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Abstract. It is a well-known theorem by Chomsky and Schützenberger
(1963) that every context-free language can be represented as a homo-
morphic image of the intersection of a Dyck language and a regular
language. This paper gives a Chomsky-Schützenberger-type characteri-
zation for multiple context-free languages, which are a natural extension
of context-free languages, with introducing the notion of multiple Dyck
languages, which are also a generalization of Dyck languages.

1 Introduction

A multiple context-free grammar (mcfg) is a natural extension of a context-free
grammar (cfg). A nonterminal symbol in an mcfg derives tuples of strings by
synchronized parallel derivation. The direct derivation relation of an mcfg is de-
fined by a function over tuples of strings (of terminal symbols) such that each
component of the function value is defined by a concatenation of some com-
ponents of arguments and constant strings of terminal symbols with a linearity
condition on components of arguments. Let us call such a function linear regular.
The language generated by an mcfg is called a multiple context-free language
(mcfl).

The generative power of mcfgs is properly larger than cfgs and properly
smaller than context-sensitive grammars (csgs). There are several computational
models that have the same generative power as mcfgs, e.g., string version of linear
context-free rewriting systems, finite copying tree-to-string transducers, string
generating context-free hypergraph grammars and local unordered scattered con-
text grammars (see [2, 6] for the discussion of these equivalences). Mcfgs share
many properties with cfgs such as closure properties. There are other gram-
matical formalisms of which generative power is between cfgs and csgs such as
indexed grammars. In contrast to indexed grammars, the membership problem
for an mcfl is solvable in polynomial time in the length of an input string and
each mcfl is semilinear. These properties are due to the synchronized parallel
derivation realized by linear regular functions. Generally, each component of a
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tuple of strings appearing in the derivation is not adjacent with one another
in the resultant string of terminal symbols. However, these components always
share synchronized structure of derivation. To capture this property of mcfls, we
will introduce multiple Dyck languages and show a theorem that is an extension
of the representation theorem of cfls. It is well-known that any cfl can be rep-
resented as a homomorphic image of the intersection of a regular language and
a Dyck language (Chomsky-Schützenberger theorem). A Dyck language is the
set of well-nested parentheses (brackets). A multiple Dyck language is the set of
‘well-nested tuples of parentheses.’ The main theorem of this paper is that for
a given mcfl L, there exists a multiple Dyck language D, a regular language R

and a homomorphism h such that L = h(D ∩ R). As is the same with cfls, this
representation theorem for mcfls can be easily lifted to the generator theorem.

The main results of this paper were partially published in and are partially
based on Chapter 4 of [3].

2 Preliminaries

For an alphabet Σ, Σ∗ denotes the set of all strings over Σ and (Σ∗)m denotes
the set of all m-tuples of strings over Σ. The empty string is denoted by ε.

2.1 Context-Free Grammars

A context-free grammar (cfg) is a tuple G = 〈Σ, N, P, S〉, where Σ is a finite set
of terminal symbols, N is a finite set of nonterminal symbols, P ⊆ N × (Σ ∪N)∗

is a finite set of rules, which are denoted by A → α for A ∈ N and α ∈ (Σ∪N)∗,
and S ∈ N is called the start symbol. Elements of P ∩ (N × Σ∗) are called
terminating rules. ⇒G and ⇒∗

G denote derivations of one step and any steps
(including zero-step), respectively. The language generated by a cfg G, which is
called a context-free language (cfl), is the set L(G) = {w ∈ Σ∗ | S ⇒∗

G w }. If
P ⊆ N × (Σ∗ ∪ Σ∗N), G is called a right-linear grammar and L(G) is called a
regular language.

Let Σ denote an alphabet disjoint from Σ that admits a bijection (·) from
Σ to Σ. The Dyck grammar over Σ ∪ Σ is the cfg that has S as its unique
nonterminal symbol and whose rules are S → ε and S → SaSā for all a ∈ Σ.
The language generated by a Dyck grammar is called a Dyck language. A string
on Σ∪Σ is well-bracketed if it is an element of the Dyck language. An occurrence
of a ∈ Σ and an occurrence of ā ∈ Σ in a well-bracketed string are corresponding
if they are derived at the same derivation step. Note that the Dyck grammar is
unambiguous. According to the custom, we call elements of Σ ∪ Σ parentheses.

Chomsky and Schützenberger [1] gave a characterization of cfls by Dyck
languages.

Theorem 1. A language L over Σ is context-free if and only if there are an
alphabet ∆, a homomorphism h : (∆∪∆)∗ → Σ∗ and a regular language R over
∆ ∪ ∆ such that L = h(D ∩ R) where D is the Dyck language over ∆ ∪ ∆.



Theorem 1 can be stated in an even stronger (for the ‘only if’ direction) form:

Theorem 2. For a given alphabet Σ, there are an alphabet ∆ and a homomor-
phism h : (∆∪∆)∗ → Σ∗ such that for any language L over Σ, L is context-free
if and only if there is a regular language R such that L = h(D ∩ R) where D is
the Dyck language over ∆ ∪ ∆.

