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Abstract. In this paper we give a systematic analysis of the relation-
ship between imbalance and overlap as factors influencing classifier per-
formance. We demonstrate that these two factors have interdependent
effects and that we cannot form a full understanding of their effects by
considering them only in isolation. Although the imbalance problem can
be considered a symptom of the small disjuncts problem which is solved
by using larger training sets, the overlap problem is of a fundamentally
different character and the performance of learned classifiers can actually
be made worse by using more training data when overlap is present. We
also examine the effects of overlap and imbalance on the complexity of
the learned model and demonstrate that overlap is a far more serious
factor than imbalance in this respect.

1 Introduction

The imbalance problem occurs when the available training data contains sig-
nificantly more representatives from one class compared to the other. Many
classifiers have been shown to give poor performance in identifying the minor-
ity class in cases where there is a large imbalance [1]. The machine learning
literature acknowledges the imbalance problem as a major obstacle to building
accurate classifiers and there has been significant effort invested in searching
for solutions [2–6], as well as some investigation into possible root causes of the
problem itself [2]. Recent work shows that imbalance is not a problem when the
overall size of the training set is sufficiently large [7, 8]. These findings suggest
that it is instead the problem of small disjuncts—exacerbated by imbalance and
small training sets—which is the real cause of poor performance in these cases.

The overlap problem occurs when a region of the data space contains a sim-
ilar number of training data for each class. This leads to the inference of near
equal estimates for the prior probabilities of each class in the overlapping re-
gion and makes it difficult or impossible to distinguish between the two classes.
There has been comparatively little work done on the overlap problem [5, 9, 10];
however, recent findings by Garcia et al. [1] have shown that overlap can play



an even larger role in determining classifier performance than imbalance. The
performance of Support Vector Machines (SVMs) in this area is of special in-
terest due to the findings by Japkowicz et al. which suggest that SVMs are not
sensitive to the imbalance problem in cases where the classes are separable [6].

Previous investigations of the overlap and imbalance problems have taken
place largely in isolation. Although some authors have performed experiments
in the presence of both factors, the nature of their interaction is still not well
understood. Our work demonstrates that these two problems acting in concert
cause difficulties that are more severe than one would expect by examining their
effects in isolation. This finding demonstrates that we cannot achieve a full un-
derstanding of these problems without considering their effects in tandem.

In this paper we provide a systematic study of the interaction between the
overlap and imbalance problems as well as their relationship to the size of the
training set. We outline a method for testing the hypothesis that these two factors
influence classifier performance independently and show through experimenta-
tion that this hypothesis is false for the SVM classifier. Finally, we illustrate a
connection between model complexity and model performance in the presence
of overlap and imbalance.

We have chosen to focus our investigation on SVMs since they have been
shown to be particularly robust in the presence of the factors we wish to inves-
tigate; however, since our method does not rely on the particulars of the SVM
formulation we expect the results reported here to generalize to other classifica-
tion algorithms. In fact it is likely the case that the interdependence of overlap
and imbalance is even stronger in algorithms which are more sensitive to these
factors.

2 Detection of Interdependence

In this section we outline a method to test the hypothesis that overlap and
imbalance have independent effects on classifier performance. Let us take µ as
a measure of overlap between the classes and α as a measure of the between
class imbalance.1 If these two factors act independently we would expect the
performance surface with respect to µ and α to follow the relation

dP (µ, α) = f ′(µ) dµ + g′(α) dα , (1)

where f ′ and g′ are unknown functions. That is, we would expect the total
derivative of performance to be separable into the components contributed by
each of µ and α. This hypothesis of independence leads us to expect that we can
consider the partial derivatives independently, i.e.

∂

∂µ
P = f ′(µ) , (2)

∂

∂α
P = g′(α) . (3)

1 We provide a concrete method for assigning values to µ and α in Sect. 3, but for the
moment we leave the details of this assignment intentionally vague.



The functions f ′ and g′ may not have simple or obvious functional forms
meaning that we cannot compute f ′ and g′ directly; however, if f ′ and g′ were
known we could find a predicted value for P (α, µ), up to an additive constant,
by evaluating

P (µ, α) =

∫
f ′(µ) dµ +

∫
g′(α) dα + C . (4)

Specific values for P (µ, α) can be computed numerically by training a clas-
sifier on a data set with the appropriate level of overlap and imbalance. This
requires the use of synthetic data sets since there is no general method to mea-
sure the level of class overlap in real data. The use of synthetic data allows us
to ensure that other confounding factors, such as problem complexity, remain
constant throughout our tests.

Since we expect the partial derivatives of P (µ, α) to be independent we can
compute values for f ′ by evaluating P (µ, α) for several values of µ while holding
α constant and taking a numerical derivative. Values for g′ can be computed
in a similar manner by holding µ constant and varying α. These values can
then be combined into predicted values for P (µ, α) using (4). Comparing the
predicted values for P (µ, α) to the observed values will allow us to determine if
our hypothesis of independence is sound.

