Shape from photographs: a multi-view stereo
pipeline

Carlos Herandez and George Vogiatzis

Abstract Acquiring 3d shape from images is a classic problem in CosrpVision
occupying researchers for at least 20 years. Only receatleber have these ideas
matured enough to provide highly accurate results. We ptessomplete algorithm
to reconstruct 3d objects from images using the stereo smorelence cue. The
technique can be described as a pipeline of four basic bgildiocks: camera cal-
ibration, image segmentation, photo-consistency esitmdtom images, and sur-
face extraction from photo-consistency. In this chaptemiteput more emphasis
on the latter two: namely how to extract geometric informatirom a set of pho-
tographs without explicit camera visibility, and how to daime different geometry
estimates in an optimal way.

1 Introduction

Digital modeling of 3d scenes is becoming increasingly papand necessary for
a wide range of applications such as cultural heritage pragen, online shopping
or computer games. Although active methods [34, 49] remaéad the most pop-
ular techniques of acquiring shape, the high cost of thepagint, complexity, and
difficulties to capture color are three big disadvantagesopposed to active tech-
niques, photograph-based techniques provide an efficleheasy way to acquire
shape and color by simply capturing a sequence of photograithe object.

The goal of any shape-from-photographs algorithm can berithesl as fiven a
set of input photographs, how to estimate a 3d shape thatdi\generate the same
photographs, assuming same material, viewpoints anditightonditions. This
definition highlights the main difficulty of the problem: plographs are obtained
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as a result of complex interactions between the geometriieobtene, the mate-
rials of the scene, the lighting conditions and the viewpoiisee Fig. 1). Hence
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Fig. 1 Image formation model. The image of a 3d scene depends on its geometry, material prop-
erties, lighting conditions and pose of the viewer.

recovering the geometry just from photographs is not onljallenging problem
but also, in the general case, an ill-posed problem. It ileiging because lighting
and material properties play a very important role in thegenformation model.
The same geometry with a different material or differenbiigg conditions can
give extremely different photographs. It is also an ill-pdproblem because, in the
general case, different combinations of geometry, lighéind material can produce
exactly the same photographs, making it impossible to mca@gingle scene geom-
etry. The main recipe to make the problem well-posed is tquises on the types of
surface that one expects. Traditionally the most commoa ofrior is the smooth
surface prior. However when dealing with special classesb{gcts such as human
faces or man-made objects, more evolved priors have beeessfally usede.g.
human faces [54], buildings [53] or planes [15].

As for the importance of materials and lighting conditiohbas been addressed
by restricting the class of materials a particular algonitis designed for. As a re-
sult, no single method is able to correctly reconstruct aggrscene with any type
of materials and lighting conditions, leading to a plethafrapecific algorithms de-
signed for specific types of objects and using specific cuksiettes [1], texture
[50], transparency [44], defocus [14], shading [51] or espondence, both sparse
[3] and dense [40]. Historically the most successful cue® een silhouettes, cor-
respondence, and shading. Silhouettes and corresporsdareceéhe most robust of
all due to their invariance to illumination changes. Thedshg cue needs a more
controlled illumination environment, but it can producedthtaking results, which
makes it widely used too. An example of an algorithm [23] eipig the shading
cue is shown in Fig. 2. The algorithm is designed to find a 3ghstiaat produces
the same shading as the original object. Interestinglefdstimated 3d shape is
then used to manufacture a replica from a different matéimaFig. 2 the origi-
nal is porcelain, while the replica is plaster) we can apptedow the replica still
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Fig. 2 Shading comparison of a porcelain figurine and a manufaared replica obtained using
[23]. The original porcelain figurine is shown on the left, while a mfactured replica using the
3d model obtained using [23] is shown on the right. The materiti@feplica is plaster. See how
the replica perfectly imitates the shading component, eveugtinthe materials are different.

shows the same shading pattern. This is the desired behsivioe the algorithm is
specifically designed to imitate the shading, not to proddestical photographies.
Among the vast literature available on image-based moglédichniques, recent
work on multi-view stereo (MVS) reconstruction has beconggaving area of in-
terest in recent years with many differing techniques aghgea high degree of
accuracy [40]. These techniques are mainly based on thespmndence cue and
focus on producing 3d models from a sequence of calibratedés of an object,
where the intrinsic parameters and pose of the camera asenkrio addition to
providing a taxonomy of methods, [40] also provides a quatite analysis of per-
formance both in terms of accuracy and completeness. If keeddook at the top
performers, they may be loosely divided into two groups. fiills¢ group make use
of techniques such as correspondence estimation, locanregowing and filter-
ing to build up a tloud of patches[17, 19, 35, 36] that can be optionally made
dense using meshing algorithms such as Poisson reconstr{4} or signed dis-
tance functions [12]. The second group make use of some fbgiobal optimiza-
tion strategy on a volumetric representation to extractrfasa [18, 20, 24, 47, 48].
Under this second paradigm, a 3d cost volume is computedhanda 3d surface is
extracted using tools previously developed for the 3d segatien problem such as
deformable models [20], level-sets [13, 39] or graph-c61$8B, 16, 24, 41, 46, 48].
The way volumetric methods usually exploit photo-consisyeis by building
a 3d map of photo-consistency where each 3d location givesstimate of how
photo-consistent would be the reconstructed surface atdbation. The only re-
quirement to compute this photo-consistency 3d map is thateca visibility is
available. Unfortunately, the geometry of the scamewhat we try to compute, is
required to know which cameras see a 3d location (see Fidn 3)rder to break
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Fig. 3 Occlusion problem.In order to compute shape using photo-consistency, the camera visi-
bility is required. At the same time, in order to compute the camisikility, the shape is required.

this dependency between visibility and shape, multi-vi¢geren algorithms have
taken different approaches. A majority of methods use th®naf “current sur-
face in order to jointly optimize for camera visibility and shapThe visibility
computed from the reconstructed surface at iteratienl is then used to com-
pute photo-consistency at iterationimproving the reconstruction gradually [13].
Some methods use a proxy of the true surface to estimataliysibuch as the
visual hull [24, 48]. Finally, a third category of methodg to compute aVisibility-
independeritphoto-consistency where occlusion is treated as an aditisource
of image noise [7, 18, 20].

