
Plans, Patterns and Move Categories Guiding a

Highly Selective Search

Gerhard Trippen

The University of British Columbia
{Gerhard.Trippen}@sauder.ubc.ca.

Abstract. In this paper we present our ideas for an Arimaa-playing
program (also called a bot) that uses plans and pattern matching to guide
a highly selective search. We restrict move generation to moves in certain
move categories to reduce the number of moves considered by the bot
significantly. Arimaa is a modern board game that can be played with
a standard Chess set. However, the rules of the game are not at all like
those of Chess. Furthermore, Arimaa was designed to be as simple and
intuitive as possible for humans, yet challenging for computers. While all
established Arimaa bots use alpha-beta search with a variety of pruning
techniques and other heuristics ending in an extensive positional leaf
node evaluation, our new bot, Rat, starts with a positional evaluation of
the current position. Based on features found in the current position –
supported by pattern matching using a directed position graph – our bot
Rat decides which of a given set of plans to follow. The plan then dictates
what types of moves can be chosen. This is another major difference from
bots that generate “all” possible moves for a particular position. Rat is
only allowed to generate moves that belong to certain categories. Leaf
nodes are evaluated only by a very simple material evaluation to help
to avoid moves that lose material. This highly selective search looks, on
average, at only 5 moves out of 5,000 to over 40,000 possible moves in a
middle game position.

1 Introduction

Arimaa is a modern board game designed to be difficult for computers [1]. It
was invented by Omar Syed and Aamir Syed, and was motivated by the defeat
of former world Chess champion Garry Kasparov by a Chess-playing computer
developed by IBM called Deep Blue in 1997. Syed and Syed offer a prize of
USD 10,000 until 2020 to the first person, company or organization to develop
a program that can defeat three selected human players in an official Arimaa
match [2].

Arimaa is a two-player partisan board game, i.e., Gold can only move gold
pieces, and Silver can only move silver pieces. All information about a position
is known to both players at any time. There are no chance moves involved, such
as moves based on randomization generated by dice. The game can be played
with a standard chess set. Each player has (in descending order of strength) an



elephant, a camel, two horses, two dogs, two cats and eight rabbits. The letters
representing those pieces in the game notation are e, m, h, d, c and r, for the
silver pieces. For the gold pieces we use capital letters. The game is won by
moving a rabbit to the goal rank, which means to bring it to the opponent’s base
row, but it can also be won by immobilizing all of the opponent’s pieces, or by
capturing all his rabbits.

abcd

6

5

4

3

efgh

7

8

2

1

(a) (b)

Fig. 1. (a) Graph of possible number of unique moves, generated with Brian Haskin’s
(aka Janzert) Game Grapher [3]. The peak moves possible for Silver was on turn 9
with 41939 moves possible. (b) Position on turn 9 for Silver in game #82562.

One major aspect that makes the game difficult for computers is that a player
is allowed to use up to four steps in a single turn. A step consists of moving a
piece to an adjacent square. It is also possible to push or pull an opponent’s
piece with a stronger piece. For example, in Fig. 1(b) the gold elephant could
move from b3 to b4 pulling the silver horse from b2 to b3. Thus, a push or pull
requires two steps. In a single turn players can move up to four different pieces,
and this generates a huge number of possible moves. There are about 2,000 to
3,000 moves possible in the first turn depending on the way a player chooses
to set up his pieces, and during the middle game the number of possible moves
ranges from about 5,000 to over 40,000 (see also Fig. 1(a)) – compared to an
average of about 30 for Chess.

The 4-step moves make it very difficult for computer programs to perform a
deep search. Looking ahead only two moves for both players (= four plies) means
to search to a depth of 16 steps. In the Arimaa Computer World Championship
and in the Arimaa Challenge against humans, the time per move is restricted to
two minutes. Simple alpha-beta bots are currently not able to reach this depth
under the tournament settings nor in any reasonable amount of time. Even 12
steps might already be too deep. Only through extensive pruning, a variety of
other heuristics, and quiescence search, are bots able to search deeper to find
better moves.



