
Uncovering Hidden Phylogenetic Consensus

Nicholas D. Pattengale1, Krister M. Swenson23, Bernard M.E. Moret4

1Department of Computer Science, University of New Mexico, USA
2Department of Mathematics and Statistics, University of Ottawa, Canada

3LaCIM, Université du Québec à Montréal, Canada
4Laboratory for Computational Biology and Bioinformatics, EPFL, Switzerland

Abstract. Many of the steps in phylogenetic reconstruction can be con-
founded by “rogue” taxa, taxa that cannot be placed with assurance
anywhere within the tree—whose location within the tree, in fact, varies
with almost any choice of algorithm or parameters. Phylogenetic consen-
sus methods, in particular, are known to suffer from this problem. In this
paper we provide a novel framework in which to define and identify rogue
taxa. In this framework, we formulate a bicriterion optimization problem
that models the net increase in useful information present in the consen-
sus tree when certain taxa are removed from the input data. We also
provide an effective greedy heuristic to identify a subset of rogue taxa
and use it in a series of experiments, using both pathological examples
described in the literature and a collection of large biological datasets.
As the presence of rogue taxa in a set of bootstrap replicates can lead to
deceivingly poor support values, we propose a procedure to recompute
support values in light of the rogue taxa identified by our algorithm; ap-
plying this procedure to our biological datasets caused a large number of
edges to change from “unsupported” to “supported” status, indicating
that many existing phylogenies should be recomputed and reevaluated
to reduce any inaccuracies introduced by rogue taxa.

1 Introduction

Phylogenetic consensus methods are used for combining a set of trees defined
on the same set of leaves into a single tree that summarizes the information
found in the set. By their very nature, these methods discard information, typ-
ically structural elements not prevalent in the set. However, the most popular
consensus methods (strict and majority rule) are susceptible to so-called rogue
taxa [19]. That is, while the tree set may agree very strongly on the structure
relating a large subset of the leaves, the remaining few leaves (the rogue taxa)
can effectively prevent this underlying structure from appearing in the strict
or majority consensus tree. In other words, these methods end up discarding
structural elements that are, in fact, prevalent in the set.

Much work has been done on the problem of summarizing a set of trees and
on the issue of rogue taxa in particular. The pioneering work of Wilkinson [19–
21] addresses the problem by returning sets of trees, some of which are missing
leaves, with the aim of conveying the prevalent structural elements in at least one

2

of the returned trees. While theoretically satisfying, this approach suffers from
computational complexity problems and, more importantly, from difficulties in
interpretation. A problem closely related to both consensus and rogue taxa is
the Maximum Agreement Subtree (MAST). A MAST on a set of input trees is
the largest subtree common to all input trees. While the general problem of find-
ing the MAST of three or more trees is NP-hard [1], it can be solved efficiently
when at least one of the input trees has bounded degree [6]. However, the MAST
tends to be too conservative; most notably, there exist instances where the con-
sensus tree (without dropping any leaves) has more internal structure than the
MAST [12]. Cranston and Rannala recently presented a Markov Chain Monte
Carlo (MCMC) method for identifying a version of rogue taxa in the context
of Bayesian phylogenetic reconstruction [5]. Their approach identifies subsets of
leaves for which the posterior distribution strongly supports the structure of the
induced subtree—leaves left out can be viewed as rogue taxa, albeit in the narrow
context of a sampling of trees in a Bayesian search, rather than in the general
context of a consensus of trees. All of these approaches fall into the category
of “leaf-dropping methods,” in the terminology of Redelings [15]. In contrast,
Redelings presents, again in the context of Bayesian phylogenetics, a method
that returns a “multi-connected tree,” which includes all leaves, but does not
summarize the information through a single tree and thus again raises issues of
interpretation – an issue plaguing all approaches producing non-trees [2, 4, 9, 10].