2.2 Multiple Context-Free Grammars

We assume a countably infinite set X of variables. A function from (Σ∗)m1×· · ·×
(Σ∗)mn to (Σ∗)m is said to be linear regular, if there are t1, . . . , tm ∈ (Σ∪{xi,j ∈
X | 1 ≤ i ≤ n, 1 ≤ j ≤ mi })

∗ such that each variable xi,j occurs at most once
in t1 . . . tm and for any ~wi = 〈wi,1, . . . , wi,mi

〉 ∈ (Σ∗)mi with 1 ≤ i ≤ n, it holds
that

f(~w1, . . . , ~wn) = 〈v1, . . . , vm〉

where each vk for k = 1, . . . , m is obtained from tk by substituting wi,j for
xi,j for all i and j. We simply write f(〈x1,1, . . . , x1,m1〉, . . . , 〈xn,1, . . . , xn,mn

〉) =
〈t1, . . . , tm〉 to denote the definition of f . For example, both f(〈x1, x2〉) =
〈ax1b, cx2d〉 and g(〈x1, x2〉, 〈y1, y2〉) = 〈x1y1, y2x2〉 are linear regular functions
where x1, x2, y1, y2 ∈ X and a, b, c, d ∈ Σ, while h(〈x1〉) = 〈x1x1〉 is not, since x1

appears twice in the right-hand side. f is said to be nonerasing, if every variable
in the left-hand side of the definition of f appears in the right-hand side. f is
terminal-free, if the right-hand side of its definition contains no symbols from Σ.

An alphabet N is said to be indexed when we assume a function dim that
assigns positive integers to symbols in N .

A multiple context-free grammar (mcfg) is a tuple G = 〈Σ, N, F, P, S〉, where

– Σ is an (unindexed) alphabet whose elements are called terminal symbols,
– N is an indexed alphabet whose elements are called nonterminal symbols,
– F is a finite set of linear regular functions,
– P is a finite set of rules of the form A → f(B1, . . . , Bn) where A, B1, . . . ,

Bn ∈ N and f : (Σ∗)dim(B1) × · · · × (Σ∗)dim(Bn) → (Σ∗)dim(A) ∈ F ,
– S ∈ N is called the start symbol whose dimension is 1.

For a rule π = A → f(B1, . . . , Bn), the head and the body of π refer to A and
f(B1, . . . , Bn), respectively, and the rank of π is defined to be rank(π) = n. If
rank(π) = 0 and f() = ~w, we simply write A → ~w for π with suppressing f . If
f is terminal-free, π is also said to be terminal-free.

For each A ∈ N , LG(A) is recursively defined as the smallest set of dim(A)-
tuples of strings satisfying that if A → f(B1, . . . , Bn) ∈ P and ~wi ∈ LG(Bi) for
i = 1, . . . , n, then f(~w1, . . . , ~wn) ∈ LG(A). The language L(G) generated by G is
the set {w ∈ Σ∗ | 〈w〉 ∈ LG(S) }. L(G) is called a multiple context-free language
(mcfl). Two grammars G and G′ are equivalent if L(G) = L(G′).

Example 1. Let G1 be the mcfg 〈Σ1, N1, F1, P1, S〉 such that Σ1 = {a, b, c, d},
N1 = {S, A, B} with dim(S) = 1, dim(A) = dim(B) = 2, F1 consists of e,
f , g and the constant functions appearing in the body of rules in P1 below



where e(〈x1, x2〉, 〈y1, y2〉) = 〈x1y1x2y2〉, f(〈x1, x2〉) = 〈ax1, bx2〉, g(〈x1, x2〉) =
〈cx1, dx2〉, and P1 = {S → e(A, B), A → f(A), A → 〈a, b〉, B → g(B), B →
〈c, d〉}. Let us call the rules in P1 π1, π2, . . . , π5 in the order written above. For
example, 〈a, b〉 ∈ LG1(A) by π3, 〈aa, bb〉 ∈ LG1(A) by π2, 〈c, d〉 ∈ LG1(B) by π5

and 〈aacbbd〉 ∈ LG1(S) by π1. We have L(G1) = { amcnbmdn | m, n ≥ 1 }.

For a nonterminal symbol A of an mcfg G, a series of rule application steps to
obtain a tuple of strings of terminal symbols ~w ∈ LG(A) is called a derivation
of ~w in G.

By q-MCFG(r) we denote the collection of mcfgs G such that dim(A) ≤ q

for all A ∈ N and rank(π) ≤ r for all π ∈ P . q-MCFL(r) is the class of mcfls
generated by grammars in q-MCFG(r).

G is said to be nonerasing, if all f ∈ F are nonerasing. It is known that
every G ∈ q-MCFG(r) has an equivalent nonerasing grammar in q-MCFG(r) [8].
Grammars from 1-MCFG(r) are identified with cfgs.

Proposition 1 (Seki et al. [8] and Rambow and Satta [6]). For q ≥ 1,
q-MCFL(r) ( (q+1)-MCFL(r). For q ≥ 2, r ≥ 1, q-MCFL(r) ( q-MCFL(r+1)
except for 2-MCFL(2) = 2-MCFL(3). For q ≥ 1, r ≥ 3 and 1 ≤ k ≤ r − 2,
q-MCFL(r) ⊆ (k + 1)q-MCFL(r − k).