In this chapter we will give further insight into a two-stalye/S volumetric
approach: namely how to extract a 3d volume of photo-coersist from a set of
photographs without explicit camera visibility in sectiBnand how to extract a
surface from the photo-consistency volume in a globallyroak way in section 4.
The pipeline described in this chapter is currently a todquerer in the recent
evaluation of multi-view stereo algorithms by Seitz et 8][4

2 Multi-view stereo pipeline: from photographs to 3d models

There exists a vast literature on multi-view stereo algong. Even though many
of the methods share the same basic architecture, they difiely in what type
of scenes or computation time they are optimized to work wAththe multi-view
stereo methods use the correspondence cue, which is usypllyited in the form
of a photo-consistency metric such as Normalized CrosseGion, Sum of Square
Differences, or Mutual Information. Starting from the pratonsistency metric, dif-
ferent algorithms focus on different target applicationshsas outdoor scenes [45],
building reconstruction [11, 37, 38], interior buildingss]] or object reconstruction
[40]. In this chapter we describe a volumetric multi-viewrsio approach that is op-
timized for general scene reconstruction, with a prefezdnc watertight surfaces.
The pipeline (see figure 4) can be described as:
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photograph acquisition,

camera calibration,

computing 3d photo-consistency from a set of calibratedqdraphs,
extracting a 3d surface from a 3d map of photo-consistency.

Fig. 4 3d multi-view stereo pipeline.Image calibration, photo-consistency 3d map from a set of
photographs (section 3) and surface extraction from a phmtgistency 3d map (section 4).

In the following sections we focus on how to extract 3d phatosistency from
a set of photographs (see section 3) and how to use the 3d-pbosistency to
extract a 3d surface (see section 4). We leave the discuseidmage acquisition,
e.g.real-time vs photograph-based, and on camera calibratiofuture discussion
(see [43] for an state-of-the-art system to calibrate afgghotographs).

3 Computing photo-consistency from a set of calibrated
photographs

Given a set of images and their corresponding camera posegould like to extract
a 3d map of photo-consistency that tell us how photo-comsiss a particular 3d
locationfor a given set of visible camerasThe main difficulty of this step is how
to produce a volumetric measure of photo-consistency witlioe knowledge of
the set of cameras that should be used to compute photostemsy for every 3d
location.

This problem is addressed in the proposed 3d modeling pipély following a
similar approach to [20] where photo-consistency is mafdasbto occlusion. This
approach computes a 3d map of photo-consistency as an atigregf depth-maps
from different view-points (see Fig. 5). The creation oftsaghoto-consistency 3d
map is similar in spirit to the space carving approach preddsy [32]. However,
by computing it as an aggregation of depth-maps, two adgastappear:

e depth-map computation using dense stereo is a very suatesef active re-
search topic. It is an ideal building block to use since improents in the field
of dense stereo can be directly beneficial to the multi-vieke® problem.
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Fig. 5 Computing a photo-consistency volume as aggregation depth-maps. From left to
right, three different stages of merging individual depth-megbo a single photo-consistency vol-
ume. Right shows the final photo-consistency volume.

e Computation time is no longer dependent on the resolutidheo8d volume, but
on the number of cameras. It is also highly parallelizablgeseach depth-map
is independently computed and no iterated visibility cotafian is required.

By building a 3d map of photo-consistency, the 3d reconsttugroblem can
now be seen as a 3d segmentation task, allowing us to usethigsrpreviously
developed for 3d segmentation. These algorithms incluftgmeable surfaces [20],
Poisson reconstruction [17], signed distance functioB$ [Relaunay [7] or MRFs
[22, 29, 47].

A comparison of the importance of this stage in the reconstm pipeline is
shown in Fig. 6. The occlusion-robust photo-consistencj26t (Fig. 6 middle)

Fig. 6 Noise reduction in photo-consistencyLeft: a slice of the photo-consistency used in [48]
contains falsely photo-consistent regioegg(near the corners). Middle: occlusion robust photo-
consistency proposed in [20] significantly suppresses noise andtrextsurface can be accu-
rately localized. One side of the vertical wall is missing duedauy occlusions. Right: occlusion
robust photo-consistency proposed in [8]. The vertical walbisectly represented.

clearly outperforms [48] (Fig. 6 left). However, since thiethod exploit the re-
dundancy between images to be robust against occlusiarffets with sparse data
sets (see the missing vertical wall in Fig. 6 middle). An ioy@d version of the
occlusion-robust photo-consistency has been proposed] thdt is capable of bet-
ter dealing with sparse data sets (see the improvement ivetttieal wall in Fig.
6 right). We adopt [8] in our multi-view stereo pipeline a® thuilding block to
compute individual depth-maps. In the remaining of thigisacwe describe this
algorithm more in detalil.
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3.1 Normalized Cross Correlation for depth-map computation

Normalized Cross Correlation (NCC) may be used to define eor enetric for
matching two windows in different images. Figure 7 providesexample of using
NCC and epipolar geometry to perform window based matchfnge fix a pixel
location in a reference image, for each possible depth axeay fhat pixel we get a
corresponding pixel in the second image. By computing th€M€tween windows
centered in those two pixels we can define a matching scorduastion of depth
for the reference pixel. We refer to this function asctberelation curveof the pixel.
A typical correlation curve will exhibit a very sharp peaktla¢ correct depth, and
possibly a number of secondary peaks in other depths.

Select window in Project into neighbouring image
reference image along epipolar line

Locate matching window using
maximum NCC score

i, ” LN S a5,
NCC Score | | T NN Y
iy NN \AS \ 3
| I YRV v

Depth

Fig. 7 Normalized Cross-Correlation based window matching.

In [20] a depth-map is generated for each input image usiisghtlatching tech-
nigue for neighboring images. For each pixel a number ofetation curves are
computed (using a few of the neighboring viewpoints) anddagth that gives rise
to most peaks in those curves is selected as the depth fquikehtSee [20] or [47]
for details. This process results in an independent deptma® for each pixel.
These depth estimates will unavoidably contain a signifipancentage of outliers
which must be dealt with in the subsequent step of [20] whicthe volumetric
fusion of multiple depth-maps. In data sets with a large nemd§ images this is
is overcome by the redundancy in the depth-estimates. Tine sarface point is
expected to be covered by many different depth-maps, soméioh will have the
right depth estimate. In sparse data-sets however, eafeltsymoint may be seen by
as few as two or three depth-maps. It is therefore crucialahéiers are minimized
in the depth-map generation stage.

In order to efficiently exploit NCC as a photo-consistencyasge, we need to
focus on the two most significant failure modes of NCC maitghirhich are (1)
the presence of repetitions in the texture and (2) completieimmg failure due to
occlusion, distortion and lack of texture. These are noveidlesd in more detail.
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3.1.1 Repeating texture

In general, there is no guarantee that the appearance oflaipatnique across the
surface of the object. This results in correlation curvekges incorrect depths due
to repeated texture — ‘false’ matches (Fig. 7). A larger winaize is more likely to
uniguely match to the true surface, reducing the numberlsé famatches. However
the associated peak will be broader and less well localisellicing the accuracy of
the depth estimate. The absolute value of the NCC score atlarpiiects how well
the two windows match. Thus one might expect the peak withmthgimum score
to be the true peak. Unfortunately, the appearance of fatdehas due to repeated
texture may result in false peaks having similar or eventgrescores than the true
surface peak (Fig. 8 (a)). To identify the correct peak, wippse to apply a spatial
consistency constraint across neighboring pixels in ththdeap. The underlying
assumption is that if a peak corresponds to the true surflaeaeighboring pixels
should have peaks at a similar depth. The exception to tlisakision boundaries,
which are however catered for under the next failure mode.

