BestPaperAward, 10thInternationalConferenceon Algorithmsanc
Architecturedor ParallelProcessing2010

Strategy-Proof Dynamic Resource Pricing of
Multiple Resource Types on Federated Clouds

Marian Mihailescu and Yong Meng Teo

Department of Computer Science,
National University of Singapore,
Computing 1, 13 Computing Drive, Singapore 117417
{marianmi , teoym}@comp .nus.edu.sg

Abstract. There is growing interest in large-scale resource sharing with emerging
architectures such as cloud computing, where globally distributed and commodi-
tized resources can be shared and traded. Federated clouds, a topic of recent inter-
est, aims to integrate different types of cloud resources from different providers,
to increase scalability and reliability. In federated clouds, users are rational and
maximize their own interest when consuming and contributing shared resources,
while globally distributed resource supply and demand changes as users join and
leave the cloud dynamically over time. In this paper, we propose a dynamic pric-
ing scheme for multiple types of shared resources in federated clouds and evaluate
its performance. Fixed pricing, currently used by cloud providers, does not reflect
the dynamic resource price due to the changes in supply and demand. Using simu-
lations, we compare the economic and computational efficiencies of our proposed
dynamic pricing scheme with fixed pricing. We show that the user utility is in-
creased, while the percentage of successful buyer requests and the percentage of
allocated seller resources is higher with dynamic pricing.

1 Introduction

Currently, several technologies such as grid computing and cloud computing among
others, are converging towards federated sharing of computing resources [[L1]]. In these
distributed systems, resources are commodities and users can both consume and con-
tribute with shared resources. In cloud computing [[12], resources are provided over the
Internet on-demand, as a service, without the user having knowledge of the underlying
infrastructure. Public clouds are available to all users, while private clouds use similar
infrastructure to provide services for users within an organization. At the present, sev-
eral companies such as Amazon [1f], Rackspace Cloud [3]], and Nirvanix [3], provide
computing and storage services, using pay-per-use fixed pricing, and new capabilities,
such as .NET and database services [2] are expected in the near future. Cloud computing
usage is increasing both in breadth, such as the number of resource types offered, and
in depth, such as the number of resource providers. Thus, with an increasing number
of cloud users, it is expected that more providers will offer similar services. Further-
more, with interoperability between different providers [7], users will able to use the
same service across clouds to improve scalability and reliability. In this context, the
aim of federated clouds, a topic of recent interest, is to integrate resources from differ-
ent providers such that access is transparent to the user.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 337-350, 2010.
(© Springer-Verlag Berlin Heidelberg 2010

dcsteoym
Typewritten Text

dcsteoym
Typewritten Text

dcsteoym
Typewritten Text
Best Paper Award, 10th International Conference on Algorithms and
Architectures for Parallel Processing, 2010

338 M. Mihailescu and Y.M. Teo

A fundamental problem in any federated system is the allocation of shared resources.
Recent work in distributed systems acknowledges that users sharing resources are self-
interested parties with their own goals and objectives [28,120,/16]]. Usually, these par-
ties can exercise their partial or complete autonomy to achieve their objectives and to
maximize their benefit. They can devise strategies and manipulate the system to their
advantage, even if by doing so they break the rules of the system. To manage rational
users, economics [30] and mechanism design [24] offer market-based approaches for
pricing and allocation of shared resources. Although we cannot assume rational users
are trusted to follow the algorithm or protocols designed and deployed, we can assume
that they participate in sharing in order to maximize their personal gain, such that in-
centives may be used to induce the desired behaviour. Mechanism design studies how to
structure incentives such that users behave according to protocols. Thus, recent work in
peer-to-peer networking [28L/15], grid or cluster computing [20]], Internet routing [18]],
general graph algorithms [[17], and resource allocation [10,31], use a form of incentives
to manage rational users.

In this paper we discuss a dynamic pricing scheme suitable for allocating resources
on federated clouds, where pricing is used to manage rational users. A rational user
may represent either an individual user, a group, or an organization, depending on the
application context. In federated clouds, users request more than one type of resources
from different providers. In contrast to fixed pricing, where users have to manually
aggregate resources from different providers, our pricing scheme is designed to allocate
a request for multiple resource types. Moreover, in a federated cloud, resource demand
and supply fluctuate as users join and leave the system. We show using simulations
that using the proposed dynamic scheme, the user welfare, the percentage of successful
requests, and the percentage of allocated resources is higher than using fixed pricing.

The remainder of this paper is structured as follows. Section2lpresents related works
from grid computing and distributed systems. We discuss dynamic pricing for cloud
computing and federated clouds in Section 3l Our auction framework is introduced in
Section] while in Section [we evaluate the economic efficiency, the individual user
welfare, the impact of multiple resource types and computational efficiency, measured
by the computational time incurred by the proposed algorithm. Finally, Section [6l con-
tains our conclusions and discusses our future work.

