
C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 404–415, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Accelerating Dock6’s Amber Scoring with Graphic
Processing Unit

Hailong Yang, Bo Li, Yongjian Wang, Zhongzhi Luan, Depei Qian,
and Tianshu Chu

Department of Computer Science and Engineering,
Sino-German Joint Software Institute, Beihang University,

100191 Beijing, China
{hailong.yang,yongjian.wang,tianshu.chu}@jsi.buaa.edu.cn,

{libo,zhongzhil,depeiq}@buaa.edu.cn

Abstract. In the drug discovery field, solving the problem of virtual screening
is a long term-goal. The scoring functionality which evaluates the fitness of the
docking result is one of the major challenges in virtual screening. In general,
scoring functionality in docking requires large amount of floating-point calcula-
tions and usually takes several weeks or even months to be finished. This
time-consuming disadvantage is unacceptable especially when highly fatal and
infectious virus arises such as SARS and H1N1. This paper presents how to
leverage the computational power of GPU to accelerate Dock6 [1]’s Amber [2]
scoring with NVIDIA CUDA [3] platform. We also discuss many factors that
will greatly influence the performance after porting the Amber scoring to GPU,
including thread management, data transfer and divergence hidden. Our GPU
implementation shows a 6.5x speedup with respect to the original version
running on AMD dual-core CPU for the same problem size.

1 Introduction

Identifying the interactions between molecules is critical both to understanding the
structure of the proteins and to discovering new drugs. Small molecules or segments
of proteins whose structures are already known and stored in database are called li-
gands. While macromolecules or proteins associated with a disease are called recep-
tors [4]. The final goal is to find out whether the given ligand and receptor can form a
favorable complex and how appropriate the complex is, which may inhibit a disease’s
function and thus act as a drug.

Scoring is the step after docking which is involved evaluating the fitness for
docked molecules and ranking them. A set of sphere-atom pairs will be on behalf of
an orientation in receptor and evaluated with a scoring function on three dimensional
grids. At each grid point, interaction values are to be summed to form a final score.
These processes need to be repeated for all possible translations and rotations. Tre-
mendous computational power is required, as scoring for each orientation needs large
amount of CPU cycles, especially dealing with floating-point. The advantage of am-
ber scoring is that both ligands and active sites of the receptor can be flexible during
the evaluation. While the disadvantage is also obvious, it brings tremendous intensive

 Accelerating Dock6’s Amber Scoring with Graphic Processing Unit 405

floating-point computations. When performing amber scoring, it calculates the inter-
nal energy of the ligand, receptor and the complex, which can be broken down into
three steps:

 Minimization
 molecule dynamics (MD) simulation
 more minimization using solvents

The computational complexity of amber scoring is very huge, especially in the MD
simulation stage. Three grids which individually have three dimension coordinates are
used to represent the molecule during the orientation such as geometry, gradient and
velocity. In each grid, at least 128 elements are required to sustain the accuracy of the
final score. During the simulation, scores are calculated in three nested loops, each of
which walks through one of the three grids.

While many virtual screening tools such as GasDock [5], FTDock [6] and Dock6
can utilize multi-CPUs to parallel the computations, the incapacity of CPU in process-
ing floating-point computations still remains untouched. Compared with CPU, GPU
has the advantages of computational power and memory bandwidth. For example, a
GeForce 9800 GT can reach 345 GFLOPS at peak rate and has an 86.4 GB/sec mem-
ory bandwidth, whereas an Intel Core 2 Extreme quad core processor at 2.66 GHz has
a theoretical 21.3 peak GFLOPS and 10.7 GB/sec memory bandwidth. Another im-
portant factor why GPU is becoming widely used is that it is more cost-effective than
CPU.

Our contributions in this paper include porting the original Dock6 amber scoring to
GPU using CUDA, which can archive a 6.5x speedup. We analyze the different mem-
ory access patterns in GPU which can lead to a significant divergence in performance.
Discussions on how to hide the computation divergence on GPU are made. We also
conduct experiments to see the performance improvement.

The rest of the paper is organized as follows. In section II, an overview of Dock6’s
amber scoring and analysis of the bottleneck is given. In section III, we present the
main idea and implementation of the amber scoring on GPU with CUDA, and details
of considerations about performance are made. Then we give the results, including
performance comparisons among various GPU versions. Finally, we conclude with
discussion and future work.

