UNO is hard, even for a single player
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Abstract. UNO® is one of the world-wide well-known and popular card games.
We investigate UNO from the viewpoint of combinatorial algorithmic game the-
ory by giving some simple and concise mathematical models for it. Théydac
cooperative and uncooperative versions of UNO, for example. résuat of an-
alyzing their computational complexities, we prove that even a singleplaye
sion of UNO is NP-complete, while it becomes in P in some restricted cages. W
also show that uncooperative two-player’s version is PSPACE-caenple

1 Introduction

Playing games and puzzles is a lot of fun for everybody, aralyaimg games and
puzzles has long been attracted much interests of both matfeans and computer
scientists [5, 8]. Among various interests and directiohiesearchers in mathematics
and computer science, one of the central issues is their a@tignal complexities,
that is, how hard or easy to get an answer of puzzles or to eele@winner (loser) of
games [2, 4, 10]. Such games and puzzles of interests inblideHex, Peg Solitaire,
Tetris, Geography, Amazons, Chess, Othello, Go, Pokersarwh. Recently, this field
is sometimes called ‘algorithmic combinatorial game tlgef#2] to distinguish it from
games arising from the other field, especially the clasgicahomic game theory.

In this paper, we focus on one of the well-known and populad cames called
UNO' and investigate it from the viewpoint of algorithmic comiarial game the-
ory to add it to the research list. More specifically, we psgmathematical models of
UNO, which is one of the main purposes of this paper, and tkamae their computa-
tional complexities. As a result, even a single-playerieersf UNO is computationally
intractable, while we can show that the problem becomesrathsy under a certain re-
striction.

We organize this paper as follows: Section 2 introduces tathematical models of
UNO and their variants, and also defines UNO graphs. Amonggthwodels, Section 3
focuses on a single-player version of UNO, and investigéde®mplexities. In Section

T UNO® is a registered trademark of Mattel Corporation.



4, we argue with two-players’ version of UNO, and show thit PSPACE-complete.
Finally, Section 5 concludes the paper.

2 Preliminaries

Games are often categorized from several aspects of piep#rat they have when we
research it theoretically. Typical classifications are eample, if it is multi-player or
single-player, imperfect-information or perfect-infation, cooperative or uncooper-
ative, and so on [2, 8]. A single-player game is automatjgadirfect-information and
cooperative, and is sometimes called a puzzle.

2.1 Game settings

UNO is one of the world-wide well-known and popular card ganiecan be played
by 2-10 players. Each player is dealt equal number of cartlseabeginning of the
game, where each (normal) card has its color and numberpefmesome special
ones called ‘action cards’). The basic rule is that eacheplagjays in turn, and one
can discard exactly one of Hier cards at hand in one’s turn by matching the card
with its color or number to the one discarded immediatelyolebne. The objective
of a single game is to be the first player to discard all thesardne’s hand before
one’s opponents. Thus, UNO is a (i) multi-player, (ii) imfget-information, and (iii)
uncooperative combinatorial game (see [3] for detailedsaf UNO).

In the real game setting of UNO, it is quite true that actiordsgplay important
roles to make this game complicated and interesting. Homvéwethis paper, when
we model the game mathematically, we concentrate on the impstrtant aspect of
the rules of UNO that a card has a color and a number and thatameliscard a
card only if its color or number match the card discarded imhistely before one’s
turn. In addition to obeying this fundamental property,tfogoretical simplicity, we set
following assumptions on our mathematical models: (a) wandbtake into account
either action cards nor draw pile, (b) all the cards dealtrtd at hand of any player
are open during the game, i.e., perfect-information, (c)d@eot necessarily assume
that all the players have a same number of cards at the bagimiia game (unless
otherwise stated), (d) any player acts rationally, e.gy,[dayer is not allowed to skip
one’s turn intentionally, and (e) the first player can stagame by discarding any card
he/she likes at hand.