2 Related Works

Resource markets have been previously proposed for sharing computational resources
in the presence of rational users [32,130,131,114,126,|19]]. A resource market consists of
the environment, rules and mechanisms where resources are exchanged. In this context,
related works have used either bartering or pricing to exchange resources. In bartering,
resources are exchanged directly, without using any form of currency. For example, in
BOINC [9], users donate their CPU cycles by running a software client which polls a
server for new jobs. In BitTorrent [[15], rational users that behave selfishly and do not
cooperate in sharing files are punished by other users. In contrast, in OurGrid [10], each
user keeps track of other users that provide resources for their jobs, and prioritize their
requests when their own resources are idle. Bartering is simple to implement and allows

Strategy-Proof Dynamic Resource Pricing 339

several types of incentives for rational users: moral incentives (volunteer computing) or
coercive incentives (tit-for-tat, network of favors). However, bartering allows exchanges
of a single resource type. For example, BitTorrent exchanges blocks from the same file,
OurGrid is used for CPU cycles, etc. In order to exchange different types of resources,
pricing and a common currency is used to express the value of each resource type.

Pricing is the process of computing the exchange value of resources relative to a com-
mon form of currency. Economic models for the allocation of shared resources may use
fixed or dynamic pricing. When using fixed pricing, each resource type has a predefined
price, set by the seller. For example, Amazon provides disk space for $0.15/GB. In con-
trast, when using dynamic pricing, the resource price is computed for each request ac-
cording to the pricing mechanism used. More specifically, a resource type can have the
same price for all resource providers (non-discriminated pricing), or payment is com-
puted differently for each resource provider (discriminated pricing). Pricing schemes
use financial incentives in addition to payments to motivate rational users to be truthful.

Several market-based allocation systems for grids, such as Sorma [22] and Nim-
rod/G [[13], use bargaining or negotiation to determine the resource price. The advantage
of this approach is that sellers and buyers communicate directly, without a third party
mediating an allocation. The seller attempts to maximize the resource price, while the
buyer strives to minimize it. However, communication constitutes the main disadvan-
tage of bargaining: in a large dynamic market, each buyer has to negotiate with all sell-
ers of a resource type in order to maximize his utility. The communication costs grow
further when a buyer requires more than one resource types. Thus, scalability becomes
a major issue when increasing the number of users or resource types in a request.

In contrast to resource sharing systems used in research and academic communi-
ties or for personal benefit, cloud computing has been put into commercial use and its
economic model is based on pricing. Previous unsuccessful cloud computing attempts,
such as Intel Computing Services, required users to negotiate written contract and pric-
ing. However, current online banking and currency transfer technologies allow cloud
providers to use fixed pricing, with buyer payments made online using a credit-card.
Federated clouds can be formed by combining private clouds to provide users with re-
sizeable and elastic capacities [11]. Currently, companies such as Amazon operate as
standalone clouds service providers. However, in a federated cloud, any globally dis-
tributed user can both offer and use cloud services. A user is either an individual, a
group, or an organization, depending on the application context.

3 Market-Based Pricing Mechanisms

Market-based resource allocation mechanisms based on pricing introduce several eco-
nomic and computational challenges. From a computational perspective, a mechanism
must compute in polynomial time the allocation of multiple resource types while max-
imizing the number of allocated resources and satisfied requests. However, an optimal
allocation mechanism for multiple resource types such as combinatorial auctions re-
quires a NP-complete algorithm [23]. Accordingly, many systems share only one re-
source type, such as CPU cycles in volunteer computing, and file blocks in file-sharing.

From an economic perspective, the desirable properties for resource allocation are:
individual rationality, incentive compatibility, budget balance and Pareto efficiency

340 M. Mihailescu and Y.M. Teo

[21]]. In an individual rational allocation mechanism, rational participants gain higher
utility by participating in resource sharing than from avoiding it. Incentive compati-
bility ensures that the dominant strategy for each participant is truth-telling. Budget-
balance verifies that the sum of all payments made by buyers equal the total payments
received by the sellers. Pareto efficiency, the highest economic efficiency, is achieved
when, given an allocation, no improvement can be made that makes at least one par-
ticipant better off, without making any other participant worse off. However, according
to the Myerson-Sattherwithe impossibility theorem [21]], no mechanism can achieve all
four properties together. Accordingly, related works have traded incentive compatibil-
ity [14130], economic efficiency [19] or budget-balance [23]].

Our approach is designed to achieve individual rationality, incentive compatibility
and budget balance using a computationally efficient algorithm that can allocate buyer
requests for multiple resource types.