2 Analysis of the Amber Scoring in Dock6

2.1 Overview

A primary design philosophy of amber scoring is allowing both the atoms in the
ligand and the spheres in the receptor to be flexible during the virtual screening proc-
ess, generating small structural rearrangements, which is much like the actual situa-
tion and gives more accuracy. As a result, a large number of docked orientations need
to be analyzed and ranked in order to determine the best fit set of the matched atom-
sphere pairs.

In the subsection, we will describe the amber scoring program flow and profile the
performance bottleneck of the original amber scoring, which can be perfectly acceler-
ated on GPU.

406 H. Yang et al.

2.2 Program Flow and Performance Analysis

Figure 1 shows the steps to score the fitness for possible ligand-receptor pairs in am-
ber. The program firstly performs conjugate gradient minimization, MD simulation,
and more minimization with solvation on the individual ligand, the individual recep-
tor, and the ligand-receptor complex, then calculates the score as follows:

Ebinding = Ecomplex – (Ereceptor - Eligand) . (1)

The docked molecules are described using three dimension intensive grids containing
the geometry, gradient or velocity coordinates information. The order of magnitude of
these grids is usually very large. Data in these grids is represented using floating-
point, which has little or no interactions during the computation. In order to archive
higher accuracy, the scoring operation will be performed repeatedly, perhaps hun-
dreds or thousands times.

Fig. 1. Program flow of amber scoring

Due to the characteristics of the amber scoring such as data independency and high
arithmetic intensity, which are exactly the sweet spots of computing on GPU, it can
be perfectly paralleled to leverage the computing power of GPU and gain preferable
speedup.

3 Porting Amber Scoring to GPU

3.1 Overview

To determine the critical path of amber scoring, we conduct an experiment to make
statistics about the cost of each step as Table 1 shows. We see that time spent on

 Accelerating Dock6’s Amber Scoring with Graphic Processing Unit 407

processing ligand is negligible, because ligand in docking always refer to small mole-
cules or segments of protein whose information grids are small and can be calculated
quickly. We also observe, however, that MD simulation on receptor and complex are
the most time-consuming parts, which take up to 96.25 percentage of the total time.
Therefore, in our GPU accelerated version, we focus on how to port the MD simula-
tion to GPU, which could accelerate the bulk of the work.

Table 1. Run time statistics for each step of Amber scoring. 100 cycles are performed for
minimization steps and 3,000 cycles for MD simulation step.

Stage Run time
(seconds)

Ratio of total
(%)

gradient minimization 1.62 0.33

MD simulation 226.41 45.49

minimization solvation 0.83 0.17

Receptor
protocol

energy calculation 2.22 0.45
gradient minimization ≈0 0

MD simulation 0.31 0.06

minimization solvation ≈0 0

Ligand protocol

energy calculation ≈0 0

gradient minimization 8.69 1.75

MD simulation 252.65 50.76

minimization solvation 2.69 0.54

Complex
protocol

energy calculation 2.22 0.45
Total 497.64 100

For the simplicity and efficiency, we take advantage of the Compute Unified De-

vice Architecture (CUDA). We find the key issue to fully utilize GPU is high ratio of
arithmetic operations to memory operations, which can be achieved through refined
utilization of memory model, data transfer pattern, parallel thread management and
branch hidden.

3.2 CUDA Programming Model Highlights

At the core of CUDA programming model are three key abstractions – a hierarchy of
thread groups, shared memories and barrier synchronization, which provide fine-
gained data parallelism, thread parallelism and task parallelism. CUDA defines GPU
as coprocessors to CPU that can run a large number of light-weight threads concur-
rently. Threads are manipulated by kernels representing independent tasks mapped
over each sub-problem. The kernel is invoked from the host side, most cases the CPU,
as an asynchronized thread. The parallel threads collaborate through shared memory
and synchronize using barriers.

In order to process on the GPU, data should be prepared by copying it to the graph-
ic board memory first. Data transfer can be performed using deeply pipelined streams
that overlap the kernel processing.The problem domain is defined in the form of a 2D

408 H. Yang et al.

grid of 3D thread blocks. The significance of thread block primitive is that it is the
smallest granularity of work unit to be assigned to a single streaming multiproces-
sor(SM). Each SM is composed of 8 scalar processors (SP) that indeed run threads on
the hardware in a time-slice manner. Every 32 threads within a thread block are
grouped into warps. Within a warp the executions are in order, while beyond the warp
the executions are out of order. However, if threads within a warp follow divergent
paths, only threads on the same path can be executed simultaneously.