In this paper we contribute another leaf-dropping method, one based on a
rigorous definition of the tradeoff involved between dropping leaves and uncover-
ing additional consensus structure. Most existing measures and methods discard
leaves in order to uncover any underlying structure; in contrast, our approach
sets up a bicriterion problem, in which leaves should be discarded only if the
gain in uncovered internal structure outweighs the loss incurred by discarding
the leaves. We are not the first researchers to define some notion of relative in-
formation content for consensus trees [18], but our definition is the first to both
explicitly take into account the loss incurred by dropping taxa, and generalize
outside the setting of strict consensus. We provide an effective greedy heuristic
to compute a good (if not necessarily optimal) set of rogue taxa and apply it
to both pathological examples from the literature and a collection of large bio-
logical datasets that we used in a prior study of bootstrapping. As the presence
of rogue taxa in a set of bootstrap replicates can lead to deceivingly poor sup-
port values, we propose a procedure to recompute support values in light of the
rogue taxa identified by our algorithm; applying this procedure to our biological
datasets caused a large number of edges to change from “unsupported” to “sup-
ported” status, indicating that many existing phylogenies should be recomputed
and reevaluated to reduce any inaccuracies introduced by rogue taxa.

The rest of the paper is organized as follows. In Section 2 we define concepts
and terminology. In Section 3 we define our measure of relative information
content, formalize the bicriterion optimization problem for consensus and rogue
taxa, and present some theoretical results that underlie our approach. In Sec-

3

tion 4 we present an efficient greedy heuristic for our bicriterion problem. In
Section 5 we present the results of our experiments.

2 Preliminaries

We use standard set and graph terminology and notation; in particular, ∪ refers
to union, ∩ to intersection, \ to set difference, and ∆ to symmetric difference—
i.e., S∆T = (S ∪ T) \ (S ∩ T).

A phylogenetic tree represents the evolutionary relationships among a collec-
tion of living organisms. Homologous molecular sequences (one for each organ-
ism) are placed at the tips of the tree—hereafter called the leaves ; the internal
structure of the tree—its edges (sometimes also called branches)—represents
the evolutionary relationships. The removal of an edge disconnects the tree and
partitions the set of leaves into two subsets; thus each edge corresponds to a
bipartition of the set of leaves. Every tree includes the same trivial bipartitions,
which separate one leaf from all others; the other bipartitions are called nontriv-
ial and correspond to an internal edge of a tree, that is, an edge not incident on
a leaf. We can thus view a phylogenetic tree as a leaf-labeled tree T = (L, B),
where L is the set of leaves and B is its set of nontrivial bipartitions. To describe
a bipartition, we list the two sets of leaves, separated by a | symbol. To ensure an
equivalence between nontrivial bipartitions and internal edges, we require that
every internal node in a phylogeny have degree at least 3. The number |B| of
nontrivial bipartitions in a phylogeny is at most |L|−3; when the two are equal,
we say that the (binary) tree is fully resolved ; otherwise, there must exist an
internal node of degree at least 4 and any such node is known as a polytomy.

The consensus problem is given by a set T of m trees defined on a common
set L of n taxa (leaves). The bipartition profile of T is the pair

P = (BT , ν : BT → 2T)

where BT is the set of all nontrivial bipartitions found across all m trees in the
set and ν is a function mapping bipartitions to the trees in which they appear.

We denote the removal of leaves from trees through the restriction operator—
which also uses the | symbol. For example, T |L′ refers to restricting each tree in
the set T to the leaf subset L′ ⊆ L, which corresponds to removing each leaf in
L \ L′ from each tree, as well as removing any nodes of degree 2 created in the
process. Individual trees, tree sets, and tree profiles can appear on the left-hand
side of the restriction operator.

We focus on consensus methods based on bipartition frequency—see the ex-
cellent survey of Bryant [3] for a comprehensive treatment of consensus methods.
Given a threshold parameter m

2
< t < m, the t-consensus tree is composed of

all of the bipartitions that occur in more than t trees. The majority rule con-
sensus [11] is obtained by setting t to m

2
, while the strict consensus is obtained

by setting t to m − 1. We denote t-consensus methods by Ct. Thus Cm−1(T)
corresponds to taking the strict consensus tree of the set T .