3.1.2 Matching failure

The second failure mode is comprised of occlusion errossodied image windows
(due to slanted surfaces) and lack of texture. In all of thesses, the correlation
curve will not exhibit a peak at the true depth of the surfaesulting in only false
peaks. Furthermore no spatial consistency can be enforeweebn the pixel in
question and its neighbors. In this situation we would liketknowledge that the
depth at this pixel is unknown and should therefore offer atefor the surface
location.

In order to achieve these two goals we propose an optimizati@tegy which
makes use of a discrete label Markov Random Field (MRF). TRé-Mllows each
pixel to choose a depth corresponding to one of the top NC&spehich is spatially
consistent with neighboring pixels or select amknownlabel to indicate that no
such peak occurs and there is no correct depth estimate pitigss means that
the returned depth map should only contain accurate deggtimyated with a high
degree of certainty, and amknownriabel for pixels which have no certain associated
depth. Figure 8 illustrates the optimization for a 1D exasrgfl neighboring pixels
across an occlusion boundary.

3.2 Depth Map Estimation

The proposed algorithm estimates the depth for each pixélarinput images. It
proceeds in two stages: Initially we extract a set of possilapth values for each
pixel using NCC as a matching metric. We then solve a mutielaliscrete MRF
model which yields the depth assignment for every pixel. Ohthe key features
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Fig. 8 lllustration of the MRF optimization applied to neighboring pixels. Existing method
return the maximum peak which results in outliers in the deptimes¢. The MRF optimization
corrects an outlier to the true surface peak (a) and intralaoeunknown label at the occlusion
boundary (b)

in this process is the inclusion of amknownstate in the MRF model. This state is
selected when there is insufficient evidence for the codepth to be found.

3.2.1 Candidate Depths

The input to the algorithm is a set of calibrated imageand the output is a set of
corresponding depth-mafs In the following, we describe how to acquire a depth-
map for a reference imadgs € Z. Let N(l¢) denote a set of ‘neighboring’ images
10 lref.

As proposed in section 3.1, we wish to obtain a hypothesisfgmissible depths
for each pixelp; € l;er. Taking each pixel in turn, we project the epipolar ray into a
second imagé, € lef and sample the NCC matching score over a depth rprige
We compute the score using a rectangular window centerdutk girbjected image
co-ordinates. One of the advantages of the multiple depplotmgses is the ability
to use a smaller matching window to provide a faster comjmurtand improved
localization of the surface. Once we have obtained the shmaly we store the top
K peakspi(z k), k € [1,K] with the greatest NCC score for each pixel. Depending on
the number of images available, and the width of the camesalipa, this process
may be repeated for other neighboring images. We then agntmthe optimization
stage with a set of the beiktpossible depths, and their corresponding NCC scores,
over all neighboring images ofs.
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3.2.2 MRF Formulation

At this stage a set of candidate depfh&; k). k € [1,K], for each pixelp; in the ref-
erence imagéer has been assigned and we wish to determine the correct depth m
label for each pixel. As described in section 3.1, we alsoenae of arunknown
state to account for the failure modes of NCC matching.

We model the problem as a discrete MRF where each each pigel ket of up
to (K+ 1) labels. The firsK labels, fewer if an insufficient number of peaks were
found during the matching stage, correspond to the peak®ilNCC function and
have associated depthg € Z; and scoreg;(z k). The final state is thenknown
statel/. If the optimization returns this state, the pixel is notigsed a depth in
the final depth map. For each pixel we therefore form an auggddabel sey; | €
{Zi,U} to include the unknown state.

The optimization assigns a labigle {1...K,i/)} to each pixek;. The cost func-
tion to be minimized consists of unary potentials for eactelpand pairwise inter-
actions over first order cliques. The cost of a labekng {ki } is expressed as

E(k) =Y ok)+ 5 wik.k) (1)
! (L)

wherei denotes a pixel and, j) denote neighboring pixels.
The following sections discuss the formulation of the unaojentialsg(-) and
pairwise interactiongy(-,-).

3.2.3 Unary Potentials

The unary labeling cost is derived from the NCC score of thakp®/e wish to pe-
nalize peaks with a lower matching score since they are nilely lto correspond
to an incorrect match due to occlusion or noise. The NCC powell always re-
turn a score in the range-1,1]. As is common practice, [47], we take an inverse
exponential function to map this score to a positive cost.

The unary cost for theinknownstate is set to a constant valgg. This term
serves two purposes. Firstly it acts as a cut-off threshmighéaks with poor NCC
scores which have no pairwise support (heighboring peakéntfar depth). This
mostly accounts for peaks which are weakly matched due tortian or noise.
Secondly it acts as a truncation on the depth disparity ddasiegpairwise term. By
assigning a low pairwise cost between peaks andutii@mownstate, the constant
unary cost will effectively act as a threshold on the dep8pdiity to handle the
case of an occlusion boundary. Thus the final unary term engby

re BAZEX) xe1..K]

ok =x) = : ()
@ X= U
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3.2.4 Pairwise Interactions

The pairwise labeling cost is derived from the disparity épths of neighboring
peaks. As has been previously mentioned, this term is nehd®d to provide a
strong regularization of the depth map. Instead it is usetytand determine the
correct peak, corresponding to the true surface locatiohpbthe returned peaks.
We observe that the correct peak may not have the maximune.s€berefore if
there is strong agreement on depth between neighboring pe@ktake this to be
the true location of the surface.

When dealing with the depth disparity term we are really aderéing surface ori-
entation; whether the surface normal is pointing towardsveaty from the camera.
Under a perspective projection camera model it is therefeoessary to correct for
the absolute depth of the peaks rather than simply takinglifference in depth.
We perform this correction by dividing by the average deptthe two peaks. The
resulting pairwise term is given by

|2x—2y|
2(Za,x+zj,y) xe [1..K] ye[l..K]
Y X= U yecl.K]
P (k=xkj=y)= &)
Yu xe[l..K] y= U
0 Xx= U y= U

We setyy to a small value to encourage regions with many pixels labatun-
knownto coalesce. This acts as a further stage of noise redudtioa & prevents
spurious peaks with high scores but no surrounding suppmrt ippearing in re-
gions of occlusion.