In addition to global memory, each thread block has its own private shared mem-
ory that is only accessible to threads within that thread block. Threads within a thread
block could cooperate by sharing data among shared memory with low latency, while
threads that belong to different thread blocks could only share data through global
memory, which is slower by three orders of magnitude than shared memory. Syn-
chronization within a thread block is implemented in hardware. Among thread blocks,
synchronization can be achieved by finishing a kernel and starting a new one.

3.3 Parallel Thread Management

To carry out the MD simulation on GPU, a kernel needs to be written which is
launched from the host (CPU) and executed on the device (GPU). A kernel is the
same instruction set that will be performed by multiple threads simultaneously. By
default, all the threads are distributed onto the same SM, which can’t fully explore the
computational power of the GPU. In order to utilize the SMs more efficiently, thread
management must be taken into account.

We divide the threads into multiple blocks and each block can hold the same num-
ber of threads. In the geometry, gradient and velocity grids, 3D coordinates of atoms
are stored sequentially and the size of the grid usually reach as large as 7,000. Calcu-
lation works are assigned to blocks on different SMs; each thread within the blocks
computes the energy of one atom respectively and is independent of the rest (see
Figure 2). We compose N threads into a block, which calculate N independent atoms
in the grids. Assuming the grid size is M and M is divisible by N, there will happen to
be M/N blocks.

While in most cases the grid size M is not divisible by N, we designed two
schemes dealing with this situation. In the first scheme, there will be M/N blocks.
Since there is M%N atoms left without threads to calculate, we will rearrange the
atoms evenly to the threads in the last block. One more atom will be added to the
threads in the last block until no atoms left, which is ordered by thread ID ascending.
The second scheme is to construct M/N + 1 blocks. Each thread in the blocks
still calculates one atom however the last block may contain threads with nothing
to do. Control logic should be added to the kernel to judge whether the thread has
some calculations or not through comparing the value of block ID * N + thread ID
and M.

Our experiment proves the former scheme obtained better performance. This is
caused by underutilized SM resources and branch cost in the second scheme. When
there is a branch divergence, all the threads must wait until they reach the same in-
structions again. Synchronization instructions are generated by the CUDA complier
automatically, which is time consuming.

 Accelerating Dock6’s Amber Scoring with Graphic Processing Unit 409

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

Fig. 2. Threads and blocks management about processing molecule grids on GPU: (a) blocks
whose threads in the last block may calculate two atoms each (b) blocks whose threads in the
last block may have nothing to do.

3.4 Memory Model and Data Transfer Pattern

The first step to perform GPU computations is to transfer data from host (CPU) mem-
ory to device (GPU) memory since the receptor, ligand and complex grids need to be
accessible by all SMs during the calculations. There are two kinds of memory can be
used to hold these grids. One is the constant memory, which can be read and written by
the host but can only be read by the device. The other is the global memory, which can
be read and written by both the host and device. One important distinction between the
two memories is the access latency. SMs can get access to the constant memory mag-
nitude order faster than the global memory. While the disadvantage of the constant
memory is also obvious, it is much smaller, which is usually 64 KB compared to 512
MB global memory. Thus, a trade-off has to be made on how to store these grids.

During each MD simulation cycle, the gradient and velocity grids are read and up-
dated. Therefore, they should be stored in global memory. While once entered the
MD simulation process, the geometry grids are never changed by the kernel. Hence,
they can be stored in constant memory (see Figure 3). Considering the out-bound
danger which dues to the limited capacity of the constant memory, we observed the
size of the each geometry grid. The receptor and complex geometry grids usually
contain no more than 2,000 atoms each while the ligand geometry grid contains 700
atoms, which totally requires 2,000 * 3 * 4 * 2 + 700 * 3 * 4 bytes (56.4 KB) memory
to store them. Since it is smaller than 64 KB, the geometry grids shall never go out-
bound of the constant memory.