To see whether bots perform better if they are given more time or are allowed
to search deeper unrestricted by time, a P3 (= 3 plies = 12 steps) version of
David Fotland’s former Arimaa World Champion bot Bomb was available for a
short while. However, the average move time in most of the games played was
over 30 minutes, and at times the bot needed hours to find a move. Although it
is basically impossible for a human to accurately predict the next 20 steps, it is
still reasonable to look ahead three moves and get a good idea of the resulting
position. Also the very simple bot ArimaaScore – which only needs about 1
second per move when playing at the P2 (= 2 plies) level – needs, on average, 5
minutes per move when playing at the P3 level.

The non-defined initial setup of the pieces is another problem for bots. While
Chess programs can resort to a huge opening database, the initial setup of the
16 pieces is not fixed in Arimaa, which makes it very difficult to generate an
opening database. Endgames of the kind found in Chess, in which only a few
pieces remain, are also very rare in Arimaa. In many games a great number of
pieces are still on the board when a rabbit reaches the goal.

A final problem area for computers are captures. Captures are performed
not by moving onto an opponent’s square like in Chess, or by jumping, as in
Checkers. Instead, if a piece lands on a “trap” square (there are four of them:
c3, f3, c6 and f6 (see Fig. 1(b)), and there are no pieces of the same color on any
of the four squares adjacent to the trap, then the piece is captured and removed
from the board. So, while in Chess a piece might be captured in a single move
by any stronger or weaker piece, in Arimaa often a weaker piece must be pushed
and pulled towards home traps (c3 and f3 for Gold) by a stronger piece, where
it can finally be captured. More details of such a plan will be given in Section 2.

Several research papers presenting bots have been published. David Fotland
presented his World Champion Arimaa Program at the Computers and Games
Conference in 2004 [4]. Haizhi Zhong and Christ-Jan Cox both wrote a Master’s
Thesis on Arimaa several years ago [5, 6].

All the bots described above, and other well-established Arimaa bots, use an
iterative deepening alpha-beta search with a variety of pruning techniques and
other heuristics ending in an extensive positional leaf node evaluation. Quies-
cence search and other enhancements add to the strength of those programs.

Upper Confidence bounds applied to Trees (UCT) [7] and related research
(e.g., [8, 9]) have shown great success in the domain of the classical board game
Go. Several members of the Arimaa community have discussed the usefulness of
some of these approaches for Arimaa [10]. Jeff Bacher, the programmer of the
current Computer World Champion program clueless, is one of several people
who also implemented or started to implement an UCT bot. Currently, it seems
the traditional alpha-beta bots are still more successful. Pure random playouts
seem not to be useful. In games where one player is missing an elephant (the
strongest piece) and another player is missing a rabbit, the higher percentage is
won by the party with the missing elephant. This contrasts with our intuition
that the player with the elephant should win most of the games.



Our new bot Rat follows an approach different from UCT and from the tra-
ditional alpha-beta search. Rat follows a more human way of thinking by first
analyzing the position, finding suitable plans, and then trying a certain highly
selective number of moves. A tactical search, alpha-beta with some search ex-
tensions, ensures that the moves do not lead to too great a loss of material,
by evaluating the leaf nodes with a very simple evaluation function considering
only the material of both players. A conceptually similar approach, the Tech-
nology Chess Program, was presented by James Gillogly nearly 40 years ago
[11]. Jonathan Schaeffer presented a related approach, Planner, that determines
a long-range strategy based on an assessment of the current position, and makes
moves in the short-term that are consistent with a long-term objective [12].

However, the details of our bot Rat are different and the main concepts
are explained in this paper, which is organized as follows. Section 2 introduces
an often-used strategy (especially against Bomb and other bots) known as the
elephant-horse attack (EH attack). Bomb and some other bots, or earlier versions
of them, try to take the horse hostage close to their own trap. However, this often
leads to decentralization of the elephant, and if the bot plays very passively
afterwards, then kidnapping and capturing of several of the bot’s pieces might
be possible. We will call this flash-kidnapping. Section 3 shows how our bot
“thinks”, i.e., how Rat makes a positional evaluation of the current position
and prioritizes plans which result in an ordered list of moves. We also describe
move categories that drastically limit the number of possible moves for any
given position. Section 4 explains the use of directed position graphs for pattern
matching by giving an example graph for the EH attack. Section 5 gives a brief
overview of the general performance of our bot. The paper concludes with ideas
for future research in Section 6.