3.2.5 Optimization

To obtain the final depth map we need to determine the optibelingk such that

E(k)=arg min 3 o(k)+ 5 w(k.kj) - (@)
(k) (9))

Since in the general case this is an NP-hard problem we masamuspproximate
minimization algorithm to achieve a solution. The most welbwn techniques for
solving problems of this nature are based on graph-cuts elnef propagation. In-
stead, we use the recently developed sequential treeghtedi message passing
algorithm, termed TRW-S, of [30]. This has been shown to etiggm belief prop-
agation and graph-cuts in tests on stereo matching usingceetit number of dis-
parity levels. In addition to minimizing the energy, the@ithm estimates a lower
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bound on the energy at each iteration which is useful in dhgclor convergence
and evaluating the performance of the algorithm. We shootd,rhowever, that we
are by no means guaranteed that the lower bound is attainable

3.3 Photo-consistency 3d map from a set of depth-maps

In order to create a 3d volume of photo-consistency from a&eepth-mapsD
we “uplift” every depth-map irD into 3d using the camera calibration data. The
photo-consistency of a 3d poirtis defined as the sum of the confidences of all its
nearby depth-map points. That is, given all the upliftedtdepap 3d pointsl; and
their corresponding confidence valwsgsthe photo-consistenay(x) can be define
as

cx= Y s (5)

i:[x—dj|<e

whereeg is a pre-defined ball size. If the photo-consistency is toiberdtize using
a volumetric grid, ther is simply the size of a voxel.

4 Extracting a 3d surface from a 3d map of photo-consistency

Given a 3d map of photo-consistency, we would like to extea&d surface. As
mentioned earlier, by building a 3d map of photo-consistetite reconstruction
problem can now be solved using 3d segmentation techniquésof all the seg-
mentation algorithms available, MRF approaches are vedghyispread due to its
global convergence properties. They also allow the fusiodifterent cues in an
elegant wayg.g.see [29]. One of the main criticisms of MRFs applied to 3d seg-
mentation is the discretization artifacts originatingnfrés discrete nature. In order
to remove them, the surface is usually further refined usown¢éinuous formulation
such as level-sets [13, 39] or deformable models [20], atigvior a finer control of
the regularization than the one provided by MRFs. In the reim@ of this section
we describe the MRF framework for multi-view stereo firstgmweed by [47] and
further extended in [22]. We also describe the deformabldehloy [20] that we use
as a refinement step.

4.1 Multi-view stereo using multi-resolution graph-cuts

In [5] and subsequently in [2] it was shown how graph-cuts @gtimally partition
2d or 3d space into ‘foreground’ and ‘background’ regiondemany cost functional
consisting of the following two terms:
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e Labeling cost or unary term: for every point in space there is a cost for it being
labeled ‘foreground’ or ‘background’.

e Discontinuity cost or binary term: for every point in space, there is a cost for
it lying on the boundary between the two partitions.

Mathematically, the cost functional described above casdsn as the sum of a
weightedsurface areaf the boundary surface and a weightedumeof the ‘fore-
ground’ region as follows:

E(S) = /S p(x)dA+ /V LY (©)

whereSis the boundary between ‘foreground’ and ‘backgrould’$) denotes the
‘foreground’ volume enclosed bg$andp and o are two scalar density fields. The
application described in [5] was the problem of 2d/3d segatém. In that domain
p(x) is defined as a function of the image intensity gradientafxd as a function
of the image intensity itself or local image statistics.

In the framework of the multi-view stereo problem, this midsidances two com-
peting terms: the first one minimizes a surface integral ot@ttonsistency (binary
term) while the second one maximizes the volume of regioiis avhigh evidence
of being foreground (unary term). In the literature, it isiakly the binary term that
is data driven, while the unary term is just used as a basic,jgrg.as a ballooning
term [9]. In this work, we use the photo-consistency 3d mapmated in section 3
as the binary term. As for the unary term, very little work basn done to obtain an
appropriate ballooning term. In most of the previous workolumetric multi-view
stereo the ballooning term is a very simplistic inflationfosce that is constant in
the entire volume,e. g(x) = —A. This simple model tries to recover thin structures
by maximizing the volume inside the final surface. Howevemaide effect, it also
fills in concavities behaving as a regularization force andathing fine details.

When silhouettes of the object are available, an additisiiabuette cuean be
used [24, 48], which provides the constraint that all poinssdethe object volume
must project inside the silhouettes of the object. Hencesilheuette cue can pro-
vide some foreground/background information by giving eyu@gh likelihood of
beingoutsidethe object to 3d points that project outside the silhouettesvever
this ballooning term is not enough if thin structures or dgcavities are present, in
which case the method fails (see Fig. 16 middle row). Vergndy, a data driven,
foreground/background model based on the concephofo-fluxhas been intro-
duced [6]. However, the approach requires approximate latdye of the object
surface orientation which in many cases is not readily ataéel.

Ideally, the ballooning term should be linked to the notidrvisibility, where
points that are not visible from any camera are considerée ioside the object or
foreground, and points that are visible from at least one camera arddenes! to
be outside the object drackground. An intuition of how to obtain such a balloon-
ing term is found in a classic paper on depth sensor fusionune€s and Levoy
[12]. In that paper the authors fuse a set of depth sensarg sgjned distance func-
tions. This fusion relies on the basic principle that thecgdaetween the sensor and
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the depth map should be empty or background, and the spacetadtdepth map
should be considered as foreground. In this section wevidthe approach by [22]
where this visibility principle is generalized and complia a probabilistic ver-
sion by calculating theévidence of visibilityfrom a given set of depth-maps. The
“evidence of visibilityis then used as an intelligent ballooning term.

The outline of the full system is as follows:

create a set of depth-maps from the set of input calibratetbginaphs,

compute the photo-consistency 3d map from the set of depibsm

derive the discontinuity cogi(x) from the photo-consistency 3d map,

derive the labeling costr(x) from the set of depth-mapée. use a data-aware
ballooning term computed from the evidence of visibilitydan

e extract the final surface as the global solution of the minpcablem giverp(x)
ando(x).

A real example of discontinuity and labeling costs is showhig.9. Note they have
been computed on a multi-resolution grid.

Fig. 9 Different terms used in the graph-cut algorithm to recostruct the Gormley sculpture
of Fig. 16. Left: multi-resolution grid used in the graph-cut algorithm.ddie: Discontinuity cost
p(x) (or photo-consistency). Right: labeling castx) (or intelligent ballooning).