The time to transfer molecule grids from host to their corresponding GPU memory
is likewise critical issue, which may degrade the benefit achieved from the parallel
execution if without careful consideration [7]. For each MD simulation cycle, we

410 H. Yang et al.

Fig. 3. Memory model and data transfer pattern during the MD simulation cycles. Grids are
transferred only once before the simulation, which are stored in global memory and constant
memory correspondingly. Atom results are first accumulated in the shared memory within the
block. Then the accumulations per block are transferred into the host memory and summed up
to the final MD simulation result for the molecule.

could transfer one single atom 3D coordinates in the geometry, gradient and velocity
grids to device memory when they are required by the SMs. The other solution is to
transfer the entire grids into the GPU memory before the MD simulation stage. When
the simulation starts, these grids are already stored in device memory which can be
accessed by simulation cycles performed on SMs.

Based on our experiment, significant performance improvements are obtained from
the second scheme since the molecule grids are transferred only once for all before
the MD simulation. When the calculations on the SMs are carried out, the coordinates
of the atoms in the grids are already stored in the device memory. Therefore, the SMs
don’t have to halt and wait for the grids to be prepared, which obviously speeds up the
parallel execution of the MD simulations by fully utilizing the SMs.

The MD simulations are executed parallel on different SMs, and threads within the
different blocks are responsible for the calculations of their assigned atoms of the grids.
The final simulation result is formed by accumulating all results. Our solution is to
synchronize threads within the blocks, which generates atom results separately. Then a
transformation is performed to store the atom results from shared memory to host
memory in a result array, whose index is identical to the block ID. The molecule result
shall be achieved by adding up all the elements in the array without synchronization
since the results are transferred only when the calculations on device are accomplished.

3.5 Divergence Hidden

Another important factor that dramatically impact the benefits achieved by perform-
ing MD simulation on GPU is the branches. Original MD simulation procedure has

 Accelerating Dock6’s Amber Scoring with Graphic Processing Unit 411

involved a bunch of nested control logics such as bound of Van der Waals force and
constrains of molecule energy. When the parallel threads computing on different
atoms in the grids come to a divergence, a barrier will be generated that all the threads
will wait until they reach the same instruction set again. The above situation can be
time-consuming and outweigh the benefits of parallel execution.

We extract the calculations out of the control logic. Each branch result of the atom
calculation is stored in a register variable. Inside of the nested control logic, only
value assignments are performed, which means the divergence among all the threads
will be much smaller, thus the same instruction sets can be reached with no extra
calculation latency. Although this scheme will waste some computational power of
the SMs since only a few branch results are useful in the end, it brings tremendous
improvements in performance. These improvements can be attributed to that, in most
cases, the computational power we required during the MD simulation is much less
than the maximum capacity of the SMs. Hence, the extra calculations only consume
vacant resources, which in turn speed up the executions. The feasibility and efficiency
of our scheme have been demonstrated in our experiment.

4 Results

The performance of our acceleration result is evaluated for two configurations:

 Two cores of a dual core CPU
 GPU accelerated

The base system is a 2.7 GHz dual core AMD Athlon processor. GPU results were
generated using an NVIDIA GeForce 9800 GT GPU card.

Table 2. CPU times, GPU times and speedups with respect to 3,000 MD simulation cycles per
molecule protocol. The CPU version was performed using dual core, while GPU version with
all superior scheme.

Stage CPU GPU Speedup

gradient minimization 1.62 0.89 1.82
MD simulation 226.41 31.32 7.23

minimization solvation 0.83 0.15 5.53

Receptor
protocol

energy calculation 2.22 1.21 1.83
gradient minimization ≈0 0.02 ——

MD simulation 0.31 0.60 ——
minimization solvation ≈0 0.03 ——

Ligand
protocol

energy calculation ≈0 ≈0 0
gradient minimization 8.69 2.88 3.02

MD simulation 252.65 34.79 7.26

minimization solvation 2.69 2.05 1.31

Complex
protocol

energy calculation 2.22 1.47 1.51

Total 497.64 75.41 6.5

412 H. Yang et al.

We referred to the Dockv6.2 as the original code, which was somewhat optimized
in amber scoring. We also used the CUDAv2.1, whose specifications support 512
threads per block, 64KB constant memory, 16KB shared memory and 512MB global
memory. Since double precision floating point was not supported in our GPU card,
transformation to single precision floating point was performed before the kernel
launched. With small precision losses, the amber scoring results were slightly differ-
ent between CPU version and GPU version, which can be acceptable.

Table 2 compares the original CPU version with the GPU accelerated version in
runtime for various stages. The MD simulation performed are 3,000 cycles each mo-
lecular stage. The overall speedup achieved for the entire amber scoring is over 6.5x.

