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Abstract

This paper contributes to the theory of cutting planes for mixed integer linear pro-
grams (MILPs). Minimal valid inequalities are well understood for a relaxation of an
MILP in tableau form where all the nonbasic variables are continuous. In this paper
we study lifting functions for the nonbasic integer variables starting from such minimal
valid inequalities. We characterize precisely when the lifted coefficient is equal to the
coefficient of the corresponding continuous variable in every minimal lifting. The answer
is a nonconvex region that can be obtained as the union of convex polyhedra.

1 Introduction

There has been a renewed interest recently in the study of cutting planes for general mixed
integer linear programs (MILPs) that cut off a basic solution of the linear programming
relaxation. More precisely, consider a mixed integer linear set in which the variables are
partitioned into a basic set B and a nonbasic set N , and K ⊆ B ∪ N indexes the integer
variables:

xi = fi −
∑

j∈N aijxj for i ∈ B

x ≥ 0
xk ∈ Z for k ∈ K.

(1)

Let X be the relaxation of (1) obtained by dropping the nonnegativity restriction on all
the basic variables xi, i ∈ B. The convex hull of X is the corner polyhedron introduced
by Gomory [11] (see also [12]). Note that, for any i ∈ B \ K, the equation xi = fi −∑

j∈N aijxj can be removed from the formulation of X since it just defines variable xi.
Therefore, throughout the paper, we will assume B ⊆ K, i.e. all basic variables are integer.
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Andersen, Louveaux, Weismantel and Wolsey [1] studied the corner polyhedron when |B| = 2
and B = K, i.e. all nonbasic variables are continuous. They give a complete characterization
of the corner polyhedron using intersection cuts (Balas [2]) arising from splits, triangles and
quadrilaterals. This very elegant result has been extended to |B| > 2 and B = K by showing
a correspondence between minimal valid inequalities and maximal lattice-free convex sets [5],
[7]. These results and their extensions [6], [10] are best described in an infinite model, which
we motivate next.

A classical family of cutting planes for (1) is that of Gomory mixed integer cuts. For a
given row of the tableau, the Gomory mixed integer cut is of the form

∑
j∈N\K ψ(aij)xj +∑

j∈N∩K π(aij)xj ≥ 1 where ψ and π are functions given by simple formulas. A nice feature
of the Gomory mixed integer cut is that, for fixed fi, the same functions ψ, π are used for any
possible choice of the aijs in (1). It is well known that the Gomory mixed integer cuts are
also valid for X. More generally, let aj be the vector with entries aij , i ∈ B; we are interested
in pairs (ψ, π) of functions such that the inequality

∑
j∈N\K ψ(aj)xj +

∑
j∈N∩K π(aj)xj ≥ 1

is valid for X for any possible choice of the nonbasic coefficients aij . Since we are interested
in nonredundant inequalities, we can assume that the function (ψ, π) is pointwise minimal.
While a general characterization of minimal valid functions seems hopeless (see for example
[4]), when N ∩K = ∅ the minimal valid functions ψ are well understood in terms of maximal
lattice-free convex sets, as already mentioned. Starting from such a minimal valid function ψ,
an interesting question is how to generate a function π such that (ψ, π) is valid and minimal.
Recent papers [8], [9] study when such a function π is unique. Here we prove a theorem that
generalizes and unifies results from these two papers.

In order to formalize the concept of valid function (ψ, π), we introduce the following
infinite model. In the setting below, we also allow further linear constraints on the basic
variables. Let S be the set of integral points in some rational polyhedron in Rn such that
dim(S) = n (for example, S could be the set of nonnegative integer points). Let f ∈ Rn \ S.
Consider the following semi-infinite relaxation of (1), introduced in [10].

x = f +
∑

r∈Rn

rsr +
∑

r∈Rn

ryr,

x ∈ S,
sr ∈ R+, ∀r ∈ Rn,
yr ∈ Z+, ∀r ∈ Rn,
s, y have finite support

(2)

where the nonbasic continuous variables have been renamed s and the nonbasic integer vari-
ables have been renamed y. Given two functions ψ, π : Rn → R, (ψ, π) is said to be valid for
(2) if the inequality

∑
r∈Rn ψ(r)sr +

∑
r∈Rn π(r)yr ≥ 1 holds for every (x, s, y) satisfying (2).

