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Abstract. In the drug discovery field, solving the problem of virtual screening 
is a long term-goal. The scoring functionality which evaluates the fitness of the 
docking result is one of the major challenges in virtual screening. In general, 
scoring functionality in docking requires large amount of floating-point calcula-
tions and usually takes several weeks or even months to be finished. This  
time-consuming disadvantage is unacceptable especially when highly fatal and 
infectious virus arises such as SARS and H1N1. This paper presents how to 
leverage the computational power of GPU to accelerate Dock6 [1]’s Amber [2] 
scoring with NVIDIA CUDA [3] platform. We also discuss many factors that 
will greatly influence the performance after porting the Amber scoring to GPU, 
including thread management, data transfer and divergence hidden. Our GPU 
implementation shows a 6.5x speedup with respect to the original version  
running on AMD dual-core CPU for the same problem size. 

1   Introduction 

Identifying the interactions between molecules is critical both to understanding the 
structure of the proteins and to discovering new drugs. Small molecules or segments 
of proteins whose structures are already known and stored in database are called li-
gands. While macromolecules or proteins associated with a disease are called recep-
tors [4]. The final goal is to find out whether the given ligand and receptor can form a 
favorable complex and how appropriate the complex is, which may inhibit a disease’s 
function and thus act as a drug.  

Scoring is the step after docking which is involved evaluating the fitness for 
docked molecules and ranking them. A set of sphere-atom pairs will be on behalf of 
an orientation in receptor and evaluated with a scoring function on three dimensional 
grids. At each grid point, interaction values are to be summed to form a final score. 
These processes need to be repeated for all possible translations and rotations. Tre-
mendous computational power is required, as scoring for each orientation needs large 
amount of CPU cycles, especially dealing with floating-point. The advantage of am-
ber scoring is that both ligands and active sites of the receptor can be flexible during 
the evaluation. While the disadvantage is also obvious, it brings tremendous intensive 
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floating-point computations. When performing amber scoring, it calculates the inter-
nal energy of the ligand, receptor and the complex, which can be broken down into 
three steps: 

 Minimization 
 molecule dynamics (MD) simulation 
 more minimization using solvents 

The computational complexity of amber scoring is very huge, especially in the MD 
simulation stage. Three grids which individually have three dimension coordinates are 
used to represent the molecule during the orientation such as geometry, gradient and 
velocity. In each grid, at least 128 elements are required to sustain the accuracy of the 
final score. During the simulation, scores are calculated in three nested loops, each of 
which walks through one of the three grids.  

While many virtual screening tools such as GasDock [5], FTDock [6] and Dock6 
can utilize multi-CPUs to parallel the computations, the incapacity of CPU in process-
ing floating-point computations still remains untouched. Compared with CPU, GPU 
has the advantages of computational power and memory bandwidth. For example, a 
GeForce 9800 GT can reach 345 GFLOPS at peak rate and has an 86.4 GB/sec mem-
ory bandwidth, whereas an Intel Core 2 Extreme quad core processor at 2.66 GHz has 
a theoretical 21.3 peak GFLOPS and 10.7 GB/sec memory bandwidth. Another im-
portant factor why GPU is becoming widely used is that it is more cost-effective than 
CPU. 

Our contributions in this paper include porting the original Dock6 amber scoring to 
GPU using CUDA, which can archive a 6.5x speedup. We analyze the different mem-
ory access patterns in GPU which can lead to a significant divergence in performance. 
Discussions on how to hide the computation divergence on GPU are made. We also 
conduct experiments to see the performance improvement. 

The rest of the paper is organized as follows. In section II, an overview of Dock6’s 
amber scoring and analysis of the bottleneck is given. In section III, we present the 
main idea and implementation of the amber scoring on GPU with CUDA, and details 
of considerations about performance are made. Then we give the results, including 
performance comparisons among various GPU versions. Finally, we conclude with 
discussion and future work. 

2   Analysis of the Amber Scoring in Dock6 

2.1   Overview  

A primary design philosophy of amber scoring is allowing both the atoms in the 
ligand and the spheres in the receptor to be flexible during the virtual screening proc-
ess, generating small structural rearrangements, which is much like the actual situa-
tion and gives more accuracy. As a result, a large number of docked orientations need 
to be analyzed and ranked in order to determine the best fit set of the matched atom-
sphere pairs. 