4

3 Relative Information Content, Consensus, Rogue Taxa

3.1 The measure and the problem

The general problem we study can be phrased as follows: given a set T of trees
on a common leaf set L and given a frequency-based consensus method Ct, we
want to find a leaf subset L′ that optimizes the relative information content of
the consensus returned by Ct on the set of subtrees induced by L′. The crucial
notion here is that of relative information content. Formally, if Ct(T |L′) yields
T ′ = (L′, B′), then the relative information content is

I(T ′, L, Ct) =
|L′| + |B′|

|L| + (|L| − 3)
(1)

This measure is the ratio of the total number of bipartitions (trivial and non-
trivial) in the consensus tree derived on the reduced leaf set to the total number
of bipartitions in an ideal, fully resolved tree on the original leaf set. By taking
trivial bipartitions into account, we automatically penalize a method for remov-
ing many leaves, since the number of trivial bipartitions is simply the number
of leaves. By adding the number of nontrivial bipartitions, we reward a method
for preserving more internal edges, since the denominator is fixed to the number
of such edges in an ideal tree.

We can now formulate our main problem, which we call MISC, for Maximum-
Information Subtree Consensus.

Problem 1 (MISC). Given a set T of trees defined on a common leaf set L and a
frequency-based consensus method Ct, find a leaf subset L′ that maximizes the
relative information content I(Ct(T |L′), L, Ct).

Note that the MAST solution typically maximizes the |B′| term at the expense of
the |L′| term—it has no direct penalty for dropping leaves; in contrast, consensus
methods typically maximize |L′| (in the case of majority and strict consensus,
by forcing L′ = L) at the expense of |B′|. MISC, on the other hand, combines
the two aspects into a single formulation.

3.2 How bipartitions change under leaf deletion

We begin by studying the effect that dropping leaves has on a tree set profile.
For any bipartition in the original profile, there are three cases. We illustrate
these cases through a simple example, with an original leaf set of a, b, c, d, e, f

and with leaves b and e dropped.

1. merge: If two bipartitions differ solely in (a subset of) the leaves being
dropped, then those bipartitions get merged in the new profile. For example
ac|bdef and abc|def merge into ac|df and the ν set for the merged bipartition
consists of the union of the two original bipartitions.

2. disappear: If dropping the leaves creates a bipartition with an empty side or
makes the bipartition trivial, then the bipartition disappears. For example,
both acdf |be and acd|bef disappear.

5

3. no change: Otherwise, a bipartition remains unchanged.

An important observation is that, for all L′′ ⊆ L′ ⊆ L, every nontrivial bipar-
tition in P|L′′ and in Ct(T |L′′) arises as a result of a “no change” of a single
bipartition or a “merge” of two or more bipartitions in P|L′. Unfortunately this
observation does not suggest an efficient algorithm.

3.3 Finding subsets of leaves to drop

Given two bipartitions b1 and b2 of L, we can easily identify all leaf subsets L′ of
minimum cardinality such that dropping L′ from L merges b1 and b2. If we have
b1 = A|B and b2 = C|D, then the dropset L′ is the smaller of the two following
sets (or either set in case they have the same size):

(A∆C) ∪ (B∆D) or (A∆D) ∪ (B∆C) (2)

This concept is exploited in Algorithm 1. Observe that, in the terminology of
[16], the dropset of b1 and b2 is the largest partial X-split such that b1 and b2

both extend it.

Theorem 2. Algorithm 1 computes the minimum cardinality dropset for any
pair of bipartitions of L.

Proof. That the dropset causes the two partitions to merge is evident. We estab-
lish that the dropset has minimum cardinality by contradiction. Consider that
there exists a smaller dropset merging the two bipartitions. Then there is at least
one leaf ℓ in the dropset returned by our algorithm that is not in the smaller
dropset. This leaf must be on the same side of the partition in both b1 and b2,
since otherwise our dropset would not merge the two. But our algorithm uses
the symmetric difference of these two sides in computing the dropset, so it could
not have chosen ℓ, a contradiction. ⊓⊔

Algorithm 1 Find minimum cardinality leaf-dropset that renders b1 = b2

Input: two bipartitions on the same leaf set
Output: the dropset (or dropsets if there are two)
1: function bipartition-pair-dropset(b1 = A|B, b2 = C|D)
2: S0 ← A∆C ∪B∆D

3: S1 ← A∆D ∪B∆C

4: if |S0| < |S1| then

5: return [S0]
6: else if |S1| < |S0 then

7: return [S1]
8: else

9: return [S0,S1]
10: end if

11: end function

6

Theorem 3. The cardinalities of the dropsets returned by Algorithm 1 define a
metric on the space of bipartitions of L.