The above method only estimates P (µ, α) up to the additive constant C. To
obtain a value for C we simply need to compute the value of P (µ, α) for a single
point where we have computed both f ′ and g′.

3 Experiment

In this section we present an experiment designed to test the hypothesis of in-
dependence using the procedure outlined in Sect. 2. The data sets we generate
for this experiment are a collection of “backbone” models in two dimensions. To
generate a data set we sample points from the region [0, 1] × [0, 1]. The range
along the first dimension is divided into four regions with alternating class mem-
bership (two regions for each class) while the two classes are indistinguishable
in the second dimension. To change the overlap level of the classes we allow
adjacent regions to overlap. The overlap level is parametrized such that when
µ = 0 the two classes are completely separable and when µ = 1 both classes are
distributed uniformly over the entire domain. Changing the imbalance level is
done by sampling more data points from one class than the other. The imbal-
ance level is parameterized such that α is the proportion of the total data set
belonging to the majority class. The total number of samples is kept fixed as α
varies. Some example data sets are shown in Fig. 1. These domains are simple
enough to be readily visualized yet the optimal decision surface is sufficiently
non-linear to cause interesting effects to emerge.

We measure classifier performance over three collections of data sets gener-
ated in the manner described above.



Fig. 1. Sample Data Sets

1. Varying Overlap — For these data sets we fix µ = 0 value and α varies
over the range [0.5, 0.95].

2. Varying Imbalance — For these data sets we vary µ over the range [0, 1]
with α = 0.5 fixed.

3. Varying Both — For these data sets we vary µ and α simultaneously over
the ranges [0, 1] and [0.5, 0.95] respectively.

Evaluating our classifier on the first two collections gives us enough information
to evaluate (4). Comparing this with the results generated by testing on the
third collection of data sets will allow us to determine if overlap and imbalance
have independent effects on classifier accuracy.

For each level of imbalance and overlap we measure the classifier performance
using several different training set sizes. To build a training set we first select
the overlap and imbalance levels as well as the size of the training set and then
sample the selected number of points according to the generative distribution
defined by the chosen overlap and imbalance. All of our tests are repeated for
several training sets sizes varying from 25 to 6400 samples. Testing is done by
generating new samples from the same distribution used for training.

We assess classifier performance using the F1-score of the classifier trained
on each data set where the minority class is taken as the positive class. The
F1-score is the harmonic mean of the precision and recall of a classifier and is
a commonly used scalar measurement of performance. Our choice of positive
class reflects the state of affairs present in many real world problems where it is
difficult to obtain samples from the class of interest. The F1-score is one of the
family of Fβ-scores which treats precision and recall as equally important.

4 Results

We trained several SVM classifiers on the data sets described in Sect. 3. For each
level of overlap, imbalance and training set size we built several classifiers in order
to track the variance as well as the overall performance. Parameter values for
the SVMs were chosen by selecting a few data sets from our domain of interest
and running simulated annealing following the method described in [11] to select
the optimal parameters. The optimal parameter values from these tests showed
very little variation so we selected a constellation of representative values and
left them unchanged for all of our tests. We used the SVM Radial Basis Function



kernel for all our tests since it is the most popular non-linear SVM kernel used
in practice.

The performance results from our experiments are shown in Fig. 2. These
results clearly show that when the training set size is large the performance
predicted by assuming that overlap and imbalance are independent is very dif-
ferent than what is observed. On the other hand, when the training set is small
our model is quite accurate, showing only a minor deviation from the observed
results.

When the training set size is reasonably large we observe that the class
imbalance has very little effect on the classifier performance. This result agrees
with previous investigations [6] which suggested that SVMs are not sensitive to
class imbalance. When the imbalance level is very high, or when there are few
training examples, we still see a drop in performance. This is what we would
expect from the existence of small disjuncts in these domains [7, 9].

In addition to the F1-scores we also recorded the number of support vectors
from each run. These data are recorded in Fig. 3. Our model of independence
does not make predictions about the number of support vectors so these results
cannot be used to test our hypothesis; however, the number of the support
vectors can be used as a measure of model complexity.

These results also support the idea that SVMs are not significantly effected
by class imbalance when there is sufficient training data. When only imbalance
is present we observe that a very small proportion of the total training data
is retained as support vectors. This indicates that the SVM has found a highly
parsimonious model for the data and, since the corresponding F1-scores in Fig. 2
are high, we see that these models generalize well. Conversely, when there is class
overlap in the training data the number of support vectors rises quickly. This
indicates that the SVM has difficulty finding a parsimonious solution despite
the fact that there is no increase in complexity of the optimal decision surface.
It is interesting to notice that, provided the training set is sufficiently large,
the proportion of the training set retained as support vectors shows very little
variation across differently sized training sets. A constant proportion of support
vectors corresponds to a massive increase in the complexity of the learned model
as the training set size is increased.