In a resource market, with a large number of providers (sellers) and users (buyers),
fixed pricing does not reflect the current market price resource price due to the changing
demand and supply. This leads to lower user welfare and to imbalanced markets, e.g.
under-demand. Figure [Tl shows the welfare lost by a seller that uses fixed pricing. In
the case of under-demand, the fixed price tends to be higher than the market price and
buyers may look for alternative resources. In the case of over-demand, the fixed price
limits the seller welfare, which could be increased by using a higher resource price.

In a federated clouds market, dynamic pricing sets resource payments according to
the forces of demand and supply. Moreover, the use of dynamic pricing facilitates sell-
ers to provide multiple resource types. Early cloud services such as Sun Grid Compute
Utility were restricted to one resource type, e.g. CPU time [8]. More recent services,
such as Amazon S3 and EC2, introduced more resource types, i.e. storage and band-
width. Currently, Amazon has expanded its offer to 10 different virtual machine instance
configurations, with different prices for each configuration, and practice tiered pricing
for storage and bandwidth [[1]]. We see this as the first step towards dynamic pricing,
where users can request for custom configurations with multiple resource types.

Buyer Demand /
Dynamic Price —a

Price

Seller Welfare Lost

Fixed Price

Seller

Costs Welfare

Time
Fig. 1. Fixed Pricing Limits Seller Welfare
Resource Type = Description

Publish = Seller Address, Resource Type, Items, Cost
Request = Buyer Address, (Resource Type, Items)+, Price

Fig. 2. Simplified Model for Multiple Resource Types Buyer Request

Strategy-Proof Dynamic Resource Pricing 341

The resource market in federated clouds consists of many resource types. Figure
shows a simplified resource model where a buyer request can consist of many resource
types and many resource items for each type. A resource type is loosely defined, and
can be a hardware resource, a service, or a combination. We consider the example of a
New York Times employee that used 100 EC2 instances to convert 4 TB of TIFF files
to the PDF format [6]. To complete his job, the user required multiple resource types
(storage from Amazon S3 and computational power from Amazon EC2), and multiple
items (100 Amazon EC2 instances) to complete his task. In this example, we assume
Amazon EC2 provides ten resource types, called instances. A small instance consists
of 1 EC2 compute unit (approx. 1 GHz CPU), 1.7 GB memory and 160 GB storage,
and is priced at $0.10/hour, while an extra-large instance consists of 8 EC2 compute
units, 15 GB memory and 1.6 TB storage, and is priced at $1.00/hour.

4 Achieving Strategy-Proof Resource Pricing

In the context of federated clouds, we propose a strategy-proof dynamic pricing mech-
anism for allocating shared resources with multiple resource types. We assume a fed-
erated cloud resource market where rational users can both provide (sellers) and utilize
resources (buyers). Rational users represent either an individual or an organization. In-
teroperability provides the buyers with uniformity and elasticity. Thus, a buyer request
for a large number of resources can be met by more than one seller.

In a previous paper, we propose a mechanism design problem which describes a
resource sharing system where rational users can be both buyers and sellers of re-
sources [29]. Given a set of alternative choices, a rational user selects the alternative
that maximizes the expected value of his utility function. In our mechanism design
problem, the utility functions are determined by the seller costs and the buyer budget,
respectively.

Definition (The Market-based Resource Allocation Problem). Given a market con-
taining requests submitted by buyers and resources offered by sellers, each participant
is modeled as a rational user © with private information t;. A seller has private informa-
tion t%, the underlying costs for the available resource r, such as power consumption,
bandwidth costs, etc. The buyer’s private information is tbR, the maximum price the
buyer is willing to pay such that resources are allocated to satisfy its request R. Seller’s
it valuation is t] if the resource 1 is allocated, and 0 if not. Similarly, buyer’s i valuation
is t® of the request R is allocated, and 0 if not. For a particular request R, the goal is
to allocate resources such that the underlying costs are minimized.

To address the market-based resource allocation mechanism design problem in which
sellers and buyers are rational participants, we propose a reverse auction-based mech-
anism, which we prove formally to be individual rational, incentive compatible and
budget-balanced. A mechanism that is both individual rational and incentive compati-
ble is known as strategy-proof.