The algorithm just described can also be used when the ispatlionger a set of
photographs but a set of depth-maps obtained from othes typgsensore.g.laser
scanner. In this case, the system just skips the first stepe she depth-maps are
already available, and computesando directly from the set of depth-maps given
as input.

4.2 Discontinuity cost from a set of depth-maps

Once we have computed a depth-map for every input image, miewil the photo-
consistency 3d mafx) for every 3d locatiorx as explained in section 3.3. Since the
graph-cut algorithrminimizesthe discontinuity cost, and we wanttaximizehe
photo-consistency, we invert the discontinuity ngg) using the exponential:
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—ucC
p(x) = e HW, (7)

where u is a very stable rate-of-decay parameter that convertsoptmisistency
scores into a normalized discontinuity cost in the rajiy#).

As a way of improving the big memory requirements of graphroathods, we
propose to store the values@fx) in an octree partition of 3d space. The size of the
octree voxel will depend on the photo-consistency val(e). Voxels with a non-
zero photo-consistency value will have the finest resatutidiile the remaining
space wher€(x) = 0 will be partitioned using bigger voxels, the voxel sizerlgei
directly linked with the distance to the closest non-empiyel (see Fig. 9 for an
example of such an octree partition).

4.3 Graph structure

To obtain a discrete solution to Equation (6) 3d space is tigethinto voxels using
an octree partition. The graph nodes consist of all voxelgssttenters are within
a certain bounding box that is guaranteed to contain thecolifer the results pre-
sented here these nodes were connected with a regular 6boeipod grid. Bigger
neighborhood systems can be used which provide a bettemdpation to the con-
tinuous functional (6), at the expense of using more menwsydre the graph. Now
assume two voxels centeredxatindx; are neighbors. Let the smaller voxel be size
h x hx h. Then the weight of the edge joining the two correspondindesan the

graph will be [5]
4nh? (X +X;
Wij = —— P(lz J) (8)

wherep(x) is the matching cost function defined in (7). In addition tesé weights
between neighboring voxels there is also the ballooningefedge connecting every
voxel to the source node with a constant weightgf= Ah3. Finally, the outer
voxels that are part of the bounding box (or the voxels ostsige visual hull if
that is available) are connected with the sink with edgesfifite weight. The
configuration of the graph is shown in figure 10 (right).

It is worth pointing out that the graph structure describkedva can be thought
of as a simple binaryirRF. Variables correspond to voxels and can be labeled as
beinginsideor outsidethe scene. The unitary clique potential is just O if the voxel
is outside andv, if it is inside the scene while the pairwise potential betwégo
neighbor voxeld and j is equal tow;j if the voxels have opposite labels and 0
otherwise. As a binary MRF with aub-modularenergy function [31] it can be
solved exactly in polynomial time using Graph-cuts.
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Bounding volume

SOURCE

Wy

<
Optirr?al surface

Fig. 10 Surface geometry and flow graph constructionOn the left: a 2d slice of space showing
the bounding volume and the optimal surface inside it that isinddeby computing the minimum
cut of a weighted graph. Note that complicated topologies sscholes or disjoint volumes can
be represented by the model and recovered after optimizatioth&right: the correspondence of
voxels with nodes in the graph. Each voxel is connected toeitighbors as well as to the source.

4.4 Labeling cost from a set of depth-maps

In the same way as the computation of the discontinuity ¢bstballooning term
o(x) can be computed exclusively from a set of depth-maps. Weos®po use
the probabilistic evidence for visibility proposed by [22)d described in section
4.5 as anintelligent ballooning term. To do so, all we need is to choose a noise
model for the sensor given a depth-m2pand its confidenc€(D). We propose
to use a simplistic yet powerful model of a Gaussian contateshwith a uniform
distribution,i.e. an inlier model plus an outlier model. The inlier model istamsd
to be a Gaussian distribution centered around the true dépéhstandard deviation
is considered to be a constant value that only depends omtgei resolution and
camera baseline. The outlier ratio varies according to tigidence on the depth
estimationC (D), and in this work is just proportional to it. The labeling togx) at

a given location is just the evidence of visibility. The distaf this calculation are
laid out in the next section.

4.5 Probabilistic fusion of depth sensors

This section considers the problem of probabilisticallgifigg depth maps obtained
from N depth sensors. We will be using the following notation: Teesor data is a

set of N depth map® = D1,...,Dn. A 3d pointx can therefore be projected to a
pixel of the depth map of thieth sensor and the corresponding depth measurement
at that pixel is written a®;(x) while D; (x) denotes the true depth of the 3d scene.
The measuremei; (x) contains some noise which is modeled probabilistically by
a pdf conditional on the real surface depth

P(Di(x) | By (x)). (9)
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estimate

./3D surface
of sensor i

X
sensor i

Di(x)
D;(x)

g (x)

Fig. 11 Sensor depth notationSensoi measures the depth of the scene along the optic ray from
the sensor to 3d point The depth of poink from sensoi is di(x) while the correct depth of the
scene along that ray 3/ (x) and the sensor measuremerbj$x).

The depth of the point away from the sensor (x) (see figure 11). Ik is located
on the 3d scene surface thenD;(x) = dj(x). If for a particular sensorwe have
D;’(x) > di(x) this means that the sensor csge beyond or in other words thax

is visible from the sensor. We denote this event\hgx). When the opposite event
Vi(x) is true, as in figure 11, thenis said to beoccludedfrom the sensor. To fuse
these measurements we consider a predi¢atewhich is read asx is visible from
at least one sensbrMore formally the predicate is defined as follows:

V(x) =3iVi(x) (10)

V(x) acts as a proxy for the predicate we should ideally be exagiwhich is
‘X is outside the volume of the 3d scertébwever the sensors cannot provide any
evidence beyon®; (x) along the optic ray, the rest of the points on that ray being
occluded. If there are locations that are occluded from exisers, no algorithm
could produce any evidence for these locations being irmiaditside the volume.
In that sense therefor®,(x) is the strongest predicate one could hope for in an
optical system. An intuitive assumption made throughoig #ection is that the
probability ofV (x) depends only on the depth measurements of sensors along opti
rays that go througix. This means that most of the inference equations will be
referring to a single point, in which case th& argument can be safely removed
from the predicates.

The set of assumptions which we denotebyonsists of the following:

e The probability distributions of the true depths of the sBR(X) - - - Dy, (x) and
also of the measuremenis (x) - --Dn(x) are independent giveld (see figure
12 for justification).

e The probability distribution of of a sensor measuremenégithe scene depths
and all other measurements only depends on the surface itieptheasuring:

p(Di |Di---DyDjx J) = p(Di | D7) (11)
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sensor 1

sensor 2

Fig. 12 Visibility from sensors. In the example shown above the point is not visible from sensor
2 while it is visible from sensor 1,e. we haveV,V,. In the absence a surface prior that does not
favor geometries such as the one shown above, one can safely asatitherthis no probabilistic
dependence between visibility or invisibility from any two sers.