2.2 Definitions and Notations

An UNO card has two attributes calledlor andnumbey and in general, we define a
cardtobe atupleX,y) € XxY,whereX ={1,...,c}isasetof colorsand = {1,...,b}

is a set of numbers. Finite numbermhyersl,2,..., p (= 1) can join an UNO game.
At the beginning of a single game of UNO, each card of a seat cardsC is dealt
to one player among players, i.e., each playeris initially given a setC; of cards;
Ci={tis,....tin}(=1,...,p). By definition,zip:1 n; = n. Here, we assume th@tis a
multiple set, that is, there may be more than one card witlsaéinge color and the same



number. We denote a carg ) dealt to player by (x, y)i. When the number of players
is one, we omit the subscript without any confusion. Thraughhe paper, we assume
without loss of generality that player 1 is the first to playdglayers 12,. .., pplay in
turn in this order.

Playeri candiscard(or play) exactly one card currently at hand in fier turn if the
color or the number of the card is equal to each of the carédisd immediately before
playeri. In other words, we say that a card= (X, y')ir can be discarded immediately
afteracard = (x,y); ifand only if (X = xvy = y)Al’ =i + 1 (modp). We also say that
a cardt’ matches cardt whent’ can be discarded aftérA discarded card is removed
from a set of cards at hand of the playerd&carding(or playing sequencéof card9
of a card seC is a sequence of cardg(...,ts) such thats € C andts # ts (i # ).

A discarding sequence(, .. ., ts) is feasibleif ty , matcheds for j=1,...,k-1.

In our mathematical models of UNO, we specify the problem$oby parameters:
number of playerg, number of total cards, number of colors and the number of
numbers. Two valuesc andb are assumed to be unbounded unless otherwise stated.

2.3 Models

We now define two dierent versions of UNO, one is cooperative and the other is un-
cooperative.

UNcooPERATIVE UNO

Instance: the number of playeps and playei’s card setC; with c colors and
b numbers.

Question: determine the first player that cannot discartaaed any more.

We refer to this Wcoorerative UNO with p players as Wcooperarive Uno-p. This
problem setting makes sense onlypif> 2 since UNO played by a single player be-
comes automatically cooperative.

CoopPErATIVE UNO

Instance: the number of playeps playeri’s card setC; with ¢ colors andb
numbers.

Question: can all the players make player 1 win, i.e., ma&gesl1's card set
empty before any of the other players become finished.

We abbreviate Gorerarive Uno played byp players as Goperarive Uno-p, or simply
as Wo-p. This problem setting makes sense if the number of playergreater than or
equal to 1. In WicooperaTiVE/CoopPERATIVE UNo, When the number of players is given by
a constant, such asvd-2, it implies thatp is no longer a part of the input of the prob-
lem. In addition to the assumptions (a)—(e) on game settiegsribed in Subsec. 2.1,
we set one additional assumption which changes dependinvghether the game is
cooperative or uncooperative: any player that cannot diszay card at hand (f1) skips
one’s turn but still remains in the game and waits for the haxtin cooperative games,
and (f2) is a loser in uncooperative games.

We defineUNO-p graphas a directed graph to represent ‘match’ relationship be-
tween two cards in the entire card set. More precisely, &xeardrresponds to a card,
and there is a directed arc from vertexo v if and only if their corresponding cards



t, matches (can be discarded immediately after) et us consider UNO-1 graph, i.e.,
UNO-p graph in case that the number of players 1. In this case, a cartd matches

t if and only if t matches’, that is, the ‘match’ relation is symmetric. This implies
that UNO-1 graph becomes undirected. For UNO-2 graph, attardx’,y’), matches

t = (x,y); if and only if t matched’, and therefore, UNO-2 graph also becomes undi-
rected. Furthremore, since a player cannot play consetytivhen the number of play-
ersp > 2, UNO-2 graph becomes bipartite. In general, sincards of a card se& is
dealt top players at the beginning of a single UNO game, i&is partitioned into

Ci = {(x,¥)i}, UNO-p graph becomes a (restrictephpartite graph whose partite sets
correspond t&;.

3 Cooperative UNO

In this section, we focus on the cooperative version of UN@, @discuss its complexity
when the number of players is two or one.

3.1 Two-players’ case
We first show that Wo-2 is intractable.
Theorem 1. Uno-2 is NP-complete.

Proof. Reduction from Hwmicronian Pata (HP).