2 Elephant-Horse Attack, Horse Hostage and
Flash-Kidnapping

To motivate the idea of using plans we present a common strategy against bots
in this section before we discuss details of the implementation of our bot in the
next section. One strategy for attacking an opponent’s trap is to advance the
elephant together with a horse on the same wing. We illustrate the strategy
from the view point of Gold. To attack the c6 trap the gold elephant should be
positioned on d6, keeping it close to the center and able to switch quickly to the
other wing if necessary. The gold horse should occupy b6 so that the trap will
be enclosed from both sides. Often Silver’s elephant returns to c5 to protect the
trap, and even more often the elephant might push Gold’s horse to a6 or b7 to
take it hostage. This is exactly the position our bot Rat is waiting for to follow
the flash-kidnapping strategy (explained below). However, before starting this
strategy it is important for Gold to secure its own traps. Gold’s Southeast (f3)
trap will be guarded by the camel on g3. In this way Silver’s smaller pieces will
not advance on the East wing. Also the Silver’s camel does not see a target on



this side and rarely starts an attack there. Gold’s Southwest (c3) trap will be
protected by a horse and a dog. (See also Fig. 1(b) with switched colors.)

After creating this horse hostage situation Rat tries to follow a strategy that
we call flash-kidnapping. The whole sequence takes a maximum of 40 steps, i.e.,
10 plies, given the “cooperation” of the opponent. With the great branching
factor of Arimaa – on average there are over 17,000 possible moves in any given
position [2] – it is not expected that a bot will be able to detect such a sequence
without having knowledge of this plan.

(a) (b) (c)

(d) (e) (f)

a b c d a b c d a b c d

8

7

6

5

4

3

8

7

6

5

4

3

W E

N

S

Fig. 2. Flash-kidnapping takes 10 plies (= 40 steps).

Figure 2 (a) shows the initial situation without the East wing. In the first
move Gold pulls a Silver victim closer to her elephant (see Fig. 2 (b)). The
intended capture of this victim lies still 6 plies ahead, so it is basically impossible
for Silver to see. However, many bots try to avoid a situation where a weaker
piece stands next to the opponent’s elephant. If they do not, then in the next
move Gold’s elephant can flip the victim from d7 to d5 by first pulling it and
then pushing it south (see Fig. 2 (c)). The advantage of this flip is that the
elephant is back on d6 building a barrier against other Silver pieces that might
want to help and free the victim, because now the intentions of Gold’s elephant
become quite clear. But the capture still lies four plies ahead, so it remains



difficult for Silver to detect. So the elephant might still hold the horse hostage.
A double push brings the victim to c4 (see Fig. 2 (d)). Saving the victim with
its elephant is often not desirable for Silver because it leaves the Northwest trap
(c6) too weak. So in the next move Gold can capture the victim (see Fig. 2 (e)).
And another move later, Gold’s elephant can return to d6 to repeat the whole
procedure (see Fig. 2 (f)).

3 Plans and Move Categories

Generally, alpha-beta bots generate a huge variety of possible moves in a given
position and search recursively down to a certain depth at which the position will
be evaluated. Our bot Rat imitates a more human approach. Before generating
any moves, a positional evaluation of the current position is performed, which
determines which plans Rat should follow next. Thus, rather than generating all
possible moves in any given position, Rat uses a highly selective search. Before
UCT became very popular in the recent years, many Go programs generated
moves and evaluated them to find good candidate moves [13], because for Go, a
brute force search approach seemed unpromising. We follow a similar approach.
In the following we will give a detailed explanation of Fig. 3.