In the subsection, we will describe the amber scoring program flow and profile the 
performance bottleneck of the original amber scoring, which can be perfectly acceler-
ated on GPU. 
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2.2   Program Flow and Performance Analysis 

Figure 1 shows the steps to score the fitness for possible ligand-receptor pairs in am-
ber. The program firstly performs conjugate gradient minimization, MD simulation, 
and more minimization with solvation on the individual ligand, the individual recep-
tor, and the ligand-receptor complex, then calculates the score as follows: 

Ebinding = Ecomplex – (Ereceptor - Eligand) . (1)

The docked molecules are described using three dimension intensive grids containing 
the geometry, gradient or velocity coordinates information. The order of magnitude of 
these grids is usually very large. Data in these grids is represented using floating-
point, which has little or no interactions during the computation. In order to archive 
higher accuracy, the scoring operation will be performed repeatedly, perhaps hun-
dreds or thousands times. 

 

Fig. 1. Program flow of amber scoring 

Due to the characteristics of the amber scoring such as data independency and high 
arithmetic intensity, which are exactly the sweet spots of computing on GPU, it can 
be perfectly paralleled to leverage the computing power of GPU and gain preferable 
speedup. 

3   Porting Amber Scoring to GPU 

3.1   Overview 

To determine the critical path of amber scoring, we conduct an experiment to make 
statistics about the cost of each step as Table 1 shows. We see that time spent on  
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processing ligand is negligible, because ligand in docking always refer to small mole-
cules or segments of protein whose information grids are small and can be calculated 
quickly. We also observe, however, that MD simulation on receptor and complex are 
the most time-consuming parts, which take up to 96.25 percentage of the total time. 
Therefore, in our GPU accelerated version, we focus on how to port the MD simula-
tion to GPU, which could accelerate the bulk of the work. 

Table 1. Run time statistics for each step of Amber scoring. 100 cycles are performed for 
minimization steps and 3,000 cycles for MD simulation step. 

Stage Run time 
(seconds) 

Ratio of total 
(%) 

gradient minimization 1.62 0.33 

MD simulation 226.41 45.49 

minimization solvation 0.83 0.17 

Receptor 
protocol 

energy calculation 2.22 0.45 
gradient minimization ≈0 0 

MD simulation 0.31 0.06 

minimization solvation ≈0 0 

Ligand protocol 

energy calculation ≈0 0 

gradient minimization 8.69 1.75 

MD simulation 252.65 50.76 

minimization solvation 2.69 0.54 

Complex 
protocol 

energy calculation 2.22 0.45 
Total 497.64 100 

 
For the simplicity and efficiency, we take advantage of the Compute Unified De-

vice Architecture (CUDA). We find the key issue to fully utilize GPU is high ratio of 
arithmetic operations to memory operations, which can be achieved through refined 
utilization of memory model, data transfer pattern, parallel thread management and 
branch hidden. 

3.2   CUDA Programming Model Highlights 

At the core of CUDA programming model are three key abstractions – a hierarchy of 
thread groups, shared memories and barrier synchronization, which provide fine-
gained data parallelism, thread parallelism and task parallelism. CUDA defines GPU 
as coprocessors to CPU that can run a large number of light-weight threads concur-
rently. Threads are manipulated by kernels representing independent tasks mapped 
over each sub-problem. The kernel is invoked from the host side, most cases the CPU, 
as an asynchronized thread. The parallel threads collaborate through shared memory 
and synchronize using barriers. 

In order to process on the GPU, data should be prepared by copying it to the graph-
ic board memory first. Data transfer can be performed using deeply pipelined streams 
that overlap the kernel processing.The problem domain is defined in the form of a 2D 
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grid of 3D thread blocks. The significance of thread block primitive is that it is the 
smallest granularity of work unit to be assigned to a single streaming multiproces-
sor(SM). Each SM is composed of 8 scalar processors (SP) that indeed run threads on 
the hardware in a time-slice manner. Every 32 threads within a thread block are 
grouped into warps. Within a warp the executions are in order, while beyond the warp 
the executions are out of order. However, if threads within a warp follow divergent 
paths, only threads on the same path can be executed simultaneously.  

In addition to global memory, each thread block has its own private shared mem-
ory that is only accessible to threads within that thread block. Threads within a thread 
block could cooperate by sharing data among shared memory with low latency, while 
threads that belong to different thread blocks could only share data through global 
memory, which is slower by three orders of magnitude than shared memory. Syn-
chronization within a thread block is implemented in hardware. Among thread blocks, 
synchronization can be achieved by finishing a kernel and starting a new one.  