An instance of HP is given by an undirected gr&ahrhe problem asks if there is a
Hamiltonian path irG, and it is known to be NP-complete [7]. Here, we assume withou
loss of generality thab is connected and is not a tree, and hence[ihg)| < |E(G)].
We transform an instance of HP into an instance 8642 as follows. LetC; andC,
be the card set of players 1 and 2, respectively. We d€fine {(i,i) | vi € V(G)} and
Co = {(i,]) | {vi,vj} € E(G)}. Then, notice that the resulting UNO-2 gra@h which
is bipartite, has partite se¥sandY (XU Y = V(G’)) corresponding t&(G) andE(G),
respectively, and represents vertex-edge incidenceaesiip ofG (Fig. 1). Now we
show that the answer of an instance of HP is yes if and onlyeigtiiswer of an instance
of Uno-2 is yes. If there is a Hamiltonian path, s@y= (vi,, Vi, . .., Vi), in the instance
graph of HP, then there is a feasible discarding sequenematively by player 1's
and 2's as (¢, i1)1, (i1,i2)2, (i2,i2)1, - - -, (in-1, in-1)1, (in-1,in)2, (in, in)1), which ends up
player 1's card before player 2's. Conversely, if there isastble discarding sequence
((i1,11)1, (i1512)2, (i2502)1, « -+ 5 (in-1,1n-1)1» (in-1,1n)2, (in, in)1), it visits all the vertices in
X of G’ exactly once, and thus the corresponding sequence ofe®ig Vi, ..., Vi,)
is a simple path visiting all the verticesW(G) exactly once, that is, a Hamiltonian path
inG.

The size of an instance ofdd-2 is proportional tdC,| + |Cy|. Since|Cy| = |[V(G)]
and|C;| = |E(G)|, the reduction is done in polynomial size\WG)| + |E(G)|, which is
the input size of an instance of HP. This completes the proof. O

Corollary 1. Uno-2is NP-complete even when the number of cards of two players ar
equal.
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Fig. 1. Reduction from HP to Wo-2.

Proof. Reduction from Hwmronian Para with specified starting vertex, which is known
to be NP-complete [7].

We consider the same reduction in the proof of Theorem 1. Akah proof, we
can assum¢C,| < |C,| without loss of generality. Whel€,| = |C;|, we are done. If
|Cy1] < |Cyl, add|Cy| — |C4| cards (1 + 2,n + 2) and a single carch(+ 2,n+ 1) toCy, a
single cardign+1) (i € {1,...,n}) toC,, and player 1 starts with card{ 2, n+2). This
forces the original grap& to specify a starting (or an ending) vertex of a Hamiltonian
path to bev;. O

3.2 Single-player’s intractable case

In single-player’s case, two flierent versions of UNO, cooperative and uncooperative
ones, become equivalent. We redefine this setting as thueviok:

Uno-1 (Soritaire Uno)

Instance: a se€ of n cards &,y (i = 1,...,n), wherex € {1,...,b} and
yie{l,...,ch

Question: determine if the player can discard all the cards.

Example 1.Let the card se€ for player 1 is give byC = {(1, 3), (2 2), (2 3), (2 3),
(2,4),(32),(34),(4,1), (4 3)}. Then, afeasible discarding sequence using all the cards
is((13),(23),(24),(34),(32),(22), (23), (43), (4 1)) in this order, for example,
and the answer is yes. The corresponding UNO-1 graph istaejit Fig. 2.

Fig. 2. An example of UNO-1 graph.

We here investigate some basic properties of UNO-1 grapHdNO-1 graphs, all
the vertices whose corresponding cards have either the salmeor number form a
cliqgue. Aline graph L(G) of a given graplG is a graph whose vertices are edge§&of
and{e €} € E(L(G)) for e, € € V(L(G)) if and only if eande’ share endpoints iG. A
graph that contains no inducéd 3 is calledclaw-free and line graphs are claw-free.



It is not so dificult to see that UNO-1 graphs are claw-free since at leastoftbe
three cards that match a card must have the same color or nurabthermore, we can
observe the following fact.

Observation 1.A graph is UNO-1 if and only if it is a line graph of a bipartiteagh.

Now we can easily understand thakdJ1 is essentially equivalent to finding a
Hamiltonian path in UNO-1 graph. However, the followingtfessknown.

