1 C2

MigrationDeathReplication Invoke!
Fig. 1. Antigen-antibody reaction

react to future changes in network conditions. Then, eventually one behavior in
a population is selected as the behavior invoked by an agent. Figure 2 presents
a pseudocode of the implemented behavior selection process.

BehaviorSelection()
// P: Population, W: A set of winners, M: A set of the mutated
// ab: A behavior invoked by an agent
main
InitializePopulation(P )
while (the termination condition is not satisfied)

do



W,M ← Φ, n← P/2
for i← 0 to n

do



ComputeFitnessValue(P )
{behavior1, behavior2} ← Select(P )
P ← P − {behavior1, behavior2}
winner ← PerformGame(behavior1, behavior2)
W ←W ∪ winner
M ←M ∪Mutate(winner)

P ←W ∪M
ab ← {b | b ∈ P , Xb(t) > th}

Fig. 2. Pseudocode of behavior selection in iNet-EGT

Figure 3 describes how behavior selection process works in each generation. A
population is implemented as an array of behaviors, each behavior is associated
with one of behavior types (i.e., actual actions as strategies) such as migration
and replication. A population state at time t represents behavior distribution in
the population, and it is denoted by X(t) = {x1(t), x2(t), · · · , xM (t)} where xb(t)
is the population share of a behavior type b, i.e., xb = nb

N , where N =
∑

b∈B nb
where nb is the number of behaviors with a behavior type b; so

∑
b∈B xb = 1.

Initially, behavior types are evenly distributed into behaviors in a population.
For example, if the size of population is 100 and the size of behavior set is 4, then
each 25 behaviors has one of the behavior types, i.e., X(0) = {.25, .25, .25, .25}.

Each behavior (antibody) in a population computes its own fitness value (as
affinity) against a set of network conditions (antigen). Fb denotes a fitness value



An Evolutionarily Stable Adaptation Framework for Network Applications 7

N behaviors (antibodies)At Generation G N behaviors
N

At Generation G+1

N …
…

ConstructN/2 pairs1 ……
v.s.… … …

…
Compute each behavior’s payoff,and perform N/2 games2

N/2 winners arereplicated3 Mutation occurs on eachbehavior at a certainprobability4
Fig. 3. Behavior Selection in each Generation

of behavior b. In the current study, 4 behaviors (M : migration, R: replication,
D: death, N : do-nothing) and 2 network conditions C = {c1, c2} are considered.
F is designed as follows:

FMk = ck1 + ck2 , FD = (1− c1)− c2
FR = c1 + c2, FN = (1− c1) + (1− c2)

Two network conditions, Queue length (c1) and Request rate (c2), indicate the
spatial and temporal changes of the network environment in terms of workload.
Queue length ck1 is the number of user requests waiting to be processed in a
queue at node k. Request rate ck2 is the difference between the number of user
requests received for a particular time period and that for the previous time
period. Assume that a node maintains the number of user requests, R(∆T ),
for a time period between t − 1 and t. Request rate is computed as c2(t) =
R(∆(T ))−R(∆(T − 1)).

A game is performed between randomly paired behaviors. A behavior wins/loses
against another one based on their fitness values. A losing behavior is removed
from a population. A winning behavior survives for the next generation and
makes its copy to increase its population share; in addition, the mutation oc-
curs on each copied behavior at a certain probability to change its behavior to
another. iNet-EGT repeats the same process until the termination condition is
satisfied. When one of the behaviors occupies the population based on the con-
dition, Xb(t) > th, the behavior type b is selected. The threshold value th is set
to 0.95 since the mutation probability is set to 0.05 in simulation studies.

4 Stability Analysis

This section analyzes the stability of behavior selection in iNet-EGT by show-
ing that a population state converges to an evolutionarily stable state (or an
asymptotically stable state) in three steps: (1) The dynamics of population state
change over time is formalized as a set of differential equations, (2) The proposed
behavior selection has equilibrium points, (3) The equilibrium points are asymp-
totically stable. First, in order to construct the differential equations, following
terminologies and variables are defined.
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– B denotes a set of behavior types. B = {b1, b2, · · · , bM}, and M denotes the
number of behavior types.

– N denotes a population size. N =
∑

b∈B nb where nb is the number of behav-
iors with a behavior type b.

– X(t) denotes a population state at time t. X(t) = {x1(t), x2(t), · · · , xM (t)}
where xb is the population share of a behavior type b (xb = nb

N ;
∑

b∈B xb = 1).
– Fb is the fitness value of a behavior with a behavior type b.
– pbk denotes the probability that a behavior with a behavior type b is replicated

by winning a game against the behavior with a behavior type k. It is computed
by pbk = xb · φ(Fb − Fk) where φ(Fb − Fk) is the conditional probability that
the fitness value of a behavior with a behavior type b is larger than that of a
behavior type k.