Proof. Three properties characterize a metric: it must be positive definite and
symmetric, and it must obey the triangle inequality. The first two properties are
trivial in this case. Suppose we have bipartitions b1, b2, and b3; we want to show
that the cardinality of the dropset of b1 and b3 cannot exceed the sum of the
cardinalities of the dropsets of b1 and b2 and of b2 and b3. Note that removing
both of these dropsets from both b1 and b3 merges the two bipartitions, thereby
establishing an upper bound on the distance between these two bipartitions in
our space; but the distance is the size of the dropset of b1 and b3, so that the
triangle inequality holds. ⊓⊔

4 The Algorithm

We describe the algorithm at a conceptual level, leaving a more formal speci-
fication to inset text. First, we build the bipartition profile for the given tree
set. Next, we compute the dropset for each pair of bipartitions in the profile
such that neither bipartition in the pair appears in the consensus tree, but the
pair would appear if merged. For each unique dropset we accumulate the list
of bipartition pairs yielding that dropset. These last two parts are formalized
in Algorithm 2. We then compute the impact of each dropset as the number
of bipartition pairs giving rise to that dropset minus the size of the dropset
itself. This score corresponds roughly to the difference between the number of
edges that will be created and the number of leaves that will be lost should that
dropset be used. The dropset of largest impact is then used, the profile updated,
the impacts updated, and the process repeated until there does not remain any
dropset with a nonnegative impact. This greedy overall framework is formalized
in Algorithm 3.

Algorithm 2 Find potential dropsets by examining all pairs in a profile

Input: A bipartition profile P = (L, BT , ν : BT → 2T)
Input: A frequency-only consensus method Ct with threshold t

Output: An object mapping dropsets to lists of bipartition pairs
1: function potential-profile-dropsets(P , Ct)
2: Γ ← {b | b ∈ BT and |ν(b)| ≤ t}
3: for all pairs of bipartitions b1,b2 in Γ do

4: if |ν(b1) ∪ ν(b2)| > t then

5: L← bipartition-pair-dropset(b1, b2)
6: for d ∈ L do

7: δ[d]← δ[d] ∪ {(b1, b2)}
8: end for

9: end if

10: end for

11: return δ

12: end function

7

Algorithm 3 Our top level iterative heuristic for finding dropsets

Input: A tree set T
Input: A frequency-only consensus method C with threshold t

Output: A set of leaves to drop, composed of the union of dropsets
1: function select-and-remove-dropsets(T)
2: d∗ ← dgreedy ← ∅
3: repeat

4: P ← build-bipartition-profile(T |(L− d∗))
5: δ ← potential-profile-dropsets(P , Ct)
6: maximpact = 0
7: dgreedy = ∅
8: for all d ∈ δ’s domain do

9: if |d| − |δ[d]| ≥ maximpact then

10: dgreedy = d

11: maximpact = |d| − |δ[d]|
12: end if

13: end for

14: d∗ = d∗ ∪ dgreedy

15: until dgreedy = ∅
16: return d∗

17: end function

The impact measure ignores disappearing edges and dropsets that are subsets
of another—the latter because a superset with deceivingly poor score is likely to
get chosen in a subsequent round. The overall algorithm is a greedy heuristic,
but does well in practice and on hard instances, as we demonstrate in the next
two sections.

There remains the issue, as with all leaf-dropping methods, of what to do
with the dropped leaves. The staying power of consensus methods argues for
producing a single tree and our method does that. For the rogue taxa, we provide
an intriguing strategy that is applicable in some settings in Section 5.3.