We also consider the semi-infinite model where we only have continuous nonbasic variables.

x = f +
∑

r∈Rn

rsr

x ∈ S,
sr ∈ R+, ∀r ∈ Rn,
s has finite support.

(3)
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A function ψ : Rn → R is said to be valid for (3) if the inequality
∑

r∈Rn ψ(r)sr ≥ 1
holds for every (x, s) satisfying (3). Given a valid function ψ for (3), a function π is a lifting
of ψ if (ψ, π) is valid for (2). One is interested only in (pointwise) minimal valid functions,
since non-minimal ones are implied by some minimal valid function. If ψ is a minimal valid
function for (3) and π is a lifting of ψ such that (ψ, π) is a minimal valid function for (2)
then we say that π is a minimal lifting of ψ.

While minimal valid functions for (3) have a simple characterization [6], minimal valid
functions for (2) are not well understood. A general idea to derive minimal valid functions
for (2) is to start from some minimal valid function ψ for (3), and construct a minimal lifting
π of ψ. While there is no general technique to compute such minimal lifting π, it is known
that there exists a region Rψ, containing the origin in its interior, where ψ coincides with π
for any minimal lifting π. This latter fact was observed by Dey and Wolsey [9] for the case
of S = Z2 and by Conforti, Cornuéjols and Zambelli [8] for the general case. Furthermore,
it is remarked in [8] and [10] that, if π is a minimal lifting of ψ, then π(r) = π(r′) for every
r, r′ ∈ Rn such that r−r′ ∈ Zn∩lin(conv(S)). Therefore the coefficients of any minimal lifting
π are uniquely determined in the region Rψ + (Zn ∩ lin(conv(S))). In particular, whenever
translating Rψ by integer vectors in lin(conv(S)) covers Rn, ψ has a unique minimal lifting.
The purpose of this paper is to give a precise description of the region Rψ.

To state our main result, we need to explain the characterization of minimal valid functions
for (3). We say that a convex set B ⊆ Rn is S-free if B does not contain any point of S in
its interior. A set B is a maximal S-free convex set if it is an S-free convex set that is not
properly contained in any S-free convex set. It was proved in [6] that maximal S-free convex
sets are polyhedra containing a point of S in the relative interior of each facet.

Given an S-free polyhedron B ⊆ Rn containing f in its interior, B can be uniquely written
in the form

B = {x ∈ Rn : ai(x− f) ≤ 1, i ∈ I},
where I is a finite set of indices and ai(x− f) ≤ 1 is facet-defining for B for every i ∈ I.

Let ψB : Rn → R be the function defined by

ψB(r) = max
i∈I

air, ∀r ∈ Rn.

Note in particular that, since maximal S-free convex sets are polyhedra, the above function
is defined for all maximal S-free convex sets B.

Theorem 1. [6] Let ψ be a minimal valid function for (3). Then the set

Bψ := {x ∈ Rn |ψ(x− f) ≤ 1}

is a maximal S-free convex set containing f in its interior, and ψ = ψBψ
.

Conversely, if B is a maximal S-free convex set containing f in its interior, then ψB is a
minimal valid function for (3).

We are now ready to state the main result of the paper. Given a minimal valid function
ψ for (3), by Theorem 1 Bψ is a maximal S-free convex set containing f in its interior, thus
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it can be uniquely written as Bψ = {x ∈ Rn | ai(x − f) ≤ 1, i ∈ I}. For every r ∈ Rn, let
I(r) = {i ∈ I |ψ(r) = air}. Given x ∈ S, let

R(x) := {r ∈ Rn | I(r) ⊇ I(x− f) and I(x− f − r) ⊇ I(x− f)}.