Auctions are usually carried out by a third party, called the market-maker, which col-
lects the bids, selects the winners and computes the payments. Since this paper focuses
on the economical and computational advantages of dynamic pricing, we consider for

342 M. Mihailescu and Y.M. Teo

Allocate () DetermineWinners(request, resource_list,
while request = request_queue .dequeue() &winners, &payments)
// determine winners foreach Resource Type rt in request as subregest
DetermineWinners(request, resource_list, resources = filter (resource_list, Resource Type rt)
&winners, &cpp|s) priceSort (resources)
foreach seller in winners while subregest .items > 0 do
// determine Cpfjs=oo // determine sellers

seller = resources|rt].head().owner

if seller . rt.items > subreqest.items
then itemsno = subrequest.items
else itemsno = seller.rt .items

resource_list = resource_list — seller.resources
DetermineWinners(request, resource_list,

nil, &cpr)s=oo)
// determine CM|s=0

end if
CM|s=0 = CM|s seller . rt .items = seller.rt .items — itemsno
foreach Resource Type rt in request subreqest . items = subrequest.items — itemsno
CM|s=0 = CM|s=0 — Seller.rt.items x seller.rt.price winners.add(seller, itemsno)
end foreach payments.add(seller, itemsno * seller. rt . price)
payment = Cpf|s=oo — CM|s=0 end while
payments.add(seller, payment) end foreach
end foreach end DetermineWinners

// 1f the request is not allocated
// put it back in queue
if (request.price > payments.total)
then request_queue .enqueue(request)
end if
end while
end Allocate

Fig. 3. Dynamic Resource Pricing Algorithm

simplicity a centralized market-maker, to which sellers publish resources, and buyers
send requests. In order to improve scalability, Section |6l shows our insights into dis-
tributed auctions, where more than one market-makers are able to auction at the same
time. Given that buyers and sellers are globally distributed, it is practical to adopt a
peer-to-peer approach, where, after pricing and allocation, buyers connect to sellers to
use the resources paid for.

The reverse auction contains two steps, winner determination and payment compu-
tation. Winner determination decides which sellers are selected for allocation, based on
the published price, such that the underlying resource costs are minimized. However, to
achieve strategy proof using financial incentives, the actual payments for the winning
sellers are determined in the second step, based on the market supply for each resource
type.

The payment for a seller is determined for each resource type using a VCG-based
[[L7] function, which verifies the incentive-compatibility property for sellers:

0, if seller s does not contribute with
resources to satisfy the request
DPs = § CM|s=oco — CM|s=0 (H
if seller s contributes with
resources to satisfy the request

where:

CM|s=oo 18 the lowest cost to satisfy the request without the resources from seller s;
ca|s—o 18 the lowest cost to satisfy the request when the cost of resources from seller s
resources is 0.

Strategy-Proof Dynamic Resource Pricing 343

To achieve the incentive-compatibility property for buyers, we select the requests us-
ing the first-come-first-serve strategy [29]. To obtain budget-balance, the buyer payment
function is the sum of all seller payments:

Pr=— ps)

seS

where S is the set of winner sellers.

Figure[3]shows the auction algorithm implemented by the centralized auctioneer. Re-
quests are sorted in a queue according to their arrival times and are processed according
to the first-come-first-serve policy (line 2). Next, the market-maker solves the winner
determination problem (line 4). Payments are computed for each winner (line 6) by de-
termining cpzjs—co (line 9) and cyrjs—o (line 11). Finally, allocation may take place if
the buyer price is higher than the buyer payment, which is the sum of seller payments
(line 29). Winner determination (line 26) finds the best sellers for all resource types
(line 28) based on the published resource item price.

5 Impact of Dynamic Pricing

We evaluate the proposed pricing mechanism both for economic and computational ef-
ficiency. Using simulation, we compare our dynamic pricing scheme with fixed pricing,
currently used by many cloud providers.

We implement our framework as an application built on top of FreePastry [27], an
open-source DHT overlay network environment. FreePastry provides efficient lookup,
i.e. in O(log N) steps, where N is the number of nodes in the overlay. In addition,
FreePastry offers a discrete-event simulator which is able to execute applications with-
out modification of the source code. This allows us both to simulate large systemsﬂ, and
to validate the results in a deployment over PlanetLab [4].

For simplicity, we use a centralized market-maker to compare the economic and
computational advantages of dynamic pricing. A centralized implementation has the ad-
vantage of allowing the measurement of economic and computational efficiency with a
simple setup for a large simulated network. Moreover, the use of a peer-to-peer substrate
such as FreePastry allows us to address the scalability issue in our future work. Thus,
our simulated environment contains one market-maker and 10,000 nodes, where each
node can be seller and buyer. Publish and request messages are sent to the market-maker
node using the FreePastry routing process, which then performs the reverse auctions us-
ing the first-come-first-serve policy and computes the payments using the algorithm in
Figure[3l

5.1 Economic Efficiency

Traditionally, efficiency in computer science is measured using system-centric perfor-
mance metrics such as the number of completed jobs, average system utilization, etc.
All user applications are equally important and optimizations ignore the user’s valua-
tion for resources. Thus, resource allocation is unlikely to deliver the greatest value to

! In our experiments, we were able to use up to 35,000 peers in the FreePastry simulator.