5 Experimental Results

We have implemented our approach as a standalone Python-based prototype.
Our current implementation is suitable for datasets of up to a thousand trees on a
thousand leaves. Scaling up to 10,000 trees on 10,000 leaves is simply a matter of
reimplementing our approach as part of RAxML [17] so as to leverage the efficient
bipartition manipulation routines therein. In the following, we present results on
artificial datasets constructed to cause difficulties to various consensus methods,
followed by results on biological datasets that we used in previous work on
bootstrapping. We then discuss implications of our results on the interpretation
of phylogenetic reconstruction. We conclude by a smaller study on biological
datasets using a slight modification of our algorithm to maximize the number of
nontrivial bipartitions in the result.

8

aR
bc

S
d

e

T
f

g
U hi

j k l m
n

o
p
q
r
s

t
u

vwx

(a) Tree 1

abc
d
e

f
g
h
i

R j
k

S l
m T

n o

U
p

q
r
s

t
u

vwx

(b) Tree 2

abc
d
e

f
g
h
i
j
k

l mn o p q
R
r s

S
t
u

Tv
w

U
x

(c) Tree 3

Trf
R

s
g
v
i
b
m

e
q u h l d x

p
t
U
k
S
w

o
j

cna

(d) Cm−1(T)

abc
d

e
f
g
h

i
j

k l mn
o

p
q
r
s
t

u
vwx

(e) Cm−1(T |{a, . . . , x})

Fig. 1. A simple, yet starkly contrasting, example (top) for which the strict consensus
returns a star tree, but for which our algorithm correctly identifies the rogue taxa and
produces a fully resolved tree (bottom).

5.1 Difficult instances

Our algorithm is particularly well suited to the so-called “pathological” instances
used in the literature to critique the strict or majority consensus. A classic
example is an instance where the trees share a common subtree of n−k leaves, but
where the remaining k leaves destroy resolution in the consensus. The example
we present below is rather simple and space limits prevent us from given more
examples; suffice it to say that our algorithm has no problem in overcoming most
of the pathological cases encountered in the literature.

Our example uses the strict consensus. An instance consists of just three
trees, defined on the 28-leaf set {a, b, . . . , x, R, S, T, U}. The common backbone
consists of the 24 taxa {a, b, . . . , x}, as illustrated in Figure 1(e)). The rogue taxa
form the set {R, S, T, U}; they vary in position on the backbone as indicated in
Figures 1(a), 1(b), and 1(c). The strict consensus tree of the three trees is shown

9

in Fig. 1(d): it is just a star, with no nontrivial bipartition (no internal tree edge)
and its relative information content is I(T , L, Cm−1) = 28+0

28+25
= 28

53
≈ 0.53. Our

algorithm correctly identifies the rogue set, however, so that its strict consensus
tree on the remaining set of leaves is the backbone, with an relative information
content of I(T |{a, . . . , x}, L, Cm−1) = 24+21

28+25
= 45

53
≈ 0.85.

5.2 Results on biological data

We applied our method to the datasets we used in an earlier study of boot-
strapping methods [13] and available at http://lcbb.epfl.ch/BS.tar.bz2. There
are 10 datasets of single-gene and multi-gene DNA sequences, with anywhere
from 125 to 994 taxa. For each dataset we generated 1,000 bootstrap replicates
and applied our algorithm to the resulting trees using both Cm

2
and Cm−1. Our

algorithm found rather diverse dropset sizes across the 10 datasets. The results
are depicted in Figure 2, where a quartet of histogram bars are shown for each
dataset with a nonempty dropset. The first histogram bar (a negative quantity)
denotes how many leaves were dropped, while the second bar (a positive quan-
tity) denotes how many nontrivial bipartitions were uncovered. The third bar is
the sum of the first two, simply depicting the net (non-normalized) contribution
to relative information content. The final bar is discussed in Section 5.3.

5.3 Biological interpretation

It is common practice to conduct and interpret a maximum likelihood phylo-
genetic analysis as follows. First the reconstruction proper is performed, which
yields the “best tree.” Next, some number of bootstrap replicate trees are gen-
erated, say 500 of them. For each bipartition b in the best tree, its support
value is calculated as a normalized count of the number of replicates in which
b appears. Researchers tend to consider edges with support lower than 75% as
unreliable [7].