We define
Rψ :=

⋃

x∈S∩Bψ

R(x).

Theorem 2. Let ψ be a minimal valid function for (3). If π is a minimal lifting of ψ, then
π(r) = ψ(r) for every r ∈ Rψ.
Conversely, for every r̄ 6∈ Rψ, there exists a lifting π of ψ such that π(r̄) < ψ(r̄).

Figure 1 illustrates the region Rψ for several examples. We conclude the introduction
presenting a different characterization of the regions R(x).

Proposition 3. Let ψ be a minimal valid function for (3), and let x ∈ S. Then R(x) = {r ∈
Rn |ψ(r) + ψ(x− f − r) = ψ(x− f)}.
Proof. We can uniquely write Bψ = {x ∈ Rn | ai(x− f) ≤ 1, i ∈ I}. Let h ∈ I(x− f). Then

ψ(x−f) = ah(x−f) = ahr+ah(x−f−r) ≤ max
i∈I

air+max
i∈I

ai(x−f−r) = ψ(r)+ψ(x−f−r).

In the above expression, equality holds if and only if h ∈ I(r) and h ∈ I(x− f − r).

2 Minimum lifting coefficient of a single variable

Given r∗ ∈ Rn, we consider the set of solutions to

x = f +
∑

r∈Rn

rsr + r∗yr∗

x ∈ S

s ≥ 0 (4)
yr∗ ≥ 0, yr∗ ∈ Z
s has finite support.

Given a minimal valid function ψ for (3) and scalar λ, we say that the inequality
∑

r∈Rn ψ(r)sr+
λyr∗ ≥ 1 is valid for (4) if it holds for every (x, s, yr∗) satisfying (4). We denote by ψ∗(r∗)
the minimum value of λ for which

∑
r∈Rn ψ(r)sr + λyr∗ ≥ 1 is valid for (4).

We observe that, for any lifting π of ψ, we have

ψ∗(r∗) ≤ π(r∗).

Indeed,
∑

r∈Rn ψ(r)sr + π(r∗)yr∗ ≥ 1 is valid for (4), since, for any (s̄, ȳr∗) satisfying (4),
the vector (s̄, ȳ), defined by ȳr = 0 for all r ∈ Rn \ {r∗}, satisfies (2).

Moreover, the following fact was shown in [8].
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(a) A maximal Z2-free triangle with three in-
teger points
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R(x4)
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R(x1)
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(b) A maximal Z2-free triangle with integer ver-
tices

R(x2)
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(c) A wedge

x1 x2
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f
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R(x3)

(d) A truncated wedge

Figure 1: Regions R(x) for some maximal S-free convex sets in the plane. The thick dark
line indicates the boundary of Bψ. For a particular x, the dark gray regions denote R(x).
The jagged lines in a region indicate that it extends to infinity. For example, in Figure 1(c),
R(x1) is the strip between lines l1 and l. Figure 1(b) shows an example where R(x) is
full-dimensional for x2, x4, x6, but is not full-dimensional for x1, x3, x5.
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Lemma 4. If ψ is a minimal valid function for (3) and π is a minimal lifting of ψ, then
π ≤ ψ.

So we have the following relation for every minimal lifting π of ψ :

ψ∗(r) ≤ π(r) ≤ ψ(r) for all r ∈ Rn.

In general ψ∗ is not a lifting of ψ, but if it is, then the above relation implies that it is the
unique minimal lifting of ψ.

Remark 5. For any r ∈ Rn such that ψ∗(r) = ψ(r), we have π(r) = ψ(r) for every minimal
lifting π of ψ. Conversely, if ψ∗(r∗) < ψ(r∗) for some r∗ ∈ Rn, then there exists some lifting
π of ψ such that π(r∗) < ψ(r∗).

Proof. The first part follows from ψ∗ ≤ π ≤ ψ. For the second part, given r∗ ∈ Rn such that
ψ∗(r∗) < ψ(r∗), we can define π by π(r∗) = ψ∗(r∗) and π(r) = ψ(r) for all r ∈ Rn, r 6= r∗.
Since ψ is valid for (3), it follows by the definition of ψ∗(r∗) that π is a lifting of ψ.