5 Analysis

5.1 Is Independence Ever a Good Model?

We mentioned previously that for small training set sizes, as well as for small
levels of overlap and imbalance, the performance predicted by our model of inde-
pendence appears to give good predictions for the observed accuracy. Conversely,
for high levels of combined overlap and imbalance the predictions given by our
model appear to be very poor. In this section we provide a more systematic
assessment of the quality of the independence model to determine when, if ever,
it might be reasonable to treat these effects independently.
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Fig. 2. F1-scores of several SVM classifiers at different data set sizes. The lower hor-
izontal axis shows the level of overlap and the upper horizontal axis shows the level
of imbalance. The vertical axis shows the corresponding F1-score. Error bars show one
standard deviation around the mean.

To assess the quality of our model’s predictions we preform a two tailed t-
test to determine if our predictions differ significantly from the observed results.
For these tests we take as our null hypothesis the assumption that overlap and
imbalance influence classifier performance independently and compute when it
is possible to reject this hypothesis with >99% confidence. Results from these
tests are shown in Fig. 4.

For the smallest training set size we see no strong evidence to reject our
hypothesis of independence; however, when there is sufficient training data we
see that it is highly unlikely that our hypothesis of independence is correct. It
is interesting to note even for very large training sets there is a region of the
parameter space where we cannot confidently reject our hypothesis of indepen-
dence; however, with a large training set this region is quite small and outside it
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Fig. 3. Proportion of the training set retained as support vectors by several SVM
classifiers at different training set sizes. The lower horizontal axis shows the level of
overlap and the upper horizontal axis shows the level of imbalance. The vertical axis
shows the corresponding proportion of the training set retained as support vectors.
Error bars show one standard deviation around the mean.

the evidence against independence is quite strong. We also note that the size of
this region decreases as the training set size is increased. This is notable since the
performance degradation from overlap alone is decreased by using more training
data. If the two factors were independent we would expect the combined per-
formance to be very close to the performance in the presence of overlap alone
since with large training sets the degradation from imbalance alone is negligi-
ble; however, this is not the case. In light of these observations it is reasonable
to conclude that the hypothesis is false in general and we speculate that our
inability to reject the model in all cases is merely a case of lack of data.

These results confirm that overlap and imbalance do not have independent ef-
fects on performance. We can also see from Fig. 2 that the combined contribution
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Fig. 4. The p-values for our significance tests. Small p-values indicate a statistically
significant deviation between the observed and predicted results for combined overlap
and imbalance. The lower horizontal axis shows the level of overlap and the upper
horizontal axis shows the level of imbalance. The vertical axis shows the p-value for
the associated hypothesis test; also shown is the 99% confidence threshold. These data
have been smoothed for readability.

from both factors is made stronger as the training set size increases. Although
the contribution from imbalance alone is negligible it cannot be ignored since its
presence combined with overlap causes additional degradation beyond the level
caused by overlap alone.

From this analysis we see that if independence is ever a good model it can
only be when the training set size is very small; however, as we have already
seen, this situation causes other problems and should generally be avoided. We
have also not directly shown that the model is good under these conditions, only
that we cannot confidently say it is poor.



5.2 Which is worse?

We have shown that overlap and imbalance are not independent factors, but the
question still remains: Which factor has a more profound effect on the classi-
fier on its own? To answer this we refer again to Fig. 2 which shows classifier
performance with overlap and no imbalance as well as with imbalance and no
overlap.

When the training set is small, high levels of imbalance cause a dramatic drop
in classifier performance; however, with the use of larger training sets this effect
disappears almost entirely. When the training set is large, even an imbalance
level of 95% has a barely noticeable effect on performance. This observation is
consistent with previous work which showed that problems typically associated
with imbalanced data can be better explained by the presence of small disjuncts.
As the size of the training set grows the number of training data in each clus-
ter is increased for both the minority and the majority classes. Once there are
sufficiently many points in each of the minority class clusters the SVM has no
trouble identifying them despite even very high levels of imbalance.

Referring to Fig. 3 we see that more imbalanced training sets actually pro-
duce less complex models; i.e. the proportion of the training set retained as
support vectors actually drops as the imbalance level is increased. The drop is
quite small, however, and the overall proportion of support vectors retained from
just imbalance is dwarfed by the proportion retained in the overlapping or com-
bined cases. It is likely that this drop is an artifact of there simply being fewer
data available along the margin in the minority class rather than a meaningful
reduction in complexity.