3.1 Positional Evaluation and Plans

Algorithm Positional Evaluation The positional evaluation starts with the
location of certain pieces. Trap control is particularly important for Arimaa.
Based on the location of pieces and the number of pieces on the board Rat also
tries to identify the game phase (opening, middle game, endgame). The priority
of the plans is given through the structure of the evaluation function. This means
there is a hard-coded order given through our implementation. Moves belonging
to certain plans will be appended to a singly-linked list. However, while going
through the function and collecting additional information flags will be set that
lower the priority of plans, and plans might be added later instead. While this is
not done in our actual implementation, the list of plans could be implemented
through a priority queue.

The first plan considered is a 4-step goal search, because if a player’s rabbit
reaches the goal he wins the game. However, this plan will not be added to
the list if rabbits are not close enough to the opponent’s home rank. Next,
captures are considered, but if the opponent has the possibility of capturing a
stronger piece than we can, defenses are tried first. Therefore, we first look at
the opponent’s possible captures to see which pieces or traps must be defended
to avoid captures. Based on the outcome of both our possible captures and the
opponent’s, a decision is made which of the two plans (capture or defense) should
be appended to the list first. After this, plans based on the outcome of the pattern
matching (see Section 4) are added. Currently, only one strategy is considered,
the flash-kidnapping strategy described in the previous section. Here a great
number of additional strategies could be added by generating more directed



Algorithm Alpha-Beta Search
Input: plans tried

and usual parameters like position, α, β, . . .
Output: move and score
If depth ≥ 2 and quiet then

score = simple eval; return score;
Q = Positional Evaluation
in the usual alpha-beta loop

dequeue next plan;
Generate Move (plan) and make it;
recursive call;
compare score to bounds and update;

Algorithm Positional Evaluation
Input: plans tried

and parameters like position, depth, . . .
Output: ordered list of plans, Q
Q += Add Plan(goal, . . .)
Q += Add Plan(capture, . . .)
If depth < 2 then

Q += Add Plan(pattern matching, . . .)
Q += Add Plan(frames, . . .)
continuing with frames, hostages, forks,
camel hunt, retreats, trap defenses,
goal preparations, flips, basic attacks,
clearing of traps, elephant centralization

Algorithm Add Plan
Input: a plan to consider and plans tried

and position, its features, . . .
Output: a plan
If all conditions for plan met

then return plan; else return null;

Algorithm Generate Move
Input: a plan
Output: a move
generate all moves in a move category

corresponding to the plan;
sort the list of moves;
return best move;

Fig. 3. Main functionality of algorithms used to find a move.

position graphs that we use for pattern matching. In the order given below, the
evaluation function adds the following plans to the priority list: frames, hostages,
forks, hunt the camel, retreats, trap defenses (if not necessary earlier because of
possible captures), goal preparations, flips, basic attacks, clearing of traps, and
finally elephant centralization. This order is mostly fixed although some of the
plans might not be added depending on the current position (see Algorithm Add
Plan) or some flags might switch some of the priorities. Further refinement is
certainly necessary here. However, this sequence of basic ideas will be used in
particular if no other plan can be found through pattern matching. We believe
that the pattern matching module will have the greatest impact on improving
the playing strength of our bot. We have tested this only for the flash-kidnapping
strategy so far.

Algorithm Alpha-Beta Search Rat performs an alpha-beta search to a depth
of 2 plies. In the first call the function will generate a sorted list of plans for the
player starting with an empty list. Similarly to the Chess program PARADISE
presented by David Wilkins [14], Rat considers which plans have been tried (and
possible refuted) earlier in the search. This helps further reduce the branching
factor in the tree search. However, the nature of Arimaa with four steps per
move requires the player to be able to work on different plans within the same
move. For example, the first two steps might be used to defend a home trap
while the next two steps might be used to attack an opponent’s trap. Therefore,
all plans that have not yet been tried in a higher level of the tree are considered
in a recursive call. When a recursive call of the alpha-beta search reaches the
opponent, Rat will use the same positional evaluation function to generate the
opponent’s list of plans. Quiescence search will be performed in case of captures



only. The alpha-beta search has a very simple leaf evaluation function. It checks
whether a rabbit reached a goal, and it calculates the value of the material on
the board. Only if a plan leads to higher material gain (or lower material loss)
than a plan that appears earlier in the ordered list, is this plan chosen over the
other plan. The search ends after a certain time limit is reached.