If, however, rogue taxa are at work in the replicate set, the support values for
certain bipartitions can be deceivingly depressed. To remedy this problem, we
propose that Algorithm 3 be applied to the replicate set in order to identify rogue
taxa. If a dropset of nonzero size is found, this dropset is then to be removed from
each tree in the replicate set. Finally, the (modified) support value is calculated
as a normalized count of the replicates in which b′ appears such that, if we have
b = A|B, then, without loss of generality, we have b′ = A′ ⊆ A|B′ ⊆ B. In
this way, support values in the “best tree” are less susceptible to the deceiving
influence of rogue taxa. This approach offers one possible solution to the data
display problem of leaf-dropping methods. We still return a single tree on the
original leaf set (the “best tree” as reconstructed by an ML method), but support
values for individual bipartitions more accurately reflect the underlying replicate
data.

In our datasets, recomputing support values as suggested above yields very
intriguing and promising results. All but two of the identified dropsets succeeded
in pushing at least one previously hidden edge in the “best tree” over the 75%

10

-10

-5

 0

 5

 10

 15

 20

 25

150 218 354 404 500 628 714 994

∆
B

ip
ar

ti
ti

o
n
s

Taxa

-5

 0

 5

 10

 15

404 628 994

∆
B

ip
ar

ti
ti

o
n
s

Taxa

Trivial Loss
Nontrivial Gain

Net Info Gain
Biol. Interp

Fig. 2. The performance of Algorithm 3 in terms of how much “hidden” consensus is
uncovered in biological data sets. The top plot is for majority consensus, the bottom
for strict consensus. The tree sets each consist of 1,000 bootstrap replicates generated
by the RAxML 7.2.5 Rapid Bootstrap Algorithm.

threshold. The number of edges uncovered by this application of our technique
is displayed in the fourth histogram bar in Figures 2(a) and 2(b). In the dataset
with 404 taxa, 20 edges were uncovered in this manner, pointing to a need for
reevaluation of the phylogeny.

11

5.4 Increasing resolution

Our algorithm can easily be modified to maximize nontrivial bipartitions, that
is, to remove taxa so as to increase resolution. With such a setting, our algorithm
matches the goal of Cranston and Rannala [5], so we analyzed the same dataset
with our technique to compare our results to theirs. The data set consists of 85
species of Canformia Carnivora [8]. We obtained the sequence data from Tree-
BASE (http://www.treebase.org, Study Accession # S1532) and reconstructed
a tree using RAxML-7.2.5 [17] under the GTRCAT approximation. Additionally,
RAxML was used to generate 350 bootstrap replicates (the number chosen by
RAxML’s bootstopping algorithm). Analyzing these 350 trees with our modified
Algorithm 3 and using majority consensus generated fully resolved trees with 50
to 55 taxa, a value consistent with the size of the agreement subtrees observed
by Cranston and Rannala [5].

6 Conclusions and Future Work

We have presented a novel framework to define rogue taxa so as to maximize
the relative information present in a consensus tree computed after removing
these rogue taxa. This framework defines a bicriterion problem, MISC, that is
the first to balance explicitly loss of taxa with gain in resolution. We have also
provided an effective greedy heuristic to find a good set of such rogue taxa.
This algorithm was tested on both pathological cases from the literature and
a variety of biological data. The changes in the consensus tree can be parlayed
into more accurate bootstrap scores, which in turn can lead to the reevaluation
of phylogenetic trees, as we showed on our biological datasets.

Further algorithmic work includes a characterization of the computational
complexity of the MISC problem, as well as improved algorithms for it, including
approximation algorithms with known performance guarantees. Generalizing our
approach to support consensus methods other than frequency-based ones is an-
other algorithmic problem worth investigating. Finally, there is certainly room to
extend and apply our techniques in different domains, most notably in Bayesian
phylogenetics (as suggested in Section 5.4) and for the subtree mergers used in
the Disk-Covering Methods (as suggested in [14]). On the bioinformatics side,
our preliminary findings indicate that existing phylogenies can be significantly
refined by applying our approach to the recomputation of bootstrap support.