By the above remark, in order to prove Theorem 2 we need to show that Rψ = {r ∈
Rn |ψ(r) = ψ∗(r)}. We will need the following results.

Theorem 6. [6] A full-dimensional convex set B is a maximal S-free convex set if and only
if it is a polyhedron such that B does not contain any point of S in its interior and each facet
of B contains a point of S in its relative interior. Furthermore if B ∩ conv(S) has nonempty
interior, lin(B) contains rec(B ∩ conv(S)).

Remark 7. The proof of Theorem 6 in [6] implies the following. Given a maximal S-free
convex set B, there exists δ > 0 such that there is no point of S \ B at distance less than δ
from B.

Let r∗ ∈ Rn. Given a maximal S-free convex set B = {x ∈ Rn | ai(x− f) ≤ 1, i ∈ I}, for
any λ ∈ R, we define the set B(λ) ⊂ Rn+1 as follows

B(λ) = {
(

x

xn+1

)
∈ Rn+1 | ai(x− f) + (λ− air

∗)xn+1 ≤ 1, i ∈ I}. (5)

Theorem 8. [8] Let r∗ ∈ Rn. Given a maximal S-free convex set B, let ψ = ψB. Given
λ ∈ R, the inequality

∑
r∈Rn ψ(r)sr +λyr∗ ≥ 1 is valid for (4) if and only if B(λ) is (S×Z+)-

free.

Remark 9. Let r∗ ∈ Rn, and let B be a maximal S-free convex set. For every λ such that
B(λ) is (S × Z+)-free, B(λ) is maximal (S × Z+)-free.

Proof. Since B is a maximal S-free convex set, then by Theorem 6 each facet of B contains
a point x̄ of S in its relative interior. Therefore the corresponding facet of B(λ) contains
the point

(
x̄
0

)
in its relative interior. If B(λ) is (S × Z+)-free, by Theorem 6 it is a maximal

(S × Z+)-free convex set.
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3 Characterizing the region Rψ

Next we state and prove a theorem that characterizes when ψ∗(r∗) = ψ(r∗). The main result
of this paper, Theorem 2, will then follow easily.

Theorem 10. Given a maximal S-free convex set B, let ψ = ψB. Given r∗ ∈ Rn, the
following are equivalent:
(i) ψ∗(r∗) = ψ(r∗).
(ii)There exists a point x̄ ∈ S such that

(
x̄
1

) ∈ B(ψ(r∗)).

Proof. Let λ∗ = ψ(r∗). Note that the inequality
∑

r∈Rn ψ(r)sr + λ∗yr∗ ≥ 1 is valid for (4).
Thus, it follows from Theorem 8 that B(λ∗) is S × Z+-free .

We first show that (ii) implies (i). Assume there exists x̄ ∈ S such that
(
x̄
1

) ∈ B(λ∗). Then,
for every ε > 0,

(
x̄
1

)
is in the interior of B(λ∗−ε), because ai(x̄−f)+(λ−ε−air

∗) ≤ 1−ε < 1
for all i ∈ I. Theorem 8 then implies that ψ∗(r∗) = λ∗.

Next we show that (i) implies (ii). Assume that ψ∗(r∗) = ψ(r∗) = λ∗. We recall that
λ∗ = maxi∈I air

∗.
Note that, if air

∗ = λ∗ for all i ∈ I, then B(λ∗) = B × R, so given any point x̄ in B ∩ S,(
x̄
1

)
is in B(λ∗). Thus we assume that there exists an index h such that ahr∗ < λ∗.
By Remark 9, B(λ∗) is maximal (S × Z+)-free. Theorem 6 implies the following,

a) rec(B ∩ conv(S)) ⊆ lin(B),
b) rec(B(λ∗) ∩ conv(S × Z+)) ⊆ lin(B(λ∗)).