Theorem 2. [9] Hamicronian Parn for line graphs of bipartite graphs is NP-complete.

Therefore, as a corollary of this theorem, we unfortunatalyw that UNO is hard even
for a single player.

Theorem 3. Uno-1is NP-complete.

Here, we give a direct and concise proof of Theorem 3 for gefftainedness and com-
pleteness instead of the one in [9], which further depend&jon

Proof. A cubic graph is a graph each of whose vertex has degree 3.dMegd-hmiL-
ToNIAN Parn for cubic graphs (HP-C), which is known to be NP-complete {&]Uno-1.
Let an instance of HP-C b®. We transfornG into a graphG’, where

V(@) = {(x§ | xe V(G),e= {xy} € E(G)},
E(G’) = {((Xv e)»(yv e)) | e= {X7 y} € E(G)} U {((X7 e,),(X, ej)) | 6 * ej}

This transformation implies that any vertexe V(G) is split into three new vertices
(x,&) (i = 1,2,3) to form a clique (triangle), while each incident edgdi = 1,2,3)

to x becomes incident to a new vertex ¢). (We call it a “node gadget” as shown in
Fig. 3.) Then we prepare the card €atf the player of Wo-1 to be the se¥(G’), where
the color and the number ox,(€) are x ande, respectively. We can easily confirm that
there is an edge = (t,t’) in G’ if and only ift andt’ match, i.e.G’ is the corresponding
UNO-1 graph for card s&Z. Now it sufices to show that there is a Hamiltonian path in
G of an instance of HP-C if and only if there is a HamiltonianhpatG’.

Suppose there is a Hamiltonian path, $ay= (vi,,...,V;,), in G. We construct a
Hamiltonian pathP’ in G’ from P as follows. Letv; Vi, Vi, be three consecutive
vertices inP in this order, and leg; = {vi_,,Vi;}, & = {vi;,Vi,,,} andes = {vi;,V;}

(k # j—1,j+ 1). Then we replace these three vertices by the sequencetafege
(Viip»€1), (Vij,€1), (Vij,€3), (Vi;,€), (Vi,,,;»€) in G’ to form a subpath irP’". For the
starting two vertices;, andv;,, we replace them by the sequence of verticgs;)
(el * {Vil’viz})1 (Vil’ e2) (e2 * {Vilaviz})1 (Vi17 {Vi17vi2})1 (Viza {Vipviz}) (Same for the ending
two vertices). We can now confirm that the resulting sequehweerticesP’ in G’ form
a Hamiltonian path.

For the converse, we have to show that if there is a Hamiltop&hP’ in UNO-1
graphG’, then there is irG. If P’ visits (v,g) (i = 1,2, 3) consecutively in any order
(call it “consecutiveness”) for any (as shown in Fig. 4 (al) or (a2)), théh can be
transformed into a Hamiltonian pathin G in an obvious way. Suppose not, that is, a
Hamiltonian path?’ in G’ does not visity, ) (i = 1,2, 3) consecutively. It sfices to
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Fig. 3. A node gadget splits a vertex into three vertices to form a triangle.

show that suchl’ can be transformed into another path to satisfy the conseoess.
There are two possible cases as shown in Fig. 4 (b’) and (@th bf which contain at
least one end point d® in (v, g). In case (b’), we can resolve this inconsecutiveness
in (v, g) as shown in (b), which may result in case (c’) in adjacenbétree vertices.

In case (), in order to resolve it, we can transform it int{ (vhich does not contain
inconsecutiveness any more.

Fig. 4. Possible tours passing through a node gadget.

The reduction can be done in the size proportional to thedfiae instance of HP-
C. Thus, the proof is completed. O

3.3 Single-player’s tractable case

In the remaining part of this section, we will show that suchimtractable problem
Uno-1 becomes tractable if the number of coloris bounded by a constant. It will be
solved by dynamic programming (DP) approach. To illusttate DP for Wo-1, we
first introduce a geometric view of UNO-1 graphs.