Acknowledgements

NDP thanks Alexandros Stamatakis for useful feedback regarding experimental
design as well as for initially collating the biological datasets used in Section 5.

References

1. A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary
trees. SIAM Journal on Computing, 26:758–769, 1994.

12

2. H. Bandelt and A. Dress. Split decomposition: A new and useful approach to
phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution,
1(3):242–252, September 1992.

3. D. Bryant. A classification of consensus methods for phylogenetics. In Biocon-
sensus, volume 61 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 163–184. American Math. Soc. Press, 2002.

4. D. Bryant and V. Moulton. Neighbor-Net: An Agglomerative Method for the
Construction of Phylogenetic Networks. Mol Biol Evol, 21(2):255–265, 2004.

5. K. A. Cranston and B. Rannala. Summarizing a Posterior Distribution of Trees
Using Agreement Subtrees. Syst Biol, 56(4):578–590, 2007.

6. M. Farach, T. M. Przytycka, and M. Thorup. On the agreement of many trees.
Information Processing Letters, 55(6):297–301, 1995.

7. J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., 2004.
8. T. L. Fulton and C. Strobeck. Molecular phylogeny of the arctoidea (carnivora):

Effect of missing data on supertree and supermatrix analyses of multiple gene data
sets. Molecular Phylogenetics and Evolution, 41(1):165–181, October 2006.

9. O. Gauthier and F.-J. Lapointe. Seeing the Trees for the Network: Consensus,
Information Content, and Superphylogenies. Syst Biol, 56(2):345–355, 2007.

10. D. Huson. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics,
14(1):68–73, 1998.

11. T. Margush and F. R. McMorris. Consensus n-trees. Bulletin of Mathematical
Biology, 43:239–244, 1981.

12. N. D. Pattengale. Efficient Algorithms for Phylogenetic Post-Analysis. PhD thesis,
University of New Mexico, 2010.

13. N. D. Pattengale, M. Alipour, O. R. P. Bininda-Emonds, B. M. E. Moret, and
A. Stamatakis. How many bootstrap replicates are necessary? In S. Batzoglou,
editor, RECOMB, volume 5541 of Lecture Notes in Computer Science, pages 184–
200. Springer, 2009.

14. N. D. Pattengale, K. M. Swenson, M. M. Morin, and B. M. E. Moret. Higher fidelity
subtree merging for disk-covering methods. Poster, Algorithmic Biology, 2006.
http://www.calit2.net/events/algorithmicbio/files/PattengaleAlgoBio2006.pdf.

15. B. Redelings. Bayesian phylogenies unplugged: Majority consensus trees with wan-
dering taxa. http://www4.ncsu.edu/∼bdredeli/wandering.pdf.

16. C. Semple and M. Steel. Tree reconstruction via a closure operation on partial
splits. In Gascuel, M.-F. Sagot (Eds.), Proceedings of Journes Ouvertes: Biologie,
Informatique et Mathmatiques, Lecture Notes in Computer Science, pages 129–134.
Springer-Verlag, 2001.

17. A. Stamatakis. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses
with thousands of taxa and mixed models. Bioinformatics, 22(21):2688–2690, 2006.

18. J. L. Thorley, M. Wilkinson, and M. Charleston. The information content of con-
sensus trees. In A. Rizzi, M. Vichi, and H. Bock, editors, Studies in Classification,
Data Analysis, and Knowledge Organization, Advances in Data Science and Clas-
sification, pages 91–98. Springer, 1998.

19. M. Wilkinson. Common Cladistic Information and its Consensus Representation:
Reduced Adams and Reduced Cladistic Consensus Trees and Profiles. Syst Biol,
43(3):343–368, 1994.

20. M. Wilkinson. More on reduced consensus methods. Syst. Biol., 44:435–439, 1995.
21. M. Wilkinson. Majority-rule reduced consensus trees and their use in bootstrap-

ping. Mol Biol Evol, 13(3):437–444, 1996.