344 M. Mihailescu and Y.M. Teo

the users, especially when having a limited amount of resources. In contrast, economic
systems measure efficiency with respect to user’s valuations for resources (utility). Con-
sequently, in a Pareto efficient system, where economic efficiency is maximized, a user’s
utility cannot improve without decreasing the utility of another user.

Economic efficiency is a global measure and represents the fotal buyer and seller
welfare. More specifically, there are two factors that affect the economic efficiency: i)
average user welfare; and ii) number of successful requests, for buyers, and number of
allocated resources, for sellers.

Using fixed pricing, the average user welfare is constant, since the user utility is
also constant. In contrast, when using dynamic pricing, the average user welfare fluc-
tuates with the computed payments, according to the resource demand. Moreover, a
dynamic pricing scheme is able to balance the number of successful requests and the
number of allocated resources depending on the market condition. For example, re-
source contention in the case of over-demand is balanced by increasing the resource
price. Similarly, buyers are incentivized by a lower price when the market condition
is under-demand. Overall, dynamic pricing achieves better economic efficiency both
with higher average user welfare, and a higher number of successful buyer requests and
allocated seller resources.

5.2 User Welfare

The user welfare is determined by the difference between the user utility and payment.
In our proposed framework, the user utility is the same as the published price, since
both buyers and sellers are truthful, according to the incentive compatibility property of
our pricing algorithm. In the case of fixed pricing, we also consider a truthful buyer, i.e.
the published request price represents the buyer’s utility. However, we do not make the
same assumption about sellers, which have a fixed resource price that may differ from
the seller’s utility. Thus, in our experiment, we compare only the average buyer welfare
when using fixed and dynamic pricing, respectively.

For this experiment, we consider a balanced market, where supply and demand are
equal. Thus, we assume that the market-maker receives events with an interarrival time
of 1s, where an event has equal probability of being a buyer request or a seller resource
publish. Events are uniformly distributed between 10,000 FreePastry nodes, and contain
of a number of resource types uniformly distributed between 1 and 3, chosen randomly
from a total of 5 resource types. The number of items for each resource type is generated

Table 1. Dynamic Pricing Increases Buyer Welfare

%Price Pricing Scheme
Variation Fixed Dynamic
10 35 4.6
avg buyer welfare 20 7.4 9.3

50 18.8 233
10 477 625
Yosucc buyer 20 48.8 62.2
50 49.5 62.1

Metric

Strategy-Proof Dynamic Resource Pricing 345

according to an exponential distribution with mean 10. For sellers, we assume 100 as
the fixed price, while in the case of dynamic pricing we vary the price by 10%, 20% and
50%, i.e. the price is generated according to a uniform distribution between 90 and 110,
80 and 120, and 50 and 150, respectively. Buyer price is varied according to the same
percentage, shown in Table [Il as %Price Variation. The simulation runs for 600,000
events, which, for an arrival rate of 1s, give a total simulation time of approximately
seven days. To reduce sampling error, we run our experiments three times and compute
the average.

The results in Table [show that dynamic pricing increases the buyer welfare and
the percentage of successful buyer requests (%succ buyer). Given that the mean buyer
utility is 100, and a theoretical(the actual maximum welfare can be computed using
a NP-complete algorithm, and is smaller than the theoretical welfare.) maximum wel-
fare for an item is achieved when having the minimum payment, i.e. 100—Price Vari-
ation, we derive that the maximum welfare equals the price variation. Thus, using the
proposed dynamic pricing mechanism increases buyer welfare by approximately 10%,
when compared to fixed pricing.

5.3 Multiple Resource Types in Different Market Conditions

In contrast to fixed pricing, where users have to manually aggregate resources, the pro-
posed dynamic pricing scheme can allocate buyer requests for multiple resource types.
However, with the increase in the number of resource types in the request, it is reason-
able to assume that the overall user welfare will decrease. Another factor that influences
the user welfare is the market condition. Thus, when there is under-demand, the buyer
welfare should increase. Similarly, the seller welfare should increase when there is over-
demand. Next, we study the influence of multiple resource types and different market
conditions for the proposed dynamic scheme and compare to fixed pricing.