Proposition 2 (Rambow and Satta [6]). Each family q-MCFL(r) for r ≥ 2
is a substitution closed full AFL. That is, they are closed under homomorphism,
inverse homomorphism, intersection with regular languages, union, concatena-
tion, the Kleene plus and substitution.

Proposition 3 (Seki et al. [8]). Let G ∈ q-MCFG(r) be given. It is decidable
in O(|w|q(r+1)) time whether w ∈ L(G) for any w ∈ Σ∗.

2.3 Multiple Dyck Languages

Let q and r be fixed. We define the notion of the multiple Dyck language in
q-MCFL(r) on an indexed alphabet, where we assume that the maximum di-
mension of elements of the indexed alphabet does not exceed r. For an indexed
alphabet ∆, let

∆̂ = { a[i], ā[i] | a ∈ ∆, 1 ≤ i ≤ dim(a) }.

Definition 1. The multiple Dyck grammar D∆ on an indexed alphabet ∆ is the
mcfg that has nonterminal symbols Sm with dim(Sm) = m for m ≤ q, among
which the start symbol is S1, and that has rules of the following three types:

1. all the possible terminal-free rules allowed in q-MCFG(r);
2. rules of the form Sm → fa(Sm) where fa(〈x1, . . . , xm〉) = 〈a[1]x1ā

[1], . . . ,

a[m]xmā[m]〉 for a ∈ ∆ with dim(a) = m;
3. rules of the form Sm → f(Sm) with f(〈x1, . . . , xm〉) = 〈t1, . . . , tm〉 where

each ti is either xi, xia
[1]ā[1] or a[1]ā[1]xi for some a ∈ ∆ of dimension 1.



The language L(D∆) is called the multiple Dyck language over ∆ ∪ ∆.

We note that rules of type 3 are redundant if r > 1. If q = 1 and r > 1, L(D∆)
is indeed the (context-free) Dyck language over ∆ ∪ ∆.

Every element of tuples in LD∆
(Sm) is well-bracketed. Moreover pairs of cor-

responding parentheses in a string from L(D∆) are partitioned into groups each
of which consists of exactly 〈a[1], ā[1]〉, . . . , 〈a[dim(a)], ā[dim(a)]〉 for some a ∈ ∆. If
some member of such a group A is inside some member of a group B, then all
members from A are inside some member of B. For example, b[1]a[1]ā[1]a[2]ā[2]b̄[1]

b[2]a[3]ā[3]b̄[2] is allowed, while b[1]a[1]ā[1]b̄[1]a[2]ā[2]b[2]a[3]ā[3]b̄[2] is not, where
dim(a) = 3 and dim(b) = 2. The way of combining parentheses is restricted
by available means in q-MCFG(r).

3 Theorem

This section discusses Chomsky-Schützenberger type characterization of mcfls.

3.1 Informal Example of Construction

We first review an idea of the proof of Theorem 1 by using a simple example.
Let G0 be the cfg 〈Σ0, N0, P0, S〉 where Σ0 = {a, b, c}, N0 = {S, A, B}, P0 =
{S → aA, A → bAB, A → a, B → c}. We call the four rules π1, π2, π3 and π4

in the order as written above. Let ∆ = {[[π1,1, [[π2,1, [[π2,2, [[a, [[b, [[c} and let
us write ]]x to denote [[x for each [[x ∈ ∆. Also let h : (∆ ∪ ∆)∗ → Σ∗

0 be
the homomorphism defined by h([[x) = x for x ∈ Σ0 and h(z) = ε for other
z ∈ ∆ ∪ ∆. Figure 1 shows an example of a derivation tree (called t0) in G0.
Intuitively, [[π,i and ]]π,i mean the left end and the right end of a derivation

S

a A

b A B

a c

[[a ]]a [[π1,1 ]]π1,1

[[b ]]b [[π2,1 ]]π2,1 [[π2,2 ]]π2,2

[[a ]]a [[c ]]c

Fig. 1. A derivation tree in G0

starting from the i-th nonterminal symbol in the body of the rule π. For x ∈ Σ0,
a pair [[x and ]]x denotes x. In the figure, paired symbols in ∆ ∪ ∆ are placed
on the left-side and the right-side of each edge. For a tree t, let α(t) denote



the string over ∆ ∪ ∆ obtained by concatenating these labels in the depth-first
left-to-right order. For example,

α(t0) = [[a ]]a [[π1,1 [[b ]]b [[π2,1 [[a ]]a ]]π2,1 [[π2,2 [[c ]]c ]]π2,2 ]]π1,1

for t0 in the figure. For a tree t, let yield(t) denote the string obtained by concate-
nating the labels of leaf nodes of t from left to right. Then, yield(t) = h(α(t)) for
a derivation tree t in G0 and L(G0) = h({α(t) | t is a derivation tree in G0 }).
Therefore, what we should do is to construct a right-linear grammar GR0 such
that L(GR0)∩D = {α(t) | t is a derivation tree in G0 } in this particular exam-
ple where D is the Dyck language over ∆∪∆. GR0 can be defined by considering
the finite-state tree traversal that emits [[x and ]]x when it visits x ∈ Σ0, emits
[[π,i when it visits the i-th nonterminal symbol in the body of π, and emits ]]π,i

when it returns from that nonterminal symbol. Note that nonterminal symbols
in N0 are used as ‘finite states’ (nonterminal symbols of GR0) when the traversal
goes down while a new nonterminal symbol T is used when it goes up.