3.3   Parallel Thread Management 

To carry out the MD simulation on GPU, a kernel needs to be written which is 
launched from the host (CPU) and executed on the device (GPU). A kernel is the 
same instruction set that will be performed by multiple threads simultaneously. By 
default, all the threads are distributed onto the same SM, which can’t fully explore the 
computational power of the GPU. In order to utilize the SMs more efficiently, thread 
management must be taken into account. 

We divide the threads into multiple blocks and each block can hold the same num-
ber of threads. In the geometry, gradient and velocity grids, 3D coordinates of atoms 
are stored sequentially and the size of the grid usually reach as large as 7,000. Calcu-
lation works are assigned to blocks on different SMs; each thread within the blocks 
computes the energy of one atom respectively and is independent of the rest (see 
Figure 2). We compose N threads into a block, which calculate N independent atoms 
in the grids. Assuming the grid size is M and M is divisible by N, there will happen to 
be M/N blocks. 

While in most cases the grid size M is not divisible by N, we designed two 
schemes dealing with this situation. In the first scheme, there will be M/N blocks. 
Since there is M%N atoms left without threads to calculate, we will rearrange the 
atoms evenly to the threads in the last block. One more atom will be added to the 
threads in the last block until no atoms left, which is ordered by thread ID ascending. 
The second scheme is to construct M/N + 1 blocks. Each thread in the blocks  
still calculates one atom however the last block may contain threads with nothing  
to do. Control logic should be added to the kernel to judge whether the thread has 
some calculations or not through comparing the value of block ID * N + thread ID 
and M. 

Our experiment proves the former scheme obtained better performance. This is 
caused by underutilized SM resources and branch cost in the second scheme. When 
there is a branch divergence, all the threads must wait until they reach the same in-
structions again. Synchronization instructions are generated by the CUDA complier 
automatically, which is time consuming.  
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…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

 

Fig. 2. Threads and blocks management about processing molecule grids on GPU: (a) blocks 
whose threads in the last block may calculate two atoms each (b) blocks whose threads in the 
last block may have nothing to do. 

3.4   Memory Model and Data Transfer Pattern 

The first step to perform GPU computations is to transfer data from host (CPU) mem-
ory to device (GPU) memory since the receptor, ligand and complex grids need to be 
accessible by all SMs during the calculations. There are two kinds of memory can be 
used to hold these grids. One is the constant memory, which can be read and written by 
the host but can only be read by the device. The other is the global memory, which can 
be read and written by both the host and device. One important distinction between the 
two memories is the access latency. SMs can get access to the constant memory mag-
nitude order faster than the global memory. While the disadvantage of the constant 
memory is also obvious, it is much smaller, which is usually 64 KB compared to 512 
MB global memory. Thus, a trade-off has to be made on how to store these grids. 

During each MD simulation cycle, the gradient and velocity grids are read and up-
dated. Therefore, they should be stored in global memory. While once entered the 
MD simulation process, the geometry grids are never changed by the kernel. Hence, 
they can be stored in constant memory (see Figure 3). Considering the out-bound 
danger which dues to the limited capacity of the constant memory, we observed the 
size of the each geometry grid. The receptor and complex geometry grids usually 
contain no more than 2,000 atoms each while the ligand geometry grid contains 700 
atoms, which totally requires 2,000 * 3 * 4 * 2 + 700 * 3 * 4 bytes (56.4 KB) memory 
to store them. Since it is smaller than 64 KB, the geometry grids shall never go out-
bound of the constant memory. 

The time to transfer molecule grids from host to their corresponding GPU memory 
is likewise critical issue, which may degrade the benefit achieved from the parallel 
execution if without careful consideration [7]. For each MD simulation cycle, we 
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Fig. 3. Memory model and data transfer pattern during the MD simulation cycles. Grids are 
transferred only once before the simulation, which are stored in global memory and constant 
memory correspondingly. Atom results are first accumulated in the shared memory within the 
block. Then the accumulations per block are transferred into the host memory and summed up 
to the final MD simulation result for the molecule. 

could transfer one single atom 3D coordinates in the geometry, gradient and velocity 
grids to device memory when they are required by the SMs. The other solution is to 
transfer the entire grids into the GPU memory before the MD simulation stage. When 
the simulation starts, these grids are already stored in device memory which can be 
accessed by simulation cycles performed on SMs. 