We vary the number of resource types in a request to 5, 10, and 20, while the price
variation is set to 20%. We consider 3 market conditions: Under-Demand, when supply

Table 2. Dynamic Pricing Increases Efficiency For Multiple Resource Types

Resource %succ buyer %succ seller avg seller welfare avg buyer welfare
Types fixed dynamic fixed dynamic fixed dynamic fixed dynamic

Under-Demand
5 484 823 241 41.8 N/A 2.9 6.2 10.9
10 474 863 234 441 N/A 3.0 4.7 9.4
20 46.5 89.7 221 464 N/A 32 33 8.1
Balanced Market
5 482 624 475 61.0 N/A 4.5 6.2 7.9
10 47.1 629 465 625 N/A 4.6 4.7 6.3

20 46.2 633 460 64.0 N/A 4.7 34 49
Over-Demand

5 482 421 954 755 N/A 5.9 6.2 6.1

10 474 414 93.1 742 N/A 5.8 4.7 4.8

20 46.2 404 917 73.0 N/A 5.6 34 3.7

346 M. Mihailescu and Y.M. Teo

is greater than demand, Balanced Market, when supply equals demand, and Over-
Demand, when supply is less than demand. To simulate different market conditions,
we vary the probability of a request event. Thus, in the case of a balanced market, the
probability is set to 50%, while for under-demand is 33%, and for over-demand is 66%.
We measure economic efficiency, i.e. avg seller welfare and avg buyer welfare, and
pricing scheme performance, i.e. %succ buyer and %succ seller. Table [2] presents our
results.

In the case of fixed pricing, the percentage of successful buyer request is close to
50% for all market conditions, since the buyer item price is uniformly distributed with
the mean equal to the seller item price. However, the percentage of successful buyer
requests decreases when the number of resource types increases since the number of
sellers that are allocated to satisfy a request also increases.

In contrast, when using dynamic pricing, the percentage of successful buyer requests
varies under different market conditions, according to the forces of supply and demand.
Thus, when supply is greater than demand, the percentage of successful buyer requests
is higher than in the case of a balanced market, while for over-demand the percentage
decreases further. Using the proposed auction mechanism achieves a higher percentage
of successful buyer requests and seller allocated resources, in the case of under-demand
and balanced market. When demand is higher than supply and the number of resource
types in a request increases, there is premise for monopolistic sellers [23], i.e. there
are not enough sellers in the market to compute payments using a VCG-based payment
function such as the seller payment used by our auction framework.

Similarly, using fixed pricing results in the same mean buyer welfare when varying
market conditions, and welfare decreases when increasing the number of resource types.
For the proposed pricing mechanism, the buyer welfare is higher when compared to
fixed pricing, and varies according to supply and demand: buyer welfare increases when
supply is greater than demand, and decreases when demand is higher.

5.4 Cost of Dynamic Pricing

Computational efficiency is a major design criteria in the allocation of shared resources.
Optimal mechanisms such as combinatorial auctions [23]] are not feasible since the win-
ner determination algorithm is NP-complete. Fixed pricing has the advantage of elim-
inating the payment computation. To determine the time cost of the algorithm used by
the proposed mechanism, we analyze the run-time complexity of the winner determina-
tion and the buyer and seller payment functions. Without considering queuing time, the
total time incurred by our mechanism is then:

T:ﬂud‘FTp

where Ty,4 is the time taken to determine the winners, and 7T}, is the time for the payment
computation. We consider the following inputs: R7T', the number of resource types in
a request; IrT, , the number of items from the resource type RT}, in a request; Sk,
the number of sellers with resource type RT}. We use), Srr, to represent the total
number of published resources.

The winner determination algorithm in Figure[Blcontains 2 loops (lines 28 and 31) for
the number of resource types in the request, and the number of items of each resource

Strategy-Proof Dynamic Resource Pricing 347

type, while the inner code (lines 32—41) takes a constant amount of time. Finding all
resources with the same type (line 29) depends on « SRT, » While sorting resources
according to their price takes O(Sgr, log Sk,). Thus, in the worst case, the complex-
ity of the winner determination algorithm is:

Twa = O(RT x (Z Srr,, + Srr, 10g Sk, + IRT,)) 3)
%

Similarly, we compute the complexity of the payment algorithm (lines 6-18), which, in
the worst case scenario, is: T}, = O(Irt, % Twa), when each winner seller provides
one item. Thus, the total time taken by the proposed allocation algorithm is:

T =Twa+ OUrt, %X Twa) = OUrt, X Twa) =

= O(Igr, X RT x (Z Srr, + Srr, log SkrT, + IRT,)) 4)
%

In conclusion, the complexity of the algorithm used by the proposed framework is a
polynomial function of the number of resource types in a request, RT'; the number of
items requested for each resource type, Ir, ; the total number of published resources,
>« Sk, ; and the number of sellers with resource type k, Srr, .

Figure M shows the mean request allocation time obtained in our simulations. We
run the simulator on a quad-core Intel Xeon 1.83 GHz CPU with 4 GB of RAM. The
figure shows the increase in allocation time due to the increase in number of resource
types, and the different market scenarios. In the case of over-demand, the number of
sellers is smaller and, consequently, the allocation time is smaller. Similarly, in the case
of under-demand, the allocation time increases.