To summarize the generation of plans, we can say that Rat is much more
limited than, for example, PARADISE and Jacques Pitrat’s Chess combination
program [15] that use production rules to produce plans. Rat knows only a
certain set of plans embedded in the positional analysis. The order is mostly
fixed although a number of flags and decisions based on features found in the
position can lead to a certain reordering.

3.2 Move Categories

As described above, the plans are assigned different priorities and this yields an
ordered list of plans, which itself translates into an ordered list of move categories
for which actual moves must be generated.

Rat knows only a very limited number of move categories including goals,
rabbit advancements, captures, retreats, kidnappings, attacks, and some trap
protections corresponding to the plans mentioned above. Most of the trap pro-
tections and some of the trap attacks are implemented through patterns. This
means Rat checks whether it can reach a certain local pattern from a given
position. Rat knows a few hundred of these local patterns.

Algorithm Generate Move When Rat generates moves of a certain category,
all moves of this type are listed and immediately evaluated. Generally speaking,
the overall resulting position is not evaluated, but rather the location of the
moved pieces. For example, in the category rabbit advancement, the closer a
move brings a rabbit to its goal the higher the score this move will receive.
Often, trap defense should use stronger pieces to prevent the opponent from
surrounding the trap by simply pushing weaker pieces aside, and furthermore,
to avoid exposing weaker pieces to the opponent. For example, a cat or a dog
on the side of a trap could easily become a victim of a horse that pulls it to
the opponent’s half of the board. Captures also include the value of the piece
captured to determine the ranking. Only the top three moves in each category
are considered strong enough, and will therefore be used as possible candidates
in the alpha-beta search. This can also be restricted to the best move.

3.3 Two Other Details of the Implementation

One of the key facts making Arimaa difficult for computers is the use of 4-step
moves. It was mentioned in Section 3 that it might be necessary or useful to
split the four steps to follow two different plans. In particular, a fourth step that
is not necessary to follow a certain plan involving an attack of an opponent’s
trap might be used to help protect a home trap. This fourth step may not be



necessary, but is used as a fill-in step considering that the home trap might be
under attack later in the game. Usually, there are several possibilities for such
a step and this number increases considerably if there are two steps left for the
trap protection plan. Including these fill-in steps in the regular alpha-beta search
can make the tree much wider than necessary. If the trap is not under attack
and in need of immediate defense we do not add the plan of trap protection into
the alpha-beta search. Instead, we add a quick search after our main-line has
been determined and fill in some trap protecting moves afterwards.

A note about time management. The alpha-beta search is used only to con-
firm that certain moves that follow a particular plan do not lead to loss of
material, or that our bot Rat can indeed win material, for example. The priority
of the plans is solely determined by the positional evaluation. Therefore, if the
bot has tried at least one plan already, i.e., has searched the whole subtree with
the opponent’s responses, and none of them could refute the plan, then Rat will
end the search earlier if that helps accumulate reserve time.

4 Pattern Matching with Directed Position Graphs

Within the positional evaluation of the current position, Rat additionally uses
pattern matching to determine the most promising move ordering. To store the
positions, we use a data structure very similar to a directed acyclic word graph
(DAWG). A DAWG is a trie, i.e., prefix tree, but it not only eliminates prefix
redundancy but also suffix redundancy. This data structure is very space efficient
and lookup time is proportional to the length of the search string. We use a
directed position graph (DPG), which is allowed to be cyclic. We further reduce
the required space by eliminating infix redundancy.

When a human player studies an Arimaa position, the exact location of minor
pieces like dogs, cats and rabbits is often not considered important if they are in
a quadrant that is currently not under attack or involved in a plan. Those are
the pieces that Mikhael Botvinnik might call Type III or Type IV pieces [16].
Therefore, when trying to match a position we focus on the most important
features first. As an example of how to use DPGs for pattern matching we built
a DPG for the horse hostage setup and the ensuing flash-kidnapping. It consists
of approximately 250 nodes. A simplified version is shown in Fig. 4. The DPG
will be searched using breath first search (BFS).