How behaviors with a behavior type b change their population share is con-
sidered as the sum of difference between the number of behaviors which are
replicated (win) and eliminated (lose) at a time; then it is formalized as follows
(using a brevity cbk = φ(Fb − Fk)− φ(Fk − Fb)).

ẋb =
∑

k∈B,k 6=b

{xkpbk − xbpkb} = xb
∑

k∈B,k 6=b

xk{φ(Fb − Fk)− φ(Fk − Fb)}

= xb
∑

k∈B,k 6=b

xk · cbk (7)

Theorem 2. If a behavior with a behavior type k is strictly dominated, then
xk(t)→ 0 as t→∞.

In game theory, it is said that a strategy (behavior type) is strictly domi-
nant if, regardless of what any other players (behaviors) select, a player with
the strategy gains a strictly higher payoff than any others. If a behavior has
a strictly dominant behavior type, than it is always better than any others in
terms of a fitness value (payoff). It will increase its population share and occupy
a population over time. So, if a behavior is strictly dominated, then the behavior
disappear in a population over time.

Theorem 3. The population state of an agent converges to an equilibrium.

Proof. It is true that, according to the fitness function (Equation 7), behaviors
with different behavior types have different fitness values under the same network
conditions. In other words, under the particular network conditions, only one
behavior has the highest fitness value among the others. Assume that F1 >
F2 > · · · > FM , and by Theorem 1, a population state eventually converges to
X(t) = {x1(t), x2(t), · · · , xM (t)} = {1, 0, · · · , 0} as an equilibrium. Differential
equations should satisfy the constraint

∑
b∈B xb = 1. ut

Theorem 4. The equilibrium of behavior selection in iNet-EGT is evolutionarily
stable (i.e., asymptotically stable).
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Proof. At the equilibrium where X = {1, 0, · · · , 0}, a set of differential equations
can be rewritten in the downsized by substituting x1 = 1− x2 − · · · − xM

żb = zb[cb1(1− zb) +

M∑
i=2,i 6=b

zi · cbi] where b = 2,...,M (8)

where Z(t) = {z2(t), z3(t), · · · , zM (t)} denotes the corresponding downsized pop-
ulation state, which is an equilibrium Zeq = {0, 0, · · · , 0} of (M-1)-dimension
based on Theorem 2.

To verify that a state at the equilibrium is an asymptotically stable state,
show that all the Eigenvalues of Jaccobian matrix of the downsized population
state has negative Real parts. The elements of Jaccobian matrix J are

Jbk =
[
∂żb
∂zk

]
|Z=Zeq

=

[
∂zb[cb1(1− zb) +

∑M

i=2,i 6=b
zi · cbi]

∂zk

]
|Z=Zeq

(9)

where b, k = 2, ...,M

Therefore, Jaccobian matrix J is given by

J =


c21 0 · · · 0
0 c31 · · · 0
...

...
. . .

...
0 0 · · · cM1

 (10)

where c21, c31, · · · , cM1 are the Eigenvalues of J . According to Theorem 2, cb1 =
−φ(F1 − Fb) < 0 for every b; therefore, Zeq = {0, 0, · · · , 0} is asymptotically
stable. An agent deterministically invokes a specific behavior (i.e., ES behavior)
under a particular set of network conditions. ut

5 Simulation Results

This section evaluates iNet-EGT through simulations. Figure 4 shows a simu-
lated network, which is a server farm consisting of 16 (4 x 4) hosts in a grid
topology. User requests travel from users to agents via user access point. This
simulation study assumes that a single (emulated) user runs on the access point
and sends user requests to agents.

At the beginning of a simulation, an agent is deployed on a randomly-selected
host in the network. Each agent has its own iNet-EGT that contains a population

Agent
User re
quests from us

ers Useraccess point
User re
quests from us

ers
Server farm
Hosts

Fig. 4. Simulated Network
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of 100 behaviors. (25 behaviors are of each of four behavior types: migration,
replication, death and do-nothing). Mutation rate and behavior selection thresh-
old are set to 0.1 and 0.95, respectively. Figures 5 and 6 show two different types
of changes in workload (i.e., the number of user requests) given to agents.