Based on our experiment, significant performance improvements are obtained from 
the second scheme since the molecule grids are transferred only once for all before 
the MD simulation. When the calculations on the SMs are carried out, the coordinates 
of the atoms in the grids are already stored in the device memory. Therefore, the SMs 
don’t have to halt and wait for the grids to be prepared, which obviously speeds up the 
parallel execution of the MD simulations by fully utilizing the SMs. 

The MD simulations are executed parallel on different SMs, and threads within the 
different blocks are responsible for the calculations of their assigned atoms of the grids. 
The final simulation result is formed by accumulating all results. Our solution is to 
synchronize threads within the blocks, which generates atom results separately. Then a 
transformation is performed to store the atom results from shared memory to host 
memory in a result array, whose index is identical to the block ID. The molecule result 
shall be achieved by adding up all the elements in the array without synchronization 
since the results are transferred only when the calculations on device are accomplished.  

3.5   Divergence Hidden 

Another important factor that dramatically impact the benefits achieved by perform-
ing MD simulation on GPU is the branches. Original MD simulation procedure has 
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involved a bunch of nested control logics such as bound of Van der Waals force and 
constrains of molecule energy. When the parallel threads computing on different 
atoms in the grids come to a divergence, a barrier will be generated that all the threads 
will wait until they reach the same instruction set again. The above situation can be 
time-consuming and outweigh the benefits of parallel execution. 

We extract the calculations out of the control logic. Each branch result of the atom 
calculation is stored in a register variable. Inside of the nested control logic, only 
value assignments are performed, which means the divergence among all the threads 
will be much smaller, thus the same instruction sets can be reached with no extra 
calculation latency. Although this scheme will waste some computational power of 
the SMs since only a few branch results are useful in the end, it brings tremendous 
improvements in performance. These improvements can be attributed to that, in most 
cases, the computational power we required during the MD simulation is much less 
than the maximum capacity of the SMs. Hence, the extra calculations only consume 
vacant resources, which in turn speed up the executions. The feasibility and efficiency 
of our scheme have been demonstrated in our experiment. 

4   Results 

The performance of our acceleration result is evaluated for two configurations: 

 Two cores of a dual core CPU 
 GPU accelerated 

The base system is a 2.7 GHz dual core AMD Athlon processor. GPU results were 
generated using an NVIDIA GeForce 9800 GT GPU card. 

Table 2.  CPU times, GPU times and speedups with respect to 3,000 MD simulation cycles per 
molecule protocol. The CPU version was performed using dual core, while GPU version with 
all superior scheme. 

Stage CPU GPU Speedup 

gradient minimization 1.62 0.89 1.82 
MD simulation 226.41 31.32 7.23 

minimization solvation 0.83 0.15 5.53 

Receptor 
protocol 

energy calculation 2.22 1.21 1.83 
gradient minimization ≈0 0.02 —— 

MD simulation 0.31 0.60 —— 
minimization solvation ≈0 0.03 —— 

Ligand  
protocol 

energy calculation ≈0 ≈0 0 
gradient minimization 8.69 2.88 3.02 

MD simulation 252.65 34.79 7.26 

minimization solvation 2.69 2.05 1.31 

Complex 
protocol 

energy calculation 2.22 1.47 1.51 

Total 497.64 75.41 6.5 
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We referred to the Dockv6.2 as the original code, which was somewhat optimized 
in amber scoring. We also used the CUDAv2.1, whose specifications support 512 
threads per block, 64KB constant memory, 16KB shared memory and 512MB global 
memory. Since double precision floating point was not supported in our GPU card, 
transformation to single precision floating point was performed before the kernel 
launched. With small precision losses, the amber scoring results were slightly differ-
ent between CPU version and GPU version, which can be acceptable. 