S → [[a ]]a [[π1,1 A T → ]]π1,1 T

A → [[b ]]b [[π2,1 A T → ]]π2,1 [[π2,2 B T → ]]π2,2 T

A → [[a ]]a T B → [[c ]]c T

T → ε

A similar idea can be applied to mcfg. Let G1 be the mcfg from Example 1.
Figure 2 shows a tree that illustrates the derivation in the example. (This kind

S
[1]

A
[1]

B
[1]

A
[2]

B
[2]

a A
[1] c b A

[2] d

a b

[[
[1]
π1 ]]

[1]
π1

[[
[1]
π1,1 ]]

[1]
π1,1 [[

[1]
π1,2 ]]

[1]
π1,2 [[

[2]
π1,1 ]]

[2]
π1,1 [[

[2]
π1,2 ]]

[2]
π1,2

[[
[1]
π2 ]]

[1]
π2

[[
[1]
a ]]

[1]
a

[[
[1]
π2,1 ]]

[1]
π2,1

[[
[1]
π3 ]]

[1]
π3

[[
[1]
a ]]

[1]
a

[[
[1]
π5 ]]

[1]
π5

[[
[1]
c ]]

[1]
c

[[
[2]
π2 ]]

[2]
π2

[[
[1]
b ]]

[1]
b

[[
[2]
π2,1 ]]

[2]
π2,1

[[
[2]
π3 ]]

[2]
π3

[[
[1]
b ]]

[1]
b

[[
[2]
π5 ]]

[2]
π5

[[
[1]
d ]]

[1]
d

Fig. 2. A derived tree in G1

of tree is called a derived tree in mcfg. Here we use derived tree without formal
definition since derived tree is not needed in the formal proofs in the rest of
this paper.) In the figure, A[j] (j = 1, 2) denotes a (hypothetical) nonterminal
symbol that derives the j-th component wj of 〈w1, w2〉 ∈ LG1(A). S[1], B[1] and



B[2] are used in the same purpose. A horizontal arc between A[1] and A[2] means
that these two nodes together represent an instance of A in the derivation. Let

Γ = {π1, π2, . . . , π5, 〈π1, 1〉, 〈π1, 2〉, 〈π2, 1〉, 〈π4, 1〉, a, b, c, d}.

The symbol 〈π, i〉 (1 ≤ i ≤ rank(π)) corresponds to the i-th nonterminal symbol
in the body of the rule π. For example, 〈π1, 1〉 and 〈π1, 2〉 correspond to A

and B, respectively. For each π ∈ P1, define dim(π) to be the dimension of
the head of π. For each π ∈ P1 and i (1 ≤ i ≤ rank(π)), define dim(〈π, i〉) to
be the dimension of the i-th nonterminal symbol in the body of π. For each
x ∈ Σ1, define dim(x) = 1. Thus, dim(π1) = dim(a) = · · · = dim(d) = 1 and

dim(x) = 2 for other x ∈ Γ . We abbreviate symbols in Γ̂ as [[
[1]
π1

, ]][1]π1
, [[[1]

π2
,

]]
[1]
π2

, [[[2]
π2

, ]][2]π2
, . . ., [[

[1]
π1,1, ]]

[1]
π1,1, [[

[2]
π1,1, ]]

[2]
π1,1, . . .. Similarly to cfg’s case, [[

[j]
π,i (rsp.

]]
[j]
π,i) denotes the left (rsp. right) end of a derivation for the j-th component

of the i-th nonterminal symbol in the body of π. For the mcfg G1, we also
have L(G1) = h({α(t) | t is a ‘derived tree’ in G1 }) where h is defined similarly
to cfg’s case. Hence, it suffices to give a right-linear grammar GR1 such that
L(GR1)∩L(DΓ ) = {α(t) | t is a ‘derived tree’ in G1 }. The construction of GR1

is a little cumbersome but not difficult:

S[1] → [[
[1]
π1

[[
[1]
π1,1A

[1] T → ]]
[1]
π1,1 [[

[1]
π1,2 B[1] T → ]]

[1]
π1,2 [[

[2]
π1,1 A[2]

T → ]]
[2]
π1,1 [[

[2]
π1,2 B[2] T → ]]

[2]
π1,2 ]]

[1]
π1

T

A[1] → [[
[1]
π2

[[
[1]
a ]]

[1]
a [[

[1]
π2,1 A[1] T → ]]

[1]
π2,1 ]]

[1]
π2

T

A[2] → [[
[2]
π2

[[
[1]
b ]]

[1]
b [[

[2]
π2,1 A[2] T → ]]

[2]
π2,1 ]]

[2]
π2

T

A[1] → [[
[1]
π3

[[
[1]
a ]]

[1]
a ]]

[1]
π3

T A[2] → [[
[2]
π3

[[
[1]
b ]]

[1]
b ]]

[2]
π3

T

B[1] → [[
[1]
π4

[[
[1]
c ]]

[1]
c [[

[1]
π4,1 B[1] T → ]]

[1]
π4,1 ]]

[1]
π4

T

B[2] → [[
[2]
π4

[[
[1]
d ]]

[1]
d [[

[2]
π4,1 B[2] T → ]]

[2]
π4,1 ]]

[2]
π4

T

B[1] → [[
[1]
π5

[[
[1]
c ]]

[1]
c ]]

[1]
π5

T B[2] → [[
[2]
π5

[[
[1]
d ]]

[1]
d ]]

[2]
π5

T

T → ε .