Claim 1. rec(B(λ∗) ∩ conv(S × Z+)) = rec(B ∩ conv(S))× {0}.
Let

(
r̄

r̄n+1

) ∈ rec(B(λ∗)∩conv(S×Z+)). Note that rec(conv(S×Z+)) = rec(conv(S))×Z+,
thus r̄ ∈ rec(conv(S)) and r̄n+1 ≥ 0. We only need to show that r̄n+1 = 0.

By b),
(

r̄
r̄n+1

)
satisfies

air̄ + (λ∗ − air
∗)r̄n+1 = 0, i ∈ I. (6)

Since λ∗ − air
∗ ≥ 0 and r̄n+1 ≥ 0,

air̄ ≤ 0, i ∈ I,

therefore r̄ ∈ rec(B). Thus r̄ ∈ rec(B ∩ conv(S)) which, by a), is contained in lin(B). This
implies

air̄ = 0, i ∈ I.

It follows from the above and from (6) that (λ∗−air
∗)r̄n+1 = 0 for i ∈ I. Since λ∗−ahr∗ > 0

for some index h, it follows that r̄n+1 = 0. This concludes the proof of Claim 1.

Claim 2. There exists ε̄ > 0 such that rec(B(λ∗−ε)∩conv(S×Z+)) = rec(B∩conv(S))×{0}
for every ε ∈ [0, ε̄].
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Since conv(S) is a rational polyhedron, S = {x ∈ Rn |Cx ≤ d} for some rational matrix
(C, d). By Claim 1, there is no vector

(
r
1

)
in rec(B(λ∗) ∩ conv(S × Z+)). Thus the system

air + (λ∗ − air
∗) ≤ 0, i ∈ I

Cr ≤ 0

is infeasible. By Farkas Lemma, there exist scalars µi ≥ 0, i ∈ I and a nonnegative vector γ
such that

∑

i∈I

µiai + γC = 0

λ∗(
∑

i∈I

µi)− (
∑

i∈I

µiai)r∗ > 0.

This implies that there exists some ε̄ > 0 such that for all ε ≤ ε̄,
∑

i∈I

µiai + γC = 0

(λ∗ − ε)(
∑

i∈I

µi)− (
∑

i∈I

µiai)r∗ > 0,

thus the system
air + (λ∗ − ε− air

∗) ≤ 0, i ∈ I
Cr ≤ 0

is infeasible. This implies that rec(B(λ∗ − ε) ∩ conv(S × Z+)) = rec(B ∩ conv(S))× {0}.

Claim 3. B(λ∗) contains a point
(

x̄
x̄n+1

) ∈ S × Z+ such that x̄n+1 > 0.

By Claim 2, there exists ε̄ such that, for every ε ∈ [0, ε̄], rec(B(λ∗− ε)∩ conv(S×Z+)) =
rec(B∩conv(S))×{0}. This implies that there exists a scalar M such that, for every ε ∈ [0, ε̄]
and every point

(
x̄

x̄n+1

) ∈ B(λ∗ − ε) ∩ (S × Z+), it follows x̄n+1 ≤ M .
Remark 7 and Remark 9 imply that there exists δ > 0 such that, for every

(
x̄

x̄n+1

) ∈
(S × Z+) \B(λ∗), there exists h ∈ I such that ah(x̄− f) + (λ∗ − ahr∗)x̄n+1 ≥ 1 + δ. Choose
ε > 0 such that ε ≤ ε̄ and εM ≤ δ.