Table 2 compares the original CPU version with the GPU accelerated version in 
runtime for various stages. The MD simulation performed are 3,000 cycles each mo-
lecular stage. The overall speedup achieved for the entire amber scoring is over 6.5x.  
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Fig. 4. Shown is a comparison of amber scoring time between original amber and different 
GPU versions whose speedup varies significantly as the MD simulation cycles increasing from 
3,000 to 8,000 

Figure 4 depicts the total speedups of different GPU schemes with respect to the 
range of increasing MD simulation cycles. As mentioned in section 3.3, the GPU 
version with only one block did not speedup, which was attributed to the poor man-
agement of threads since each block had a boundary of maximum active threads. In 
our experiment, GeForce 9800 GT specification limits each block can only hold 512 
threads maximally. This limitation will force large amount of threads waiting on  
the only one block until other threads are served and release the SM resource. Since 
the MD simulation requires more than one block threads to calculate the atom results, 
the latency becomes more obviously as the MD simulation cycles scale. Fortunately, 
with multiple blocks, this kind of thread starvation latency can be greatly eased. 
Threads within multiple blocks can be scheduled onto different SMs so that calcula-
tions of independent atoms are executed parallel. The most significant performance 
improvements are achieved from transferring the molecule grids only once during the 
MD simulation in addition to the usage of multi-blocks.  
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Fig. 5. Comparison of speedups among different GPU versions based on Figure 4 in addition to 
divergence hidden and shared memory 

Figure 5 depicts the second speedup in performance comes from the utilizations of 
divergence hidden and synchronization on shared memory. Since the branch calcula-
tions are extracted out of the control logic and stored in temporary variables, only one 
single instruction will be performed which assigns corresponding values into the final 
result when divergences occur. This scheme greatly shortens the time consumed for 
all the threads to return to the same instruction sets. While threads within a block will 
accumulate atom simulation values into a partial result of molecule on shared mem-
ory, the result array transferred back to the host is very small. Performance improve-
ments are obtained when summing up the elements in the array to form the molecule 
simulation result. We also notice that as the MD simulation cycles scales, the speedup 
becomes more considerable in our best GPU version. 

5   Related Work 

Exploiting GPUs for general purpose computing has recently gained popularity par-
ticularly as a mean to increase the performance of scientific applications. However 
most of the accelerations of science-oriented applications on GPU are in the fields of 
graphic processing and arithmetic algorithms. Kruger et al. [8] implemented linear 
algebra operators for GPUs and demonstrated the feasibility of offloading a number 
of matrix and vector operations to GPUs. Nathan Bell [9] demonstrated several effi-
cient implementations of sparse matrix-vector multiplication (SpMV) in CUDA by 
tailoring the data access patterns of the kernels. 

Studies on utilizing GPU to accelerate molecule docking and scoring problems are 
rare, the only work we find more related to our concern is in the paper of Bharat 
Sukhwani [10]. The author described a GPU-accelerated production docking code, 
PIPER [11], which achieves an end-to-end speedup of at least 17.7x with respect to a  
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single core. Our contribution is different from the former study in two aspects. First, 
we focus our energy on flexible docking such as amber scoring while the previous 
study mainly work on rigid docking using FFT. Thus our work is more complex and 
competitive in the real world. Second, we noticed the logic branches in the parallel 
threads on GPU degraded the entire performance sharply. We also described the di-
vergence hidden scheme and represented the comparison on speedup with and without 
our scheme. 

Another attractive work needs to be mentioned is that Michael Showerman and Jer-
emy Enos[12] developed and deployed a heterogeneous multi-accelerator cluster at 
NCSA. They also migrated some existing legacy codes to this system and measured 
the performance speedup, such as the famous molecular dynamics code called 
NAMD[13, 14]. However, the overall speedup they achieved was limited to 5.5x since 
they could not utilize the computation power of GPU and FPGA simultaneously. 

6   Conclusion and Future Works 

In this paper we present a GPU accelerated amber score in Dock6.2, which achieves 
an end-to-end speedup of at least 6.5x with respect to 3,000 cycles during MD simula-
tion compared to a dual core CPU. We find that thread management utilizing multiple 
blocks and single transferring of the molecule grids dominate the performance im-
provements on GPU. Furthermore, dealing with the latency attributed to thread syn-
chronization, divergence hidden and shared memory can be elegant solutions which 
will additionally double the speedup of the MD simulation. Unfortunately the speedup 
of Amber scoring can’t go much higher due to Amdahl’s law.  The limits are in mul-
tiple ways: 

 With the kernel running faster because of GPU accelerating, the rest of the 
Amber scoring takes a higher percentage of the run-time 

 Partitioning the work among SMs will eventually decrease the individual job 
size to a point where the overhead of initializing an SP dominates the applica-
tion execution time 

The work we presented in this paper only shows a kick-off stage of our exploration in 
GPGPU computation. We will proceed to use CUDA accelerating various applica-
tions with different data structures and memory access patterns and hope to be able  
to work out general strategies about how to use the manycore feature of GPU more 
efficiently.  
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