We are interested in computing the evidence function urtdsrset of indepen-
dence assumptions [26] for the visibility of the point givahthe sensor measure-

ments: VD DA )
P 1---DN
e(V|D1---DnJ) =l0 — . 12
(V|Dy1---DnJ) gp(V|D1---DNj) 12)
From 7 and rules of probability one can derive:
N
p(V|Dy--DnT) = |_|p(Vi|DiJ). (13)
i=
and _
p(\7i|DiJ)—f° p(Di | D7) p(Df | J)dD; (14)

~ Jo p(Di|D;J)p(D; | 7)dD;

As mentioned, the distributions(D; | D;’ 7) encode our knowledge about the mea-
surement model. Reasonable choices would be the Gausstabution or a Gaus-
sian contaminated by an outlier process. Both of these appes are evaluated in
section 5. Another interesting option would be multi-modiatributions. The prior
p(Dj | J) encodes some geometric knowledge about the depths in the.doexll
the examples presented a bounding volume was given so wmedsa uniform
distribution ofD;" inside that volume.

If we write 15 = p (\7i | Dij) then the evidence for visibility is given by:

1-mm...
e(V |Di---DnJ) :Iognlim.

... TN (15)

In the following section we point out an interesting coni@tbetween the proba-
bilistic visibility approach and one of the classic methatthe Computer Graphics
literature for merging range data.
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4.5.1 Signed distance functions

In [12], Curless and Levoy compute signed distance funstivom each depth-
map (positive towards the camera and negative inside theeseehose weighted
average is then stored in a 3d scalar field. Sw;{k) represents the confidence of
depth measuremeny (x) in thei-th sensor, the 3d scalar field they compute is:

N
F(x) = ;Wi (x) (di(x) = Di(x)) (16)

The zero level of (x) is then computed using marching cubes. While this method
provides quite accurate results it has a drawback: For &f sktpth maps around a
closed object, distances from opposite sides interferie @dth other. To avoid this
effect [12] actually clamps the distance on either side ofptld map. The distance
must be left un-clamped far enough behind the depth map saltidistance func-
tions contribute to the zero-level crossing, but not toosfal|ms to compromise the
reconstruction of thin structures. This limitation is deette fact that the method
implicitly assumes that the surface has low relief or thatétare no self-occlusions.
This can be expressed in several ways but perhaps the mosivanis that every
optic ray from every sensor intersects the surface only .onkis means that if a
point x is visible from at least one sensor then it must be visiblenfadl sensors
(see figure 12). Using this assumption, an analysis sinvldiné one in the previ-
ous section leads to some a surprising insight into the iihgor More precisely,
if we set the prior probability for visibility tgp(V) = 0.5 and assume the logistic
distribution for sensor noiség.

* N\ 2
p(Di,Df | Z) O sech(D 2le ) (17)

then the probabilistic evidence fof given all the data exactly corresponds to the
right hand side of (16). In other words, the sum of signedadis¢ functions of [12]
can be seen as an accumulation of probabilistic evidencediuility of points in
space, given a set of noisy measurements of the depth of theeBe. This further
reinforces the usefulness of probabilistic evidence feibility.

4.6 Deformable models

In a similar way to the MRF framework in section 4.1, the defable model frame-
work [27] allows us to search for an optimal surfé&ethat is a minimizer of some
user defined energy functidh In general, this energy will be non-convex with pos-
sible local optima. In our case, the optimization problerpased as follows: find
the surfaces* of R3 that minimizes the enerdg(S) defined as:
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E(S) = Eext(S) + Eint(S), (18)

whereEex(S) is the external energy term related to the photo-consigtd8danap

andEjy(S) is the internal energy term or regularization tefra,a smooth prior on
the types of surfaces that we expect. Minimizing Eq. (18) msdinding a surface
S* such that satisfies the Euler equation:

DE(S") = DEext(S") + DEnt (S') = 0. (19)

Equation (19) establishes the equilibrium condition fooatimal solution and can
also be seen as a force balance equation:

Fext(S) + Fint(S) =0 (20)

With Fexi(S) = OEexi(S) andFint (S) = DEint (S). A solution to Eq. (20) can be found
by introducing a time variablefor the surfaces and solving the following differ-
ential equation:

2s
ot = Fext(S) + Fint (S). (21)

The discrete version becomes:
SH = S At (Fext(S) + Fint (). (22)

Once we have sketched the energies that will drive the pspgesneed to make a
choice for the representation of the surf&&his representation defines the way the
deformation of the surface is performed at each iteratiom.cAbose the triangular
mesh because of its simplicity and well known properties glier options such as
implicit surface representations can be used [25].

To completely define the deformation framework, we need #ilivalue of S
i.e.an initial surfaces” that will evolve under the different forces until convergen
S can range from the most basic initial shape such as a bouhdingto a better
one like the visual hull, or an even better one such as theigedvby the MRF
framework in section 4.1.

In the following we describe how to derive the external foficen the photo-
consistency 3d map and the internal force on a triangulahmes

4.6.1 External force: octree-based gradient vector flow

The external force is directly linked to the photo-congisie3d map previously
described in section 3. We want this force to drive the serfarc high photo-
consistency locations. However the volume of photo-cdescyC(x) itself cannot
be used as a force to drive the deformable model. A typicakforould be the gra-
dient ofC(x), i.e. Fex(X) = OC(x). The main objection is that it is a very local force
defined only in the vicinity of the object surface. A bettelusion is to use a gra-
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dient vector flow (GVF) field derived from the photo-consistg in order drive the
deformable model.

The GVF field was introduced by [52] as a way to overcome a diffijgroblem
of traditional deformable models: the capture range of #ita term. This problem
is caused by the local definition of the force, and the abseh@ information
propagation mechanism. To eliminate this drawback, ana@lfdhe forces derived
from the gradient of a scalar field, they proposed to genexatector field force
that propagates the gradient information. The GVF of a sdigla f (x,y,z) : R3 —
R is defined as the vector field = [u(x,Y,2),V(X,Y,2),W(X,y,2)] : R® — R3 that
minimizes the following energy function&gy r:

Eove = [ WIICFI2+ [IF - O 201, 23)

wherep is the weight of the regularization term afiff = [Ou, Ov, Ow]. The solu-
tion to this minimization problem has to satisfy the Eulena&iipn:

uOPF — (F—0f)||0f|]> =0, (24)

where[0°F = [[0%u, 0%y, 0?w] and 2 is the Laplacian operator. A numerical solu-
tion can be found by introducing a time variabland solving the following differ-

ential equation:

%: O2F — (F—0Of)||Of| |2 (25)

The GVF can be seen as the original gradient smoothed by tiomat a Laplacian
operator. This smoothing action allows eliminating streagations of the gradient
and, at the same time, propagating it. The degree of smagfropagation is con-
trolled by u. If i is zero, the GVF will be the original gradient, if is very large,
the GVF will be a constant field whose components are the meé#regradient
components. Applied to the deformable model problem, thereal forceFey; is
then found as the solution of the following differential atjon:

OFext

5t = HOFext— (Fea—0C)[0CI %, (26)

with u always fixed to QL.