Since an UNO cardxy) is an ordered pair of integer values standing for its color
and number, it can be viewed as a (integer) lattice point enZfdimensional lattice
plane. Then an UNO-1 graph is a set of points in that planerevak the points with
the samex- or y-coordinate form a clique. We call this way of interpretatageometric
view of UNO-1 graphs. The geometric view of an instance in Exanipie shown in
Fig. 5 (a). Now the problem &b-1, which is equivalent to finding a Hamiltonian path in
UNO-1 graphs, asks if, for a given set of points in the plang starting and ending at
appropriate dferent points, one can visit all the points exactly once utfteecondition
that only axis-parallel moves are allowed at each point.(&igp)).
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Fig. 5. (a) Geometric view of a UNO-1 graph, where all the edges are omittgd,Hlamiltonian
path in the UNO-1 graph, and (c) a set of subpaths in the subgraph oiNfel graph induced
by the first 6 points; it showls1 5 = 1, V3 = 1 anddu s = 1.

Strategy.Let C be a set oh points andG be an UNO-1 graph defined l§y. Then a
subgraphP forms a Hamiltonian path if and only if it is a single path tlspansG.
Suppose a subgraghis a spanning path d@. If we consider a subs&’ of the point
setC, then P[C’] (the subgraph of induced byC’) is a set of subpaths that spans
G[C’] (Fig. 5 (c)). We count and maintain the number of sets of atiipby classifying
subpaths into three disjoint subsets according to the typtir two endpoints.

Starting with the empty set of points, the DP proceeds byrapdinew point ac-
cording to a fixed order by updating the number of sets of sthisggeratively. Finally
when the set of points grows @, we can confirm the existence of a Hamiltonian path
in G by checking the number of sets of subpaths consisting ofggesgubpath (without
isolated vertices). Remark that, throughout this DP, waneédor convenience that an
isolated vertex by itself contains a (virtual) path stagtand ending at itself that spans
it.

MechanismTo specify a point to be added in an iteration of the DP, we dedime-
lation < on the point seC, wherex(t) andy(t) are x- and y-coordinates of a point
t, respectively: Let andt’ be two points inC, thent < t/ < y(t) < y({t’) or
(y(t) = y(t') A X(t) < x(t")). Whent = t/, a tie breaks arbitrary. This relatiendefines
a total order orC, and we refen points inC to t, ..., t, according to the increasing
order of<. We also defin€, = {t; | 1 < i < ¢}. Now points are added froma to t,, and
consider when a new poitit= (x(t¢), y(t,)) is added taC,_;. It must be added either to
two, one or zero endpoints offtirent subpaths to form a new set of subpaths.

Now letP(¢) be a family of sets of subpaths spann@®§,]. (Recall that we regard
that an isolated vertex contains a path spanning itselfenTe classify subpaths in
a set of subpath® € P(¢) in the following manner: for any subpathe # and the
y-coordinates of its two endpoints, either (i) both equ#l) (type-h), (ii) exactly one of
two equalsy(t,) (type-v), or (iii) none equalg(t,) (type-d) holds. We count the number
of such three types of subpathsfnfurther by classifying them by the-coordinates
of their endpoints. (Notice that types-h, -d are symmetuictippe-v is not with respect
to x-coordinate.) For this purpose, we prepare some subsetpt & set of subscripts
K = {1,...,c}, sets of unordered pair of subscripts (*;) andl* =1 U{{i,i}|i e K},
and sets of ordered pair of subscripts K x K andJ™ = J - {(i,i) | i € K}.



We now introduce the following parametdrsv andd to count the number of sub-
paths in® (e P(¢)) (see Fig. 5 (c)):

h; iy - #subpaths iP with endpoints X, y(t,)) and &, y(t;)) for {i,i’}el*,
V(i,iy - #subpaths irP with endpoints X, y(t;)) and ., y’) for (i,i")e J andy’'<y(t,),
d;ii-y: #subpaths iP with endpoints X, y') and &, y”) for {i,i’}e 1™ andy’, y"<y(t).