2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

A
m

be
rS

co
re

T
im

e
(s

)

M D S im u la tion C ycles

 O rig ina l Am ber Score
 G PU O ne B lock
 G PU M u lti-B locks(1)
 G PU (1) P lus D ata T ransfer O nce

Fig. 4. Shown is a comparison of amber scoring time between original amber and different
GPU versions whose speedup varies significantly as the MD simulation cycles increasing from
3,000 to 8,000

Figure 4 depicts the total speedups of different GPU schemes with respect to the
range of increasing MD simulation cycles. As mentioned in section 3.3, the GPU
version with only one block did not speedup, which was attributed to the poor man-
agement of threads since each block had a boundary of maximum active threads. In
our experiment, GeForce 9800 GT specification limits each block can only hold 512
threads maximally. This limitation will force large amount of threads waiting on
the only one block until other threads are served and release the SM resource. Since
the MD simulation requires more than one block threads to calculate the atom results,
the latency becomes more obviously as the MD simulation cycles scale. Fortunately,
with multiple blocks, this kind of thread starvation latency can be greatly eased.
Threads within multiple blocks can be scheduled onto different SMs so that calcula-
tions of independent atoms are executed parallel. The most significant performance
improvements are achieved from transferring the molecule grids only once during the
MD simulation in addition to the usage of multi-blocks.

 Accelerating Dock6’s Amber Scoring with Graphic Processing Unit 413

2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200

1400

A
m

be
rS

co
re

T
im

e
(s

)

MD Simulation Cycles

 Original Amber Score
 GPU Multi-B locks and Data Transfer Once(1)
 GPU(1) Plus Divergence Hidden(2)
 GPU(2) Plus Shanred Memory

Fig. 5. Comparison of speedups among different GPU versions based on Figure 4 in addition to
divergence hidden and shared memory

Figure 5 depicts the second speedup in performance comes from the utilizations of
divergence hidden and synchronization on shared memory. Since the branch calcula-
tions are extracted out of the control logic and stored in temporary variables, only one
single instruction will be performed which assigns corresponding values into the final
result when divergences occur. This scheme greatly shortens the time consumed for
all the threads to return to the same instruction sets. While threads within a block will
accumulate atom simulation values into a partial result of molecule on shared mem-
ory, the result array transferred back to the host is very small. Performance improve-
ments are obtained when summing up the elements in the array to form the molecule
simulation result. We also notice that as the MD simulation cycles scales, the speedup
becomes more considerable in our best GPU version.

5 Related Work

Exploiting GPUs for general purpose computing has recently gained popularity par-
ticularly as a mean to increase the performance of scientific applications. However
most of the accelerations of science-oriented applications on GPU are in the fields of
graphic processing and arithmetic algorithms. Kruger et al. [8] implemented linear
algebra operators for GPUs and demonstrated the feasibility of offloading a number
of matrix and vector operations to GPUs. Nathan Bell [9] demonstrated several effi-
cient implementations of sparse matrix-vector multiplication (SpMV) in CUDA by
tailoring the data access patterns of the kernels.

Studies on utilizing GPU to accelerate molecule docking and scoring problems are
rare, the only work we find more related to our concern is in the paper of Bharat
Sukhwani [10]. The author described a GPU-accelerated production docking code,
PIPER [11], which achieves an end-to-end speedup of at least 17.7x with respect to a

414 H. Yang et al.

single core. Our contribution is different from the former study in two aspects. First,
we focus our energy on flexible docking such as amber scoring while the previous
study mainly work on rigid docking using FFT. Thus our work is more complex and
competitive in the real world. Second, we noticed the logic branches in the parallel
threads on GPU degraded the entire performance sharply. We also described the di-
vergence hidden scheme and represented the comparison on speedup with and without
our scheme.

Another attractive work needs to be mentioned is that Michael Showerman and Jer-
emy Enos[12] developed and deployed a heterogeneous multi-accelerator cluster at
NCSA. They also migrated some existing legacy codes to this system and measured
the performance speedup, such as the famous molecular dynamics code called
NAMD[13, 14]. However, the overall speedup they achieved was limited to 5.5x since
they could not utilize the computation power of GPU and FPGA simultaneously.