4.6.2 Mesh Control

The goal of the internal force is to regularize the effecthaf éxternal forces. Fol-
lowing the formulation by [10], we define the internal enekgy of a surfaces as
the sum of two terms penalizing for changes in the first andrsgorder deriva-
tives of the surface. A local minimum of the enefly;; (S) satisfies the associated
Euler-Lagrange equation, which gives us the following fdomthe internal force:

Fint(S) == y14S+ pA%S, (27)
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whereA is the Laplacian operator amif is the biharmonic operator. The discrete
version of the Laplacian operatzir on a triangle mesh can be easily implemented
using the umbrella operatdre. the operator that tries to move a given ventesf

the mesh to the center of gravity of its 1-ring neighborhdédv ):

~ Vi
= (iej%w)m) o )

wherev; are the neighbors of andm is the total number of these neighbors (va-
lence). Concerning the discrete version of the biharmopésatorA?, its derivation

is less trivial: 1

A = A(Av), (29)

— 1< 1
1+3iemw) mm
The total internal force on a mesh verteis defined as:

Fint(V) = AV + yoA?v. (30)

Since the texture forcEey can sometimes be orthogonal to the surface of the
snake, we do not use the forégy itself but its projectiori:";‘Xt onto the surface
normaln:

Fou(V) = (T - Feq(v))n. (31)

This avoids problems of coherence in the force of neighbantpand helps the
internal force to keep a well-shaped surface.

The evolution process (Eq. 22) at tR& iteration can then be written as the
evolution of all the points of the mesk:

V=(+l = VE( =+ At (Fg‘xt(vlk) + Fint (Vlk))7 (32)

whereAt is the time step and is the weight of the regularization term relative to
the external term. Equation (32) is iterated until convaogeof all the points of the
mesh is achieved. The time stAp has to be chosen as a compromise between the
stability of the process and the convergence time. An autitistep of remeshing

is done at the end of each iteration in order to maintain aqmmini and a maximum
distance between neighbor points of the mesh. This is aixddiy a controlled dec-
imation and refinement of the mesh. The decimation is basdbeoadge collapse
operator and the refinement is based omif@esubdivision scheme [28].
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5 Experiments

5.1 Depth map evaluation

In order to solve the depth-map computation algorithm desdrin section 3, we
use the TRW-S implementation of Kolmogorov [30]. The pragbsnplementation,
running on a 3.0 GHz machine with an nVidia Quadro graphicd,azan evaluate
900 NCC depth slices in 20 seconds for the temple sequen@géimesolution
640x 480). The TRW-S optimization has a typical run time of 20 seisofor the
same images.

For all the experiments we used the following parameteresal = 1, A =1,
@ = 0.04 andyy = 0.002. We used an NCC window size ok%.

Fig. 13 illustrates the improvement of the method describezkction 3.2 over
the voting schemes of [20, 47]. Fig. 13 (b) shows the depthwhald be deter-
mined by simply taking the NCC peak with the greatest scohe few method,
implemented here withl = 9 peaks, is able to select the peak corresponding to
true surface peak from the ranked candidate peaks and F{g)) llBistrates that a
significant proportion of the true surface peaks are not bsslate maximum. We
also observe that pixels are correctly labeled withuh&nownstate along occlu-
sion boundaries and along areas such as the back wall oftipet@nd edges of the
pillars where the surface normal is oriented away from threera. Looking at the
rendering of this depth-map and its neighbor, Fig. 13(evg)can observe that very
few erroneous depths are recovered and we observe thatrtii@ration of the two
depths maps align and complement each other rather thanpine to fill in the
holes on the individual depth-maps which would impact tHessguent multi-view
stereo global optimization.

Fig. 14 shows the results on the ‘cones’ dataset which foremisgh the standard
dense stereo evaluations images and consists of a singde gi@r with the left im-
age shown. The depth-map again shows a high degree of detakmred surfaces
and we correctly identify occlusion boundaries with tilknowrstate. Further more
the algorithm also correctly textures the failure modes 6f\by returning thein-
knownstate in texture-less regions where the matching fails toirately localize
the surface.

5.2 Multi-view stereo evaluation

In order to evaluate the improvement of the depth-map etitmalgorithm of sec-
tion 3.2 for multi-view stereo we ran the algorithm on thenstard evaluation ‘tem-
ple’ dataset. The following table provides the accuracy @mdpleteness measures
of [40] against the ground-truth data for the object. In tewhboth accuracy and
completeness the results provide a significant improvemnembth the sparse ring
and ring datasets. In particular we observe that the reBltthe sparse ring of-
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(@ (b) (©) (d)

(€) (f) (©) (h)

Fig. 13 Results of the depth map estimation algorithmTwo neighboring images are combined
with the reference image (a). If we simply took the NCC peak wlith tnaximum score, as in
[20], we would obtain (b). The result of the algorithm used intisec3.2 (c) shows a significant
reduction in noise. We have corrected noisy estimates of thecgudiad theunknownstate has
also been used to clearly denote occlusion boundaries and regooviy matched regions. The
number of the correct surface peak returned, ranked by NCC,ssatisplayed in (d) where dark
red indicates the peak with the greatest score. The rendepgio-oep is shown in (e) along with
the neighboring depth-map (f) with (g) showing the two superisago The final reconstruction
(h) for the sparse temple sequence (16 images) of [40]

(b) (©

Fig. 14 Single view stereo results for the ‘Cones’ data seThe left image of the stereo pair is
shown in () with the recovered depth-map in (b), rendered)in (c
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fer greater accuracy than the other algorithms [40] runoimghe ring sequence (3
times as many images) with the exception of [20].