3.2 Formal Construction

Let us arbitrarily fix positive integers q and r. We now give our Chomsky-
Schützenberger type characterization for q-MCFL(r). Without loss of generality,
we may assume that any G ∈ q-MCFG(r) satisfies the following conditions:

– G is nonerasing;
– if G has a rule A → f(B1, . . . , Bn) and 1 ≤ i < j ≤ n, then Bi 6= Bj .

Indeed every mcfg in q-MCFG(r) has an equivalent one in q-MCFG(r) with this
property.

Let G = 〈Σ, N, F, P, S〉 ∈ q-MCFG(r) be given. Our goal is to find an indexed

alphabet ∆, a right-linear grammar R over ∆̂, and a homomorphism h : ∆̂∗ →
Σ∗ such that L(G) = h(L(D∆) ∩ L(R)).



Let

∆ = { [[a | a ∈ Σ } ∪ { [[π | π ∈ P } ∪ { [[π,i | 1 ≤ i ≤ rank(π), π ∈ P }

where dim([[a) = 1 for a ∈ Σ, dim([[π) = dim(A) and dim([[π,i) = dim(Bi) if
π ∈ P is of the form A → f(B1, . . . , Bn). Hereafter we write ]]∗ instead of [[∗

for each [[∗ ∈ ∆. By (̃·) we denote the homomorphism from Σ∗ to ∆̂∗ such that

ã = [[
[1]
a ]]

[1]
a .

The nonterminal symbols of the right-linear grammar R is

{T } ∪ {A[k] | A ∈ N, 1 ≤ k ≤ dim(A) }

and the start symbol is S [1]. The rules of R are given as follows. Suppose that
G has a rule π of the form A → f(B1, . . . , Bn) and f is represented as

f(〈x1,1, . . . , x1,m1〉, . . . , 〈xn,1, . . . , xn,mn
〉) = 〈t1, . . . , tm〉

where tk = uk,0xik1,jk1
uk,1 . . . xikpk

,jkpk
uk,pk

with uk,0, . . . , uk,pk
∈ Σ∗

for k = 1, . . . , m.

For each k = 1, . . . , m, if pk = 0, then R has the rule

A[k] → [[
[k]
π ũk,0 ]]

[k]
π T

and otherwise, R has the following pk + 1 rules:

A[k] → [[
[k]
π ũk,0 [[

[jk1]
π,ik1

B
[jk1]
ik1

,

T → ]]
[jk(l−1) ]

π,ik(l−1)
ũk,l−1 [[

[jkl]
π,ikl

B
[jkl]
ikl

for 1 < l ≤ pk,

T → ]]
[jkpk

]

π,ikpk
ũk,pk

]]
[k]
π T.

Moreover R has
T → ε,

which is the unique terminating rule of R.
We define the homomorphism h : ∆̂∗ → Σ∗ so that for z ∈ ∆̂,

h(z) =

{
a if z = [[

[1]
a for some a ∈ Σ;

ε otherwise.

3.3 Correctness

Lemma 1. L(G) ⊆ h(L(R) ∩ L(D∆)).

Proof. By induction we show that if 〈w1, . . . , wm〉 ∈ LG(A), then there are

v1, . . . , vm ∈ ∆̂∗ such that 〈v1, . . . , vm〉 ∈ LD∆
(Sm) and A[k] ⇒∗

R vk and h(vk) =
wk for each k = 1, . . . , m.



Suppose that 〈w1, . . . , wm〉 ∈ LG(A) due to π = A → f(B1, . . . , Bn) ∈ P

and 〈wi,1, . . . , wi,mi
〉 ∈ LG(Bi) for i = 1, . . . , n where f(〈w1,1, . . . , w1,m1〉, . . . ,

〈wn,1, . . . , wn,mn
〉) = 〈w1, . . . , wm〉. Note that the case of n = 0 provides the

basis of the induction.
The induction hypothesis says that for each i = 1, . . . , n we have vi,1, . . . ,

vi,mi
∈ ∆̂∗ such that 〈vi,1, . . . , vi,mi

〉 ∈ LD∆
(Smi

), h(vi,j) = wi,j and B
[j]
i ⇒∗

R vi,j

for j = 1, . . . , mi, where we have B
[j]
i ⇒∗

R vi,jT ⇒R vi,j because T → ε is the
unique terminating rule of R. Let us represent f as

f(〈x1,1, . . . , x1,m1〉, . . . , 〈xn,1, . . . , xn,mn
〉) = 〈t1, . . . , tm〉

where tk = uk,0xik1,jk1
uk,1 . . . xikpk

,jkpk
uk,pk

with uk,0, . . . , uk,pk
∈ Σ∗

for k = 1, . . . , m.