Since ψ∗(r∗) = λ∗, by Theorem 8, B(λ∗ − ε) has a point
(

x̄
x̄n+1

) ∈ S × Z+ in its interior.
Thus ai(x̄− f) + (λ∗ − ε− air

∗)x̄n+1 < 1, i ∈ I.
We show that

(
x̄

x̄n+1

)
is also in B(λ∗). Suppose not. Then, by our choice of δ, there exists

h ∈ I such that ah(x̄− f) + (λ∗ − ahr∗)x̄n+1 ≥ 1 + δ. By our choice of M and ε,

1+δ ≤ ah(x̄−f)+(λ∗−ahr∗)x̄n+1 ≤ ah(x̄−f)+(λ∗−ε−ahr∗)x̄n+1 +εM < 1+εM ≤ 1+δ,

a contradiction.
Hence

(
x̄

x̄n+1

)
is in B(λ∗). Since B is S-free and B(λ∗ − ε) ∩ (Rn × {0}) = B × {0}, it

follows that B(λ∗ − ε) does not contain any point of S × {0} in its interior. Thus x̄n+1 > 0.
This concludes the proof of Claim 3.
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By the previous claim, B(λ∗) contains a point
(

x̄
x̄n+1

) ∈ S×Z+ such that x̄n+1 > 0. Note
that B(λ∗) contains

(
x̄
1

)
, since

ai(x̄− f) + (λ∗ − air
∗) ≤ ai(x̄− f) + (λ∗ − air

∗)x̄n+1 ≤ 1, i ∈ I

since λ∗ − air
∗ ≥ 0, i ∈ I.

Corollary 11. Let ψ be a minimal valid function for (3). Then ψ∗(r∗) = ψ(r∗) if and only
if there exists x̄ ∈ S such that

ψ(r∗) + ψ(x̄− f − r∗) = 1. (7)

Proof. We first show that, if there exist x̄ ∈ S satisfying (7), then ψ∗(r∗) = ψ(r∗). Indeed,
since

∑
r∈Rn ψ(r)sr + ψ∗(r∗)yr∗ ≥ 1 is valid for (4),

1 ≤ ψ∗(r∗) + ψ(x̄− f − r∗) ≤ ψ(r∗) + ψ(x̄− f − r∗) = 1.

We show the converse. Since ψ is a valid function for (3), ψ(x̄−f−r∗)+ψ(r∗) ≥ 1. Since
ψ is a minimal valid function for (3), by Theorem 1 there exists a maximal S-free convex set
B such that ψ = ψB. Let Bψ = {x ∈ Rn | ai(x− f) ≤ 1, i ∈ I}.

Assume ψ∗(r∗) = ψ(r∗). By Theorem 10, there exists a point x̄ ∈ S such that
(
x̄
1

) ∈
B(ψ(r∗)). Therefore

ai(x̄− f) + ψ(r∗)− air
∗ ≤ 1, i ∈ I.

Thus
max
i∈I

ai(x̄− f − r∗) ≤ 1− ψ(r∗),

which implies ψ(x̄− f − r∗) + ψ(r∗) ≤ 1. Hence ψ(x̄− f − r∗) + ψ(r∗) = 1.

Proof of Theorem 2. By Remark 5, we only need to show that Rψ = {r ∈ Rn |ψ(r) = ψ∗(r)}.
For every x ∈ S, we have ψ(x−f) = 1 if and only if x ∈ S∩Bψ. Therefore, by Proposition 3,
R(x) = {r ∈ Rn |ψ(r) + ψ(x − f − r) = ψ(x − f) = 1} if and only if x ∈ S ∩ Bψ. The
latter fact and Corollary 11 imply that a vector r ∈ Rn satisfies ψ∗(r) = ψ(r) if and only if
r ∈ R(x) for some x ∈ S ∩Bψ. The statement now follows from the definition of Rψ.

4 Conclusion

In this paper we give an exact characterization of the region where a minimal valid inequality
ψ and any minimal lifting π of ψ coincide. This was exhibited in Theorem 2, which generalizes
results from [8] and [9] about liftings of minimal valid inequalities.

As already mentioned in the introduction, the following theorem was proved in [8].

Theorem 12. Let ψ be a minimal valid function for (3). If Rψ + (Zn ∩ lin(conv(S))) covers
all of Rn, then there exists a unique minimal lifting π of ψ.

We conjecture that the converse also holds.

Conjecture 13. Let ψ be a minimal valid function for (3). There exists a unique minimal
lifting π of ψ if and only if Rψ + (Zn ∩ lin(conv(S))) covers all of Rn.
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