Then we define a (2| + |J|)-dimensional vector(®) for a set of subpath® (e P(¢))
asz(P) = (h;v; d) = hiryy, - .. hags b2y ..o hizg haayp ) Bieg)s (VL - - -5 Vi,
Vi21ps Vi2.2)s - - - Vg Via s - - -» Viea)s (dinays - - -5 diags dizzys - - -, dizgy, Az, - - -5 Aieg))-
Finally, for a given vector If; v; d), we define the number of sef? satisfyingz(?)
= (h;v;d) in a family P(¢) by f(¢, (h;v; d)), i.e., (¢, (h;v;d)) = |{7> | P e P(0),
Z(P) = (h;v; d) }|. Now the objective of the DP is to determine if there existeetor
(h; v; d) such thatf(n, (h;v; d)) > 1, where all the elements im, v andd are 0 except
for exactly one elementis 1.

RecursionAs we explained, the DP proceeds by adding a new pptotC,_;. Whent,

is added, it is connected to either 0, 1 or 2 endpoints of iegigtifferent paths, where
each endpoint hagt,) or x(t,) in its coordinate. The recursion of the DP is described
just by summing up all possible combinations of these padtai/e treat it by dividing
them into three cases, one of which has two subcases: (apélsete cases; (b) a case
in whicht, is added as the first point whogeoordinate ig/(t;), and (b1) as an isolated
vertex, or (b2) as to be connected to an existing path; (¢halbther cases.

Now we can give the DP formula for computirfd¢; (h; v; d)), however, we just
explain the idea of the DP in Fig. 6 by illustrating one of tlases appearing in the DP
(see [3] for full description of this recursion). In this emple, consider a subpath in a
graph induced b, whose two endpoints have andx; in their x-coordinates. It will
be counted ity j;. Then this subpath can be generated by adding poiatconnect to
two paths in a graph induced I8¢_;, the one whose one endpoint is, {/(t;)) (counted
in Vi), and the other whose one endpointksyj (y < y(t;)) (counted indy;). The
number of such paths is the sum of those for all the combingatidi, i’ and j.

1= (K y(t)
, R

Fig. 6. An example case of the DP.

Timing analysisWe first count possible combinations of argumentsffd8incer varies
from 0 ton, there ared(n) possible values. All oh, v and d have ©(c?) elements,
each of which can hav@(n) possible values, and therefo®¥nc’) possible values in



all. To compute a single value df, it requiresO(n*) lookups of previously computed
values off in case (c), Whi|@(n3c2) x O(n?) lookups and check-sums in cases (b1)
and (b2), which is greater tha®(n*). Therefore, the total running time for this DP is
6(n) x O(N*") x O(N¥*+2) = O(nt*+3) = N which is polynomial inn whenc is a
constant.

Since the role of colors and numbers are symmetric in UNO game have the
following results.

Theorem 4. Uno-1is in P if b (the number of numbers) or ¢ (the number of colas) i
a constant.

4 Uncooperative UNO

In this section, we deal with the uncooperative version ofQJMspecially, we show
that it is intractable even for two player’s case. For thisgose, we consider the fol-
lowing version of GneraLizep GEoGraPHY, Which is played by two players.

GENERALIZED GEOGRAPHY

Instance: a directed graph, and a token placed on an inditéx.

Question: a turn is to move the token to an adjacent vertekitean to remove
the vertex moved from from the graph. Player 1 and 2 take tamd the first
player unable to move loses. Determine the loser.

It is well-known that GneraLizep GeograrHY IS PSPACE-complete [10], and a stronger
result is presented.

Theorem 5. [10] Generarizep GeoGraphy for bipartite graphs is PSPACE-complete.
Now we show the hardness result foxddoperaTive Uno-2.
Theorem 6. Uncoorerative Uno-2 is PSPACE-complete.

Proof. Reduction from GneraLizep GEograPHY fOr bipartite graphs (GG-B).

Let (directed) bipartite grap® with V(G) = X U Y be an instance of GG-B, where
X andY are two partite sets, and let(e X) be an initial vertex. To construct a cor-
responding bicoorerative Uno-2 instance, we first transfor@ into another graple’

where
V(@) = {us, U, Uc | u € V(G)},
E(G") = {(Ut, Ug), (Uc, Us) | U € V(G)} U {(us, v) | (U,V) € E(G)}

(Fig. 7). By construction, we can confirm th@t is a bipartite graph with/(G’") =
X' UY,whereX ={us, U |Jue X}U{u. |ue Y}andY ={us, b |u€ Y}U{uc | ue XJ.
We letr’ = ry (€ X’) be an initial vertex. It is easy to confirm that player 1 can e
game GG-B orts if and only if the player wins o&’. Then we prepare card sésfor
playersi (= 1, 2) by