Figure 7 shows how population state (behavior distribution) changes over
time in an agent deployed at the beginning of a simulation. (The two figures show
the changes in population state against the workload type 1 and 2, respectively.)
In Figure 7, the number of replication behaviors increases in the first 15 seconds,
and population state converges to an ES state. Then, the do-nothing behavior
takes over the replication behavior to dominate the population; the population
converges to another ES state. The second ES state emerges because agents finish
adapting their availability with the replication behavior in the first one minute to
efficiently process incoming user requests. (See Figure 9 for the changes in agent
availability under the workload type 1.) This ES state continues until workload
spikes at the third minute. Upon the workload spike, the replication behavior
dominates the behavior population again. Once agent availability adapts to the
workload spike, the do-nothing behavior takes over the replication behavior.

Figure 8 shows the changes in population state under the workload type 2.
The changes are similar to those in Figure 7 except that the death behavior
dominates the behavior population when workload drops. See Figure 10 for the
changes in agent availability under the workload type 2. As shown in Figures 7
and 8 , iNet-EGT allows agents to successfully seek ES equilibria in their be-
havior selection according to dynamic network conditions.
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Figures 9 and 10 show how agent availability (i.e., the number of agents)
changes over time when the workload type 1 and 2 are given to agents, re-
spectively. The two figures demonstrate that agents adapt their availability by
invoking behaviors according to the ES states they are on. (See also Figures 7
and 8.)

Figures 5 and 11 show the throughput (i.e., the number of processed requests
per minute) and response time that agents yield for users under the workload
type 1. Figures 6 and 12 show the throughput and response time results under
the workload type 2. At the beginning of a simulation, only one agent is deployed;
it cannot efficiently process all user requests. As a result, throughput is low, and
response time is high. However, as agents performs their behaviors by seeking
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ES states (Figures 7 and 8), they adapt their throughput and response time to
dynamic network conditions.

Figure 13 and 14 show the average stability of the behavior populations that
agents possess. It is measured as follows:

Savg(t) =
1

A(t)

∑
i

max
b∈B
{xb(t)} (11)

where A(t) denotes the total number of agents. i indexes agents. b indexes be-
havior types (1,· · ·,4). Agents seek equilibria to invoke evolutionarily stable be-
haviors. For example, when agents sufficiently adapt their availability to the
workload at around 0:30, Savg(t) decreases because the number of replication
and do-nothing behaviors change. However, soon or later agents increase the
number of do-nothing behaviors, and a population state converges to the sta-
ble state again. In addition, the likelihood of agents operating at a stable state
during a simulation run (e.g., 6 min) is observed as stability. It is measured as
how long agents operate at equilibria during the simulation run (i.e., [time(sec)
for Savg(t) > 0.95]/[6 min=360 sec]). Along the workload type 1, the stability is
about 82%. For the workload type 2, the stability is about 86%.

6 Related Work

iNet-EGT is an extension to its predecessor called iNet [6]. iNet-EGT and
iNet share the same goal; immunologically-inspired adaptive behavior selection
for agents. However, they are different in their approaches to design antigen-
antibody reaction and antibody evolution. iNet designs antigen-antibody reac-
tion based on a model built with the immune network hypothesis [5] and designs
antibody evolution with a genetic algorithm. iNet-EGT takes evolutionary game
theoretic approach to design antigen-antibody reaction and antibody evolution.
It guarantees stability in behavior selection while iNet does not. iNet-EGT is
the first attempt to model an artificial immune system based on EGT.

Conventional game theory has been introduced to several aspects in network
systems; e.g., job allocation [7], security [8–10] and routing [11]. They focus
on the rationality of behavior selection in static network environments; how-
ever, they do not consider adaptation in dynamic network environments. [12,13]
leverage EGT to formulate rational and adaptive routing decisions to dynamic
network environments. Unlike [12, 13], iNet-EGT performs the mutation oper-
ation in the behavior selection to better adapt to future changes in network
environments.

[14–17] study adaptive behavior selection mechanisms for agent-based sys-
tems. [14] proposes a rule-based mechanism, which is similar to iNet-EGT in that
it implements deterministic behavior selection. However, unlike [14], iNet-EGT
guarantees stability in behavior selection. [15–17] consider non-deterministic be-
havior selection with stochastic algorithms. In contrast, iNet-EGT considers de-
terminism in behavior selection to guarantee its stability.
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7 Conclusion

This paper proposes and evaluates a bio-inspired framework, iNet-EGT, which
aids building autonomous and adaptive network applications. iNet-EGT is de-
signed after antigen-antibody reaction in the immune system. The reaction pro-
cess is modeled as a series of evolutionary games among behaviors. It is theoreti-
cally proved to converge to an evolutionarily stable (ES) equilibrium. This means
that iNet-EGT allows every agent to always perform behaviors in a rational and
adaptive manner. Simulation results verify this; agents invoke rational (i.e., ES)
behaviors and adapt their performance to dynamic network conditions.
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