First, when playing Gold, the location of Silver’s elephant is matched. Based
on this, we learn whether we actually need to mirror all the following locations,
because although we always refer to the c6 trap, the hostage situation could also
take place at the f6 trap. Next, we try to match the location of Gold’s elephant.
Then we check whether Gold’s horse is held hostage by Silver’s elephant. If
Silver’s elephant stands on b6 (eb6), then possible locations for Gold’s horse
are a6 or b7 (Ha6 or Hb7). Also, Gold’s elephant could stand on d6 or c5 (Ed6
or Ec5) (see also Fig. 2), and we would still recognize this position as horse
hostage. This means that in our DPG directed edges can lead from eb6 to Ed6
and Ec5, and then from both of those to both Ha6 and Hb7 (see Fig. 4). Thus,



}
Set up home trap protection

Execute flash-kidnapping

Identify horse hostage situation

}
}

eb6

Ec5Ed6

Hb7Ha6

Mg3!Mg3

Hd3!Hd3

Db3!Db3

Ed6

!d7

move M to g3

move H to d3

move D to b3

pull piece to d7

Fig. 4. Simplified DPG for flash-kidnapping strategy: When the BFS reaches a round
node, this move will be added to the move list. Capital letters are used for Gold, small
letters for Silver. Piece types are given using the capitalized bold letter in the words
Elephant, caMel, Horse, Dog, Cat, Rabbit. A ! notation means no piece a of certain
type if the type is specified, otherwise no piece at all.

we have four different combinations that we would identify as horse hostage
situation. This is greatly simplified compared to the actual DPG that Rat is
using. Before starting the flash-kidnapping, the home traps should be sufficiently
secured by camel, horse and dog. So, from the nodes Ha6 and Hb7, edges are
leading to a node Mg3. However, there are also edges leading to a node !Mg3,
which indicates that Gold’s camel is not on g3. A child of this node is then a leaf
with a command to move the camel to g3. Both Mg3 and also !Mg3 lead to Hd3
and also !Hd3, while the latter has a child commanding a horse to d3. Because
we search the DPG using BFS we can see that it is more important to bring
the camel to g3 than to bring the horse to d3. We continue down with Db3 and
!Db3. The positions of these three pieces form eight possible infixes. The logical
sequence of first recognizing horse hostage, then setting up camel, horse and
dog, and finally executing the flash-kidnapping suggested that we should match
the location of Gold’s elephant once more to determine which move should be



added to the list of candidates. This also greatly simplifies the task of editing
the DPG. Furthermore, before actually suggesting to position camel, horse and
dog as described above, we must ensure that Gold’s elephant is protecting the
c6 trap.

As we use BFS to traverse the DPG, the DPG does not need to be acyclic.
Indeed in some situations we might prefer the camel to stand on e3 instead of
g3. So in our full DPG we also have nodes Me3 and !Me3. An edge is leading
from !Mg3 to !Me3 and vice versa. The camel might not be able to reach g3 in
one move (or remaining steps thereof) because it is too far West. But it may be
able to at least reach e3, moving it closer to its intended destination.

5 Experimental Results

The Arimaa website [2] allows human players as well as bots to choose from
a huge number of bots to play against. Most participating bots from former
Computer World Championships are available with a wide variety of settings;
restricted in search depth as P1 or P2, or playing with a certain time limit, for
example, Blitz and Fast; or also with the original Computer Championship (CC)
setting (unrestricted search depth, 2 minutes per move). Rat has beaten several
of them. Most of the P1 bots and several of the P2 bots can be beaten regularly.
Rat can also beat generally stronger bots, even if they play in the CC setting, if
these bots take the horse hostage and Rat can use the pattern matching to follow
the flash-kidnapping plan. Currently, no UCT bots are regularly available as they
are still under development or have been considered too weak by their developers
to participate in the Championship. Therefore, our results are restricted to the
common alpha-beta bots. Overall, Rat is still a weak bot and cannot play well
in many situations because the knowledge of how to play or what plan to follow
in these positions is simply missing. We hope that by adding more DPGs, i.e.,
“teaching” more strategies, Rat or any other bot could be transformed into a
stronger bot.