6 Conclusion and Future Works

In this paper we present a GPU accelerated amber score in Dock6.2, which achieves
an end-to-end speedup of at least 6.5x with respect to 3,000 cycles during MD simula-
tion compared to a dual core CPU. We find that thread management utilizing multiple
blocks and single transferring of the molecule grids dominate the performance im-
provements on GPU. Furthermore, dealing with the latency attributed to thread syn-
chronization, divergence hidden and shared memory can be elegant solutions which
will additionally double the speedup of the MD simulation. Unfortunately the speedup
of Amber scoring can’t go much higher due to Amdahl’s law. The limits are in mul-
tiple ways:

 With the kernel running faster because of GPU accelerating, the rest of the
Amber scoring takes a higher percentage of the run-time

 Partitioning the work among SMs will eventually decrease the individual job
size to a point where the overhead of initializing an SP dominates the applica-
tion execution time

The work we presented in this paper only shows a kick-off stage of our exploration in
GPGPU computation. We will proceed to use CUDA accelerating various applica-
tions with different data structures and memory access patterns and hope to be able
to work out general strategies about how to use the manycore feature of GPU more
efficiently.

Acknowledgment

Many thanks to Ting Chen for thoughtful discussions and comments about our im-
plementation and paper work. This work was supported by the National Natural Sci-
ence Foundation of China under the grant No. 90812001, Chinese National Programs
for High Technology Research and Development under the grant No. 2006AA01A
124 and 2006AA01A118.

 Accelerating Dock6’s Amber Scoring with Graphic Processing Unit 415

References

1. Dock6, http://dock.compbio.ucsf.edu/DOCK_6/
2. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and test-

ing of a general Amber force field. Journal of Computational Chemistry, 1157–1174
(2004)

3. NVIDIA Corporation Technical Staff.: Compute Unified Device Architecture - Program-
ming Guide, NVIDIA Corporation (2008)

4. Kuntz, I., Blaney, J., Oatley, S., Langridge, R., Ferrin, T.: A geometric approach to mac-
romolecule-ligand interactions. Journal of Molecular Biology 161, 269–288 (1982)

5. Lia, H., Lia, C., Guib, C., Luob, X., Jiangb, H.: GAsDock: a new approach for rapid flexi-
ble docking based on an improved multi-population genetic algorithm. Bioorganic & Me-
dicinal Chemistry Letters 14(18), 4671–4676 (2004)

6. Servat, H., Gonzalez, C., Aguilar, X., Cabrera, D., Jimenez, D.: Drug Design on the Cell
BroadBand Engine. In: Parallel Architecture and Compilation Techniques, September
2007, p. 425 (2007)

7. Govindaraju, N.K., Gray, J., Kumar, R., Manocha, D.: GPUTeraSort: High-performance
graphics coprocessor sorting for large database management. In: Proceedings of the 2006
ACM SIGMOD International Conference on Management of Data (2006)

8. Kruger, J., Westermann, R.: Linear Algebra Operators for GPU Implementation of Nu-
merical Algorithms. In: ACM SIGGRAPH International Conference on Computer Graph-
ics and Interactive Techniques (2003)

9. Nathan, B., Michael, G.: Efficient Sparse Matrix-Vector Multiplication on CUDA.
NVIDIA Technical Report NVR-2008-004 (Dec. 2008)

10. Bharat, S., Martin, C.H.: GPU acceleration of a production molecular docking code. In:
Proceedings of 2nd Workshop on General Purpose Processing on GPUs, pp. 19–27 (2009)

11. PIPER, http://structure.bu.edu/index.html
12. Michael, S., Hwu, W.-M., Jeremy, E., Avneesh, P., Volodymyr, K., Craig, S., Robert, P.:

QP: A Heterogeneous Multi-Accelerator Cluster. In: 10th LCI International Conference on
High-Performance Clustered Computing (March 2009)

13. NAMD, http://www.ks.uiuc.edu/Research/namd/
14. Phillips, J.C., Zheng, G., Sameer, K., Kalé, L.V.: NAMD: Biomolecular Simulation on

Thousands of Processors. In: Conference on High Performance Networking and Comput-
ing, pp. 1–18 (2002)

	Accelerating Dock6’s Amber Scoring with Graphic Processing Unit
	Introduction
	Analysis of the Amber Scoring in Dock6
	Overview
	Program Flow and Performance Analysis

	Porting Amber Scoring to GPU
	Overview
	CUDA Programming Model Highlights
	Parallel Thread Management
	Memory Model and Data Transfer Pattern
	Divergence Hidden

	Results
	Related Work
	Conclusion and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