Contrasting the above to the effects from overlap, we see from Fig. 2 that
overlapping classes cause a consistent drop in performance regardless of the
size of the training set. The drop in performance from overlap is linear and
performance drops from nearly perfect to ∼0.5 as the overlap level is increased.
It should be noted that this is exactly what we would expect to happen, even with
a perfect classifier. When the classes are overlapping and not imbalanced there
are ambiguous regions in the data space where even an optimal classifier with
prior knowledge of the generative distributions would not be able to predict the
class labels better than chance. The SVM performance in the presence of overlap
alone follows exactly the profile we would expect from an optimal classifier in
these cases.

It is far more interesting to examine the model complexity in terms of overlap
as shown in Fig. 3. Despite the fact that the complexity of the optimal solution
remains constant throughout all of our tests, as overlap increases the number
of training data retained by the model increases dramatically. This means that
although the SVM is able to find a solution which performs comparably to the
optimal classifier, the solution it finds becomes progressively more complex as
the level of overlap increases.



5.3 Correlating Performance and Model Complexity

We have seen that for sufficiently large training sets there is a sharp drop in
performance beyond a certain level of combined overlap and imbalance and that
this effect is only seen when both factors are present simultaneously. We also
saw that when the two factors are combined the number of support vectors in
the resulting model reaches its maximum at an intermediate level of imbalance
and overlap. In this section we illustrate the connection between these two ob-
servations.

The peak in the number of support vectors (and hence model complexity)
is highly correlated with the sharp drop in performance we see with sufficiently
large training sets. This correlation is illustrated in Fig. 5 by showing the second
derivative of the combined F1-score and the first derivative of the number of sup-
port vectors. The data shown in Fig. 5 has been scaled vertically and smoothed
in order to make the plots readable; the important feature to note is where the
two lines cross the x-axis. We see that for all but the smallest training set sizes
both plots cross the x-axis at approximately µ = 0.6 and α = 0.78. The points
where the support vector and performance curves cross the x-axis correspond to
the peak model complexity and the inflection point in performance respectively.
If the overlap and imbalance are increased beyond this point the performance
of the trained classifier drops rapidly. Since this effect does not occur when
only one of the two factors are present it is clearly an artifact of the combined
contribution.

Interestingly, the location of this crossing varies very little as the number
of training examples is increased. When there is sufficient training data for the
effect to emerge it is consistently present and its location is relatively unchanged
by varying the size of the training set. This suggests that we are observing a
type of breaking point—a point where we transition from being able to extract a
(somewhat) meaningful representation from the data to a regime where the data
representation is not sufficient to build an effective classifier. This observation
is supported by a reexamination of Fig. 2 where we can see that performance
before the drop is higher in cases where we have used large training sets, but
that the performance after the drop is consistently poor regardless of the size of
the training set.

6 Conclusion

We have shown that classifier performance varies with overlap and imbalance
in a manner that necessitates an interrelationship between these two factors.
Comparing the observed performance in cases of combined overlap and imbalance
to the performance levels predicted by a model of independence shows that when
the two factors are combined the classifier performance is degraded significantly
beyond what the model predicts.

Our analysis is consistent with previous results which show that the im-
balance problem is properly understood as a problem of small disjuncts in the
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Fig. 5. Comparison between model complexity and performance. The lower horizon-
tal axis shows the level of overlap and the upper horizontal axis shows the level of
imbalance. The solid line shows the second derivative of the F1-score and the dashed
line shows the first derivative of the number of support vectors. These data have been
smoothed for readability.

minority class. When sufficiently many training data are available imbalanced
distributions do not impede classification even when the imbalance level is very
high. Despite this the imbalance problem cannot be considered solved since lev-
els of imbalance which, in isolation, cause no significant degradation of perfor-
mance can have a large impact on performance when overlapping classes are also
present.

Our analysis of the overlap problem shows that, in isolation, it is a much
more serious issue than imbalance. Although the SVM is able to achieve per-
formance comparable to the optimal classifier in the presence of overlap the
model complexity tells a different story. Despite the fact that the complexity
of the optimal solution remains constant, the complexity of the SVM solution
grows proportional to the overlap level and the training set size. This result is
important since it shows that more training data—which is often regarded as a



panacea for poor performance—can have a detrimental effect on the quality of
the learned model.

We have also shown that SVMs have a breaking point where, if the overlap
and imbalanced levels are too high we cannot achieve good performance regard-
less of amount of available training data. We have shown that this breaking
point is strongly correlated with the peak model complexity. This effect is no-
table for several reasons. First, it only appears when both overlap and imbalance
are present in tandem, which demonstrates directly that there are effects that we
miss by examining overlap and imbalance separately. Second, the insensitivity
of this effect to the training set size indicates that it is the result of a systematic
weakness of the SVM classifier in the presence of overlap and imbalance rather
than a problem with the data. Finally, this finding suggests an avenue for further
research into the interaction between overlap and imbalance.
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