We define vk by

vk = [[
[k]
π ũk,0 [[

[jk1]
π,ik1

vik1 ,jk1
]]
[jk1]
π,ik1

ũk,1 . . . [[
[jkpk

]

π,ikpk
vikpk

,jkpk
]]
[jkpk

]

π,ikpk
ũk,pk

]]
[k]
π . (1)

It is easy to see that for each k, h(vk) = wk and A[k] ⇒∗
R vk by B

[j]
i ⇒∗

R vi,jT .
Hence it is enough to show that 〈v1, . . . , vm〉 ∈ LD∆

(Sm). Let

v′ikl,jkl
= [[

[jkl]
π,ikl

vikl,jkl
]]
[jkl]
π,ikl

ũk,l, (2)

v′k = v′ik1,jk1
. . . v′ikpk

,jkpk
(3)

for l = 1, . . . , pk and k = 1, . . . , m. By (1), (2), (3),

vk = [[
[k]
π ũk,0v

′
k ]]

[k]
π . (4)

Applying appropriate rules of type 2 and type 3 of Definition 1 to

〈vi,1, . . . , vi,mi
〉 ∈ LD∆

(Smi
),

for i = 1, . . . , n, we have

〈v′i,1, . . . , v
′
i,mi

〉 ∈ LD∆
(Smi

)

by (2). Applying to those the rule Sm → f ′(Sm1 , . . . , Smn
) of type 1 where f ′ is

obtained by removing all the occurrences of terminal symbols in the definition
of f , we get

〈v′1, . . . , v
′
m〉 ∈ LD∆

(Sm)

by (3). By (4), appropriate rules of type 3 and type 2 provide

〈v1, . . . , vm〉 ∈ LD∆
(Sm). �

Lemma 2. Suppose that A[k] ⇒∗
R w and w is well-bracketed. Then there is a

rule π ∈ P such that the head of π is A and the outermost parentheses of w are
just [[

[k]
π , ]][k]

π .



Proof. The first rule for deriving w applied to A[k] is either A[k] → [[
[k]
π ũk,0 ]]

[k]
π T

or A[k] → [[
[k]
π ũk,0 [[

[jk1]
π,ik1

B
[jk1]
ik1

for some π ∈ P . In the former case, only T → ε

can be used due to the well-bracketedness of w, because all the other rules of
G′ whose heads are T start by a closing parenthesis. In the latter case, the open
parenthesis [[

[k]
π must be closed by the succeeding derivation process. The only

rule of G′ for ]]
[k]
π is T → ]]

[jkpk
]

π,ikpk
ũk,pk

]]
[k]
π T . Thus A[k] ⇒∗

G′ [[
[k]
π w′ ]]

[k]
π T ⇒∗

G′ w,

where the occurrences of [[
[k]
π and ]]

[k]
π are corresponding. By the same reason

for the former case, we must apply the rule T → ε and obtain w = [[
[k]
π w′ ]]

[k]
π .
ut

Lemma 3. h(L(R) ∩ L(D∆)) ⊆ L(G).

Proof. We show by induction that whenever 〈w1, . . . , wm〉 ∈ LD∆
(Sm) and

A[k] ⇒∗
R wk for k = 1, . . . , m where m = dim(A), we have 〈h(w1), . . . , h(wm)〉 ∈

LG(A).

Let us consider the derivation of wk in R. By Lemma 2, each wk has the form
wk = [[

[k]
πk

w′
k ]]

[k]
πk

for some rule πk ∈ P and w′
k ∈ ∆̂∗. The outermost parentheses

of 〈w1, . . . , wm〉 are exactly [[
[1]
π1

, ]][1]π1
, . . . , [[[m]

πm
, ]][m]

πm
and thus 〈w1, . . . , wm〉 ∈

LD∆
(Sm) implies that π1 = π2 = · · · = πm. We may hereafter omit the subscript

of πk as π. Let π be A → f(B1, . . . , Bn) and f represented as

f(〈x1,1, . . . , x1,m1〉, . . . , 〈xn,1, . . . , xn,mn
〉) = 〈t1, . . . , tm〉

where tk = uk,0xik1,jk1
uk,1 . . . xikpk

,jkpk
uk,pk

with uk,0, . . . , uk,pk
∈ Σ∗

for k = 1, . . . , m. (5)

If pk = 0, the only rule of R that derives [[
[k]
π is A[k] → [[

[k]
π ũk,0 ]]

[k]
π T and thus

wk = [[
[k]
π ũk,0 ]]

[k]
π . If pk ≥ 1, we have

A[k] ⇒
R

[[
[k]
π ũk,0 [[

[jk1]
π,ik1

B
[jk1]
ik1

∗
⇒
R

wk.