While the allocation time for a small number of resource types is under 1 second, a
large number of resource types in the system leads to increased allocation times. Thus,

25 r . . I
Under-Demand e

Balanced Market

Over-Demand ---------

Allocation Time (s)

Number of Resource Types

Fig. 4. Allocation Time When Varying Resource Types Under Different Market Conditions

348 M. Mihailescu and Y.M. Teo

scalability becomes an issue both when the number of resource types, and the number
of sellers increases. To improve vertical scalability, i.e. when the number of resource
types increases, we are currently developing a distributed framework, where a peer-
to-peer network of nodes perform reverse auctions for different resource types at the
same time. Furthermore, to address horizontal scalability, i.e. when the number of users
increases, different peers maintain separate resource lists and request queues, such that
allocation of requests for different resource types is parallelized.

6 Conclusions and Future Work

In this paper, we discuss current resource allocation models for cloud computing and
federated clouds. We argue that dynamic pricing is more suitable for federated shar-
ing of computing resources, where rational users may both provide and use resources.
To this extent, we present an auction framework that uses dynamic pricing to allocate
shared resources. We define a model in which rational users, classified as buyers and
sellers, trade resources in a resource market. Our previous paper shows that the pay-
ment mechanism used by the proposed auction framework is individual rational, incen-
tive compatible and budget balanced. In this paper we use the defined model to study
both the economic and computational efficiency of dynamic pricing, in the context of
federated clouds. Our focus is a dynamic pricing scheme where a buyer request consists
of multiple resource types. We implement our framework in FreePastry, a peer-to-peer
overlay, and use the FreePastry simulator to compare our dynamic pricing mechanism
with fixed pricing, currently used by many cloud providers. We show that dynamic pric-
ing increases the buyer welfare, a measure of economic efficiency, while performing a
higher number of allocations, measured by the percentage of successful buyer requests
and allocated seller resources.

Even though the auction algorithm is polynomial, scalability becomes an issue as
the number of resource types in a request increases. We are currently implementing a
scheme that uses distributed auctions, where multiple auctioneers can allocate differ-
ent resource types at the same time. Specifically, by taking advantage of distributed
hash tables, we aim to create an overlay peer-to-peer network which supports resource
discovery and allocation using the proposed dynamic pricing mechanism.

Acknowledgments

This work is supported by the National University of Singapore under grant number
R-252-000-339-112.

References

Amazon Web Services (2009), http://aws.amazon.com

Microsoft Azure Services Platform (2009), http://www.microsoft.com/azure
Nirvanix Storage Delivery Network (2009), http://nirvanix.com

An open platform for developing planetary-scale services (2009),
http://planetlab.org

il e e

http://aws.amazon.com
http://www.microsoft.com/azure
http://nirvanix.com
http://planetlab.org

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Strategy-Proof Dynamic Resource Pricing 349

The Rackspace Cloud (2009), http://www.rackspacecloud. com

Self-service, prorated super computing fun (2009),
http://open.blogs.nytimes.com/2007/11/01/
self-service-prorated-super-computing-fun

Sun Cloud Computing Initiative (2009),
http://www.sun.com/solutions/cloudcomputing

Sun Grid Compute Utility (2008), http://www.network. com

Anderson, D.P.: BOINC: A System for Public-Resource Computing and Storage. In: 5th
IEEE/ACM Intl. Workshop on Grid Computing, Pittsburgh, USA, pp. 4-10 (2004)
Andrade, N., Cirne, W., Brasileiro, F.V., Roisenberg, P.: OurGrid: An Approach to Eas-
ily Assemble Grids with Equitable Resource Sharing. In: Feitelson, D.G., Rudolph, L.,
Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 61-86. Springer, Heidelberg
(2003)

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Pat-
terson, D.A., Rabkin, A., Stoica, 1., Zaharia, M.: Above the Clouds: A Berkeley View of
Cloud Computing. Technical Report UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, USA (2009)

Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: Vision, hype, and
reality for delivering it services as computing utilities. In: Proc. of the 10th IEEE Intl. Conf.
on High Performance Computing and Communications, Dalian, China, pp. 5-13 (2008)
Buyya, R., Abramson, D., Giddy, J.: Nimrod/G: An Architecture of a Resource Management
and Scheduling System in a Global Computational Grid. In: Proc. of the 4th Intl. Conference
on High Performance Computing in Asia-Pacific Region, Beijing, China, pp. 283-289 (2000)
Chun, B.N., Culler, D.E.: Market-based Proportional Resource Sharing for Clusters. Techni-
cal Report UCB/CSD-00-1092, EECS Department, University of California, Berkeley, USA
(2000)

Cohen, B.: Incentives Build Robustness in BitTorrent. In: Proc. of the 1st Workshop on Eco-
nomics of Peer-to-Peer Systems, Berkeley, USA (2003)