6 Future Work

Bot Rat is the first Arimaa bot that strictly uses move categories. A positional
evaluation of the current position prioritizes plans and leads to the ordering of
move categories and determines which of those can be generated. Rat performs
a highly selective alpha-beta search with only a material evaluation at the leaf
node level. Traditional Arimaa bots generate a huge number of possible moves
– many of which a human would never consider at all – and then evaluate the
leaves with a complex evaluation function. Due to the high branching factor of
Arimaa, even with a great amount of pruning, only a depth of at most 20 steps
in search extensions seems reachable with current computers. Many strategies
require looking much further ahead.

So far we have only implemented one single strategy to demonstrate our
approach. Many more strategies could be added to create a stronger program.



Knowledge of various strategies can be added using space-efficient directed po-
sition graphs (DPG). A plain text DPG can be edited easily without actually
modifying the source code of the program. While we used a DPG to follow a
certain strategy in the middle game, DPGs could also be used in the opening
and in the endgame.

This exploration delved forty years into the history of chess programming
in the hope that these approaches might lead to more successful Arimaa bots
than the popular alpha-beta searchers. However, further examination is needed
to determine whether this approach or other useful techniques, like UCT for
example, could help go beyond the strength of these.

Acknowledgments We would like to thank the anonymous referees for their
careful review and incisive and encouraging comments. We greatly appreciate
their constructive criticism that helped to improve the paper.

References

1. Syed, O., Syed, A.: Arimaa - a new game designed to be difficult for computers.
International Computer Games Association Journal 26 (2003) 138–139

2. Syed, O.: Arimaa - the next challenge. http://arimaa.com/arimaa/ (2009)
3. Haskin, B.: Arimaa game graphs. http://arimaa.janzert.com/gamegraphs (2006)
4. Fotland, D.: Building a world champion Arimaa program. CG 2004, LNCS 3846

(2006) 175–186
5. Zhong, H.: Building a strong Arimaa-playing program. Master’s thesis, University

of Alberta, Dept. of Computing Science (September 2005)
6. Cox, C.J.: Analysis and implementation of the game Arimaa. Master’s thesis,

Universiteit Masstricht, Institute for Knowledge and Agent Technology (March
2006)

7. Kocsis, L., Szepesvari, C.: Bandit based Monte-Carlo planning. 15th European
Conference on Machine Learning (2006) 282–293

8. Coulom, R.: Computing Elo ratings of move patterns in the game of Go. ICGA
Journal 30(4) (December 2007) 198–208

9. Chaslot, G., Winands, M., Bouzy, B., Uiterwijk, J.W.H.M., van den Herik, H.J.:
Progressive strategies for monte-carlo tree search. In Wang, P., ed.: Proceedings
of the 10th Joint Conference on Information Sciences, Salt Lake City, USA (2007)
655–661

10. Syed, O.: Arimaa forum. http://arimaa.com/arimaa/forum (2009)
11. Gillogly, J.J.: The technology Chess program. Artificial Intelligence 3 (1972) 145–

163
12. Schaeffer, J.: Long-range planning in computer Chess. In: ACM 83: Proceedings

of the 1983 annual conference on Computers : Extending the human resource, New
York, NY, USA, ACM (1983) 170–179

13. Müller, M.: Computer Go. Artificial Intelligence 134(1-2) (2002) 145–179
14. Wilkins, D.: Using patterns and plans in Chess. Artificial Intelligence 14 (1980)

165–203
15. Pitrat, J.: A Chess combination program which uses plans. Artificial Intelligence

8 (1977) 275–321
16. Botvinnik, M.M., Brown, A.: Computers, Chess and Long-Range Planning.

Springer-Verlag New York, Inc., Secaucus, NJ (1970)