Corresponding to the occurrence of [[
[jk1]
π,ik1

, ]]
[jk1]
π,ik1

must occur in wk. The only

rule that provides ]]
[jk1]
π,ik1

is T → ]]
[jk1]
π,ik1

ũk,1 [[
[jk2]
π,ik2

B
[jk2]
ik2

unless pk = 1. Thus

A[k] ⇒
R

[[
[k]
π ũk,0 [[

[jk1]
π,ik1

B
[jk1]
ik1

∗
⇒
R

[[
[k]
π ũk,0 [[

[jk1]
π,ik1

vk,1T

⇒
R

[[
[k]
π ũk,0 [[

[jk1]
π,ik1

vk,1 ]]
[jk1]
π,ik1

ũk,1 [[
[jk2]
π,ik2

B
[jk2]
ik2

∗
⇒
R

wk .



for some vk,1, which must be well-bracketed. Then we need ]]
[jk2]
π,ik2

corresponding

to the occurrence of [[
[jk2]
π,ik2

. Repeatedly applying this discussion, we finally get

A[k] ⇒
R

[[
[k]
π ũk,0 [[

[jk1]
π,ik1

B
[jk1]
ik1

∗
⇒
R

[[
[k]
π ũk,0 [[

[jk1]
π,ik1

vk,1T

∗
⇒
R

[[
[k]
π ũk,0 [[

[jk1]
π,ik1

vk,1 ]]
[jk1]
π,ik1

ũk,1 . . . [[
[jkpk

]

π,ikpk
vikpk

,jkpk
T

⇒
R

[[
[k]
π ũk,0 [[

[jk1]
π,ik1

vk,1 ]]
[jk1]
π,ik1

ũk,1 . . . [[
[jkpk

]

π,ikpk
vk,pk

]]
[jkpk

]

π,ikpk
ũk,pk

]]
[k]
π T

∗
⇒
R

wk.

This holds for any pk ≥ 1. By Lemma 2

wk = [[
[k]
π ũk,0 [[

[jk1]
π,ik1

vk,1 ]]
[jk1]
π,ik1

ũk,1 . . . [[
[jkpk

]

π,ikpk
vk,pk

]]
[jkpk

]

π,ikpk
ũk,pk

]]
[k]
π .

Let wi,j = vk,l if xi,j occurs as the l-th variable in tk, i.e., wikl,jkl
= vk,l. We

note that B
[j]
i ⇒∗

R wi,jT ⇒R wi,j and

h(wk) = uk,0h(wik1 ,jk1
)uk,1 . . . h(wikpk

,jkpk
)uk,pk

. (6)

Applying Lemma 2 to each wi,j , which must be well-bracketed, we have wi,j =

[[
[j]
ρi,j

w′
i,j ]]

[j]
ρi,j

for some rule ρi,j of G. Here the third outermost parentheses of
〈w1, . . . , wm〉 consist of exactly

∑
1≤i≤n mi pairs

〈 [[[1]
ρi,1

, ]][1]ρi,1
〉, . . . , 〈 [[[mi]

ρi,mi
, ]][mi]

ρi,mi
〉 for i = 1, . . . , n.

By 〈w1, . . . , wm〉 ∈ LD∆
(Sm), for each i = 1, . . . , n and j = 1, . . . , mi, all of

〈 [[[1]
ρi,j

, ]][1]ρi,j
〉, . . . , 〈 [[[mi]

ρi,j
, ]][mi]

ρi,j
〉

must occur as third outermost parentheses in 〈w1, . . . , wm〉. Recall that the head
of the rule ρi,j is Bi and that Bi = Bi′ implies i = i′. Hence i 6= i′ implies
ρi,j 6= ρi′,j′ for any j and j′. Therefore for any i, j, it holds that

〈 [[[1]
ρi,1

, ]][1]ρi,1
〉 = 〈 [[[1]

ρi,j
, ]][1]ρi,j

〉, . . . , 〈 [[[mi]
ρi,mi

, ]][mi]
ρi,mi

〉 = 〈 [[[mi]
ρi,j

, ]][mi]
ρi,j

〉

and we have ρi such that ρi = ρi,1 = · · · = ρi,mi
. In the derivation of

〈w1, . . . , wm〉 ∈ LD∆
(Sm), at some point the rule Smi

→ f[[ρi
(Smi

) of type 2,

where f[[ρi
(〈x1, . . . , xm〉) = 〈 [[[1]

ρi
x1 ]]

[1]
ρi

, . . . , [[[mi]
ρi

xm ]]
[mi]
ρi

〉, must be applied to
〈wi,1, . . . , wi,mi

〉 ∈ LD∆
(Smi

). By the induction hypothesis, we have 〈h(wi,1), . . . ,
h(wi,mi

)〉 ∈ LG(Bi) for i = 1, . . . , n. Applying the rule π to those tuples, we ob-
tain by (5) and (6)

f(〈h(w1,1), . . . , h(w1,m1)〉, . . . , 〈h(wn,1), . . . , h(wn,mn
)〉)

= 〈h(w1), . . . , h(wm)〉 ∈ LG(A). �



Theorem 3. A language L is in q-MCFL(r) if and only if there are a multiple
Dyck language D ∈ q-MCFL(r), a regular language R and a homomorphism h

such that
L = h(D ∩ R).

Proof. By Lemmas 1 and 3 and Proposition 2. ut

3.4 Generator Theorem

It is easy to get the stronger Chomsky-Schützenberger-type characterization for
q-MCFL(r) by the standard technique.