Cl = {(X’ E), (e’y) | e= (X’ y) € E(G,)’ Xe X/’y € Y’}
U{(ee) le=(y,x) € E(G),xe X',ye Y},

C2 = {(y’ e)7 (e’ X) | €= (y7 X) € E(G,)’ Xe X/’y € Y/}
Uf(e,e) | e=(xy) € E(G),xe X',ye Y}



This means that we prepare three cards for eachiar&(G’), one for player and two
for player 3—i (Fig. 8).

u : U U Us z ;(e" e)Zl z .(X, 6)2; }(e,Y)z.
) g F<‘ (xer  (eyr x  (eer Y
y

Fig. 8. Prepare three cardg,€):, (e, €), and € V)1
for an arce = (x,y), and three carde(y),, (e, €)1
and , €), for an arce = (y, X).

Fig. 7. Split a vertex into two edges so
that edges correspond to cards.

Now we show that player 1 can win in anvtboperative Uno-2 instance if and
only if player 1 can win in an GG-B instan& ands'. To show this, it sffices to show
that any feasible playing sequence by players 1 and 2 in aiB@Gtance corresponds
to a feasible discarding sequence alternatively by playensd 2 in the corresponding
UncooperaTIVE UN0-2 instance, and vice versa.

Suppose a situation that player 2 has just discarded a cheddiScarded card be-
longs to either one of the following five cases: @ X) for e = (y, X), (i) (y,e) for
e = (y, x), (iii) (e e) for e = (x,¥). Among those, for cases (ii) and (iii), since player
1 starts the game (player 1 always played before player &'g,tthere exists exactly
one card (outgoing arc) that matches the one discarded pgmarom the end vertex
of the arc corresponding to the card. This forces to travéfsalong the directed arc
(in forward direction), which implies to remove correspomgend vertex front’. The
only case we have to care about is case (i), where there mayuligle choices for
player 1. In this case, once player 1 discarded one of matds cihe player will never
play another match card afterwards, since the only cardcrabe discarded immedi-
ately before it has played and used up. This implies thaexeris removed fronG’.
(The argument is symmetric for player 1 except that theahdard is specified.)

Now we verify that WicooperaTive Uno-2 is in PSPACE. For this, consider a search
tree for Wvcoorerative Uno-2, whose root is for player 1 and every node has outgoing
arcs corresponding to each player’s possible choiceseScnumber of total cards
for the two players is, the number of choices at any turn@$n) and since at least one
card is removed from either of the player’s card set, the rarmobdepth of the search
tree is bounded bp(n). Therefore, it requires polynomial space with respecti® t
input size. Thus the proof is completed. O

5 Concluding Remarks

In this paper, we focused on UNO, the well-known card gamd, gave two mathe-
matical models for it; one is cooperative (to make a specflager win), and the other
is uncooperative (to decide the player not to be able to play)a result of analyzing
their complexities, we showed that these problems dfedit in many cases, however,
we also showed that a single-player’s version is solvablgolgnomial time under a
certain restriction.



As for an obvious future work, we can try gaining speedup imadgic programming
for Uno-1 with constant number of colors by better utilizing its gesric properties.
In this direction, it may be quite natural to ask ik&}1 is fixed-parameter tractable.
Another probable direction is to investigate UNO-1 graptosrf the structural point
of view, since they form a subclass of claw-free graphs amdhs® have interesting
properties by themselves. It is also quite probable to nyanlif models more realistic,
e.g., to take draw pile into account (as an additional playemrmake all players’ cards
not open, and so on.

Based on our mathematical models, it is not dadlilt to invent several variations
or generalizations of UNO games, even foxddJl (single-player’s version). Among
them, we can generalize an UNO card from 2-tuple (2-dimerg)cto d-tuple, that
is, D-pimensioNaL Uno-1 with appropriate modifications to ‘match’ relation of dar
Another one is Mvimum Carp FiLL-iv, that is, given a no instance forno-1, find a
minimum number of cards to be added to make it to be a yes icestan
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