Accuracy / Completeness
Full 312 images) Rlng (47 images) SparseRingLG images)
proposed method| 0.41mm/99.9% | 0.48mm/99.4% | 0.53mm/98.6%

5.3 Digitizing works of art

The proposed pipeline has been used to reconstruct a brtatme $ocated in the
British museum in London from holiday photographs. The pgoaphs were taken
by a hand held camera during normal visiting hours (see Fy. This led to the
statue being photographed with cluttered and changingdrsaokd. The camera
motion was automatically recovered using a structure-froation technique [55].
The bottom row of figure 15 shows the intermediate resultainbtl while recon-
structing the statue. From left to right, we show a rendeoiitipe 3d map of photo-
consistency (section 3), the initial surface obtained gigiraph-cuts (section 4.1),
the refined surface obtained with the deformable modeli(sedt6), and the same
surface textured mapped from the input photographs usi@p [fote how, even
with a noisy photo-consistency 3d volume, the graph-cuitgni is able to extract a
very detailed surface. However, this surface has diset@iz artifacts due to the bi-
nary nature of the graph-cut solution. These artifacts angptetely removed when
the surface is refined using a deformable model. A similanegfient step is also
used in [17].

We present a second sequence of 72 imagesabaithing mahsculpture made
of plaster by the modern sculptor Antony Gormley (see Figop.

The image resolution is 5 Mpix and the camera motion was ereohoy standard
structure from motion techniques [55] and further refinedgis silhouette-based
technique [21]. The object exhibits significant self-osdtuns, a large concavity in
the chest and two thin legs which make it a very challengirsg te validate the
new ballooning term. The first step in the reconstructiorcess is to compute a set
of depth-maps from the input images. This process is by fanibst expensive of
the whole pipeline in terms of computation time. A single tthemap takes between
90 and 120 seconds, the overall computation time being ¢&éours. Once the
depth-maps are computed, a 3d octree grid can be built (gpe® Feft) together
with the discontinuity cost and the labeling cost (see Figni@dle and right respec-
tively). Because of the octree grid, we are able to use up tevdls of resolution
to compute the graph-ctite. the equivalent of a regular grid of 102¢oxels. We
show in figure 16 some of the images used in the reconstrugtp), the result us-
ing an implementation of [48] (middle) and the reconstruttiesult of the proposed
method (bottom). We can appreciate how the constant batigaerm introduced in
[48] is unable to reconstruct correctly the feet and the awities at the same time.
In order to recover thin structures such as the feet, thedmithg term needs to be
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Fig. 15 Statue of a young man, Mimaut Collection. Bronze, Romn copy of the 1st century
BC after a Greek original. From Ziphteh, near Tell Atrib (anci ent Athribis), Egypt. The
sequence was acquired with a hand held camera in the British musébmo special require-
ments. Background is extremely cluttered. The object of istaseboth in the center of the pho-
tographs and in focus. Top and middle rows show a few samples ofritjiea sequence. Last
row shows from left to right, 3d map of photo-consistency desdribesection 3, surface extracted
using graph-cuts (section 4.1), surface refined using a defoennaddiel (section 4.6) and surface
textured-map from the original photographs using [20].

stronger. But even before the feet are fully recovered, treavities start to over
inflate.

Finally we show in figure 17 the effect of having an outlier gmment in the
noise model of the depth sensor when computing the volumeidéiece of visibil-
ity. The absence of an outlier model that is able to cope wiikyndepth estimates
appears in the volume of visibility as tunneldrilled” by the outliers (see Fig. 17
center). Adding an outlier term clearly reduces the tumugdiffect while preserving
the concavities (see Fig. 17 right).
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Fig. 16 Comparison of the improvement obtained with the visibity-driven ballooning term.
Plaster model of a crouching man by Antony Gormley, 2006. Top: soirtheoinput images.
Middle: views of reconstructed model using the technique of {48 a constant ballooning term.
No constant ballooning factor is able to reconstruct coryettt feet and the concavities at the
same time. Bottom: views of reconstructed model using the intelligallooning proposed by
[22] and shown in Fig.17 right.

Fig. 17 Comparison of two different inlier/outlier ratios for the depth sensor noise model.
Left: 3d location of one slice of the volume oéVidence of visibility; Middle: the sensor model is
a pure Gaussian without any outlier model. Outliedslf” tunnels in the visibility volume. Right:
the sensor model takes into account an outlier model. The vigikdiume is more robust against
outliers while the concavities are still distinguishable.
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6 Discussion

We have described a formulation to multi-view stereo thétssfhe problem into a
well defined pipeline of 3 building blocks: camera calibwaticomputation of a 3d
volume of photo-consistency and extraction of a surface fitee photo-consistency
volume. In this chapter we have particularly focus on howdmpute a 3d volume
of photo-consistency, and how to extract a 3d surface franptipto-consistency
volume. The main advantages of such an approach are itsisityind room for
improvement, since it uses two very standard off-the-shiglirithms such as dense
stereo and 3d segmentation algorithms. The main disadyaigahe rather simplis-
tic photo-consistency metric, which leads to poor perfaragein challenging condi-
tions such as sparse set of photographs or poorly texturéates. These problems
are partially mitigated by explicitly accounting for theltee modes of the window
matching technique in section 3. However, a more thorougtchivey technique
using a local planarity assumption such as [17] would alsatly improve results
in challenging scenes. The framework we describe in thipteldas been widely
adopted by a variety of multi-view stereo algorithms [7,8, 20, 24, 29, 38, 42, 47].
This can be mainly justified by the simplicity of the approglstit also by the flex-
ibility that it offers, e.g.when trying to optimally fuse the photo-consistency cue
with apparent contours as proposed in [29].

Appendix. Interpretation of signed distance functions.

Using the predicates we have already defined, the assunuitiom self-occlusion
can be expressed by

V < ViVi. (33)

From (10) and (33) we see that if a points visible (invisible) from one sensor it
is visible (invisible) from all sensors, i.¥; < --- < VW < V. Let Z stand for the
prior knowledge which includes the geometric descriptibthe problem and (33).
Given (33) event®; - - - Dy are independent under the knowledge/odr V which
means that using Bayes’ theorem we can write:

PV IZ) ML, p(Di |VT)
p(D1---Dn | Z) (34

p(V|Di---DnT) =

Obtaining the equivalent equation fdrand dividing with equation (34) and taking
logs gives us:

N .
e(V|Di---DnNZ)=e(V |T) +_Zlogm. (35)
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By several applications of Bayes’ theorem we get:

N :
e(V |D;---DnT) = _ng% ~(N—1)e(V | 7). (36)

wherea; = [ p(Di,D; | Z7)dD; andfi = [y' p(Di,D; | Z7)dD;. We now see(V | 7) =
0 and assume the noise model is given by the logistic function

p(D;,Df | Z7) O sech(DzW_D'> . (37)
1

Using standard calculus one can obtain the following exgioesfor the evidence

e(V|Ds1---DNI) = _iWi (di —Dy), (38)

equal to the average of the distance functions used in [12].
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