Let
∆′ = { [[a | a ∈ Σ } ∪ { [[m, [m | 1 ≤ m ≤ q }

where dim(a) = 1 and dim([[m) = dim([m) = m and h′ : ∆̂′
∗
→ Σ∗ be the

homomorphism mapping each [[a to a for a ∈ Σ and other symbols to the
empty string.

For a given mcfg G ∈ q-MCFG(r), let ∆ and R be the indexed alphabet
and the right-linear grammar from Section 3.2, respectively. Let us enumerate
all the elements of dimension m in ∆ \ { [[a | a ∈ Σ } and denote them by
[[m,1, . . . , [[m,km

for each m. We then define a right-linear grammar R′ from R

by replacing [[
[j]
m,i with [[

[j]
m [

[j]
m . . . [[j]

m︸ ︷︷ ︸
i-times

[[
[j]
m and ]]

[j]
m,i with ]]

[j]
m ]

[j]
m . . . ][j]

m︸ ︷︷ ︸
i-times

]]
[j]
m .

We have
L(G) = h′(L(D∆′) ∩ L(R′)).

Corollary 1. There are a multiple Dyck language D ∈ q-MCFL(r) and a ho-
momorphism h such that a language L is in q-MCFL(r) if and only if there is a
regular language R such that L = h(D ∩ R).

4 Conclusion

This paper introduced multiple Dyck languages and then proved a Chomsky-
Schützenberger-type representation theorem for each class q-MCFL(r) as well
as the generator theorem. The literature (e.g. [4,7]) has proposed other parame-
ters such as degree and well-nestedness that give further classifications of mcfls.
Theorem 3 and Corollary 1 hold for those subclasses as well by accordingly mod-
ifying the definition of rules of type 1 of multiple Dyck grammars in Definition 1.

Logical characterizations for several classes of languages have been obtained
in the literature. For example, the class of regular languages coincides with the
class of languages that are definable in monadic second-order logic (see [9]).
Also, the class of cfls is exactly the class of languages definable in an existential
second-order logic where the second-order variable ranges only over matching
predicates [5]. A matching predicate M is a binary predicate over the set of
positions of symbols in a given string such that each position belongs to at most
one pair (i, j) satisfying M(i, j) and M is not crossing ((i, j) ∈ M , (k, l) ∈ M and



i < k < j imply i < l < j). Intuitively, M(i, j) means that the symbols occurring
at the positions i and j form a pair of a left parenthesis and its corresponding
right one. This suggests us to extend a matching predicate to a 2r-ary predicate
Mr to express r pairs of left and right parentheses in ∆̂ of Section 2.3. It is left
as future study to give a logic that characterizes mcfls by using these extended
matching predicates.
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A Appendix

The degree of a linear regular function f : (Σ∗)m1 × · · · × (Σ∗)mn → (Σ∗)m

is defined to be deg(f) = m + m1 + · · · + mn and the degree of an mcfg G is
the maximum of deg(f) for f ∈ F . The functions of rules of type 2 and type 3



of multiple Dyck grammar DΣ in Definition 1 have degree 2r where r is the
maximum dimension of letters of Σ. Indeed we may assume without loss of
generality that deg(G) ≥ 2dim(G), because of the following lemma.

Lemma 4. If 2dim(G) > deg(G) ≥ 2, there is G′ equivalent to G such that
dim(G′) < dim(G) and deg(G′) ≤ deg(G).

Proof. Without loss of generality, we assume that G is nonerasing. We present
a method for eliminating rules whose right hand side has a nonterminal B such
that 2dim(B) > deg(G). Let

A → f(B1, . . . , Bn) with f(~x1, . . . , ~xn) = ~t

be a rule such that 2dim(Bk) > deg(G) for some Bk. Since 2|~xk| > deg(G) ≥
|~t|+ |~x1|+ · · ·+ |~xn|, there is t in ~t such that t = t1xk,iuxk,j t2 for some xk,i, xk,j

from ~xk = 〈xk,1, . . . , xk,m〉, u ∈ Σ∗ and t1, t2 ∈ (Σ ∪ X)∗. Then we introduce a
fresh nonterminal B′

k with dim(B′
k) = dim(Bk) − 1 and replace the rule by

A → f ′(B1, . . . , Bk−1, B
′
k, Bk+1, . . . , Bn)

with f ′(~x1, . . . , ~xk−1, ~x
′
k, ~xk+1, . . . , ~xn) = ~t ′

where ~x ′
k is obtained from ~xk by deleting xk,j and ~t ′ is obtained from ~t by

replacing t with t1xk,it2. For each rule whose head is Bk

Bk → g(C1, . . . , Cm) with g(~x1, . . . , ~xm) = ~s,

we add the rule

B′
k → g′(C1, . . . , Cm) with g′(~x1, . . . , ~xm) = ~s ′

where ~s ′ is obtained from ~s = 〈s1, . . . , sm〉 by deleting sj and replacing si with
siusj . We note that every Cl in the body of the new rule satisfies 2dim(Cl) <

deg(G) by deg(G) ≥ dim(Bk) + dim(Cl), and hence the introduced rule will not
be a target of repetitive applications of this procedure. It is easy to see that this
procedure preserves the language and never increases the degree or the branching
factor. ut