Dani, A.R., Pujari, A.K., Gulati, V.P.: Strategy Proof Electronic Markets. In: Proc. of the 9th
Intl. Conference on Electronic Commerce, Minneapolis, USA, pp. 45-54 (2007)

Elkind, E.: True Costs of Cheap Labor Are Hard to Measure: Edge Deletion and VCG Pay-
ments in Graphs. In: Proc. of the 7th ACM Conference on Electronic Commerce, Vancouver,
Canada, pp. 108-116 (2005)

Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the Cost of Multicast Transmis-
sions. Journal of Computer and System Sciences 63, 21-41 (2001)

Lai, K., Huberman, B.A., Fine, L.R.: Tycoon: A Distributed Market-based Resource Alloca-
tion System. Technical Report ¢s.DC/0404013, HP Labs, Palo Alto, USA (2004)

Lin, L., Zhang, Y., Huai, J.: Sustaining Incentive in Grid Resource Allocation: A Reinforce-
ment Learning Approach. In: Proc. of the IEEE Intl. Symposium on Cluster Computing and
the Grid, Rio de Janeiro, Brazil, pp. 145-154 (2007)

Myerson, R.B., Satterthwaite, M. A.: Efficient Mechanisms for Bilateral Trading. Journal of
Economic Theory 29(2), 265-281 (1983)

Nimis, J., Anandasivam, A., Borissov, N., Smith, G., Neumann, D., Wirstrm, N., Rosenberg,
E., Villa, M.: SORMA - Business Cases for an Open Grid Market: Concept and Implemen-
tation. In: Altmann, J., Neumann, D., Fahringer, T. (eds.) GECON 2008. LNCS, vol. 5206,
pp- 173-184. Springer, Heidelberg (2008)

Nisan, N.: Bidding and Allocation in Combinatorial Auctions. In: Proc. of the 2nd ACM
Conference on Electronic Commerce, Minneapolis, USA, pp. 1-12 (2000)

Nisan, N., Ronen, A.: Algorithmic Mechanism Design (extended abstract). In: Proc. of the
31st Annual ACM Symposium on Theory of Computing, Atlanta, USA, pp. 129-140 (1999)

http://www.rackspacecloud.com
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun
http://www.sun.com/solutions/cloudcomputing
http://www.network.com

350

25.

26.

27.

28.

29.

30.

31.

32.

M. Mihailescu and Y.M. Teo

Pham, H.N., Teo, Y.M., Thoai, N., Nguyen, T.A.: An Approach to Vickrey-based Resource
Allocation in the Presence of Monopolistic Sellers. In: Proc. of the 7th Australasian Sym-
posium on Grid Computing and e-Research (AusGrid 2009), Wellington, New Zealand, pp.
77-83 (2009)

Regev, O., Nisan, N.: The Popcorn Market: An Online Market for Computational Resources.
In: Proc. of the 1st Intl. Conference on Information and Computation Economies, Charleston,
USA, pp. 148-157 (1998)

Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object address, and Routing for
Large-Scale Peer-to-Peer Systems. In: Proc. of the IFIP/ACM Intl. Conference on Distributed
Systems Platforms, Heidelberg, Germany, pp. 329-350 (2001)

Shneidman, J., Parkes, D.C.: Rationality and Self-Interest in Peer to Peer Networks. In:
Kaashoek, M.F., Stoica, L. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 139-148. Springer, Hei-
delberg (2003)

Teo, Y.M., Mihailescu, M.: A Strategy-proof Pricing Scheme for Multiple Resource Type
Allocations. In: Proc. of the 38th Intl. Conference on Parallel Processing, Vienna, Austria,
pp- 172-179 (2009)

Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: Analyzing Market-Based Resource Allocation
Strategies for the Computational Grid. International Journal of High Performance Computing
Applications 15(3), 258-281 (2001)

Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: G-commerce: Market Formulations Control-
ling Resource Allocation on the Computational Grid. In: Proc. of the 15th Intl. Parallel and
Distributed Processing Symposium, San Francisco, USA, pp. 46-54 (2001)

Yeo, C.S., Buyya, R.: A Taxonomy of Market-based Resource Management Systems for
Utility-driven Cluster Computing. Software: Practice and Experience 36, 1381-1419 (2006)

	Strategy-Proof Dynamic Resource Pricing of Multiple Resource Types on Federated Clouds
	Introduction
	Related Works
	Market-Based Pricing Mechanisms
	Achieving Strategy-Proof Resource Pricing
	Impact of Dynamic Pricing
	Economic Efficiency
	User Welfare
	Multiple Resource Types in Different Market Conditions
	Cost of Dynamic Pricing

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

