Skip to main content

Hybrid Pareto Differential Evolutionary Artificial Neural Networks to Determined Growth Multi-classes in Predictive Microbiology

  • Conference paper
Book cover Trends in Applied Intelligent Systems (IEA/AIE 2010)

Abstract

The main objective of this work is to automatically design artificial neural network, ANN, models with sigmoid basis units for multiclassification tasks in predictive microbiology. The classifiers obtained achieve a double objective: high classification level in the dataset and high classification level for each class. For learning, the structure and weights of the ANN we present an Hybrid Pareto Differential Evolution Neural Network (HPDENN), a Differential Evolutionary approach based on the PDE multiobjective evolutionary algorithm . The PDE algorithm is augmented with a local search using the improved Resilient Backpropagation with backtraking–IRprop  +  algorithm. To analyze the robustness of this methodology, we have applied it to two complex problems of classification in predictive microbiology (Staphylococcus Aureus and Shigella Flexneri). The results obtained in Correct Classification Rate (C) and Minimum Sensitivity (S) for each class show that the generalization ability and the classification rate in each class can be more efficiently improved within this multiobjective algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garcia, D., Ramos, A.J., Sanchis, V., Marin, S.: Predicting mycotoxins in foods: A review. Food Microbiology 26, 757–769 (2009)

    Article  Google Scholar 

  2. Basheer, I.A., Hajmeer, M.N.: Artificial neural networks: fundamentals, computation, design and application. Journal of Microbiological Methods 43, 3–31 (2000)

    Article  Google Scholar 

  3. Coello, C.A., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  4. Fernández, J.C., Hervás-Martínez, C., Martínez-Estudillo, F.J., Gutiérrez, P.A., Cruz-Ramírez, M.: Memetic Pareto Differential Evolution for designing Artificial Neural Networks in Multiclassification Problems using Cross-Entropy versus Sensitivity. In: 10th International Work-Conference on Artificial Neural Networks (IWANN 2009), Salamanca, Spain, pp. 433–441 (2009)

    Google Scholar 

  5. Abbass, H.A.: A Memetic Pareto Evolutionary Approach to Artificial Neural Networks. In: Stumptner, M., Corbett, D.R., Brooks, M. (eds.) Canadian AI 2001. LNCS (LNAI), vol. 2256, pp. 1–12. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Igel, C., Hüsken, M.: Improving the Rprop Learning Algorithm. In: Proc. Proceedings of the Second International ICSC Symposium on Neural Computation (NC 2000), pp. 115–121. ICSC Academic Press (2000)

    Google Scholar 

  7. MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  8. Cotta, C., Moscato, P.: A Gentle Introduction To Memetic Algorithms. In: Glover, F., Kochenberger, G.A. (eds.) Handbook on Metaheuristics. Kluwer Academics, Dordrecht (2001)

    Google Scholar 

  9. Igel, C., Hüsken, M.: Empirical evaluation of the improved Rprop learning algorithms. Neurocomputing 50(6), 105–123 (2003)

    Article  MATH  Google Scholar 

  10. Valero, A., Pérez-Rodríguez, F., Carrasco, E., Fuentes-Alventosa, J.M., García-Gimeno, R.M., Zurera, G.: Modelling the growth boundaries of Staphylococcus aureus: Effect of temperature, pH and water activity. International Journal Food Microbiology 133, 186–194 (2009)

    Article  Google Scholar 

  11. Zaika, L.L., Moulden, E., Weimer, L., Phillips, J.G., Buchanan, R.L.: Model for the combined effects of temperature, initial pH, sodium chloride and sodium nitrite concentrations on anaerobic growth of Shigella Flexneri. International Journal of Food Microbiology 23, 345–358 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cruz-Ramírez, M., Sánchez-Monedero, J., Fernández-Navarro, F., Fernández, J.C., Hervás-Martínez, C. (2010). Hybrid Pareto Differential Evolutionary Artificial Neural Networks to Determined Growth Multi-classes in Predictive Microbiology. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13033-5_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13033-5_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13032-8

  • Online ISBN: 978-3-642-13033-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics