
 

 

 

 

Repositorio Institucional de la Universidad Autónoma de Madrid 

https://repositorio.uam.es  

Esta es la versión de autor de la comunicación de congreso publicada en: 
This is an author produced version of a paper published in: 

 
 

Soft Computing Models in Industrial and Environmental Applications, 5th 
International Workshop (SOCO 2010). Advances in Intelligent and Soft 

Computing, Volumen 73. Springer, 2010.  103-110. 
 

DOI: http://dx.doi.org/10.1007/978-3-642-13161-5_14   
 
Copyright: © 2010 Springer-Verlag 
 
El acceso a la versión del editor puede requerir la suscripción del recurso 

Access to the published version may require subscription 
 
 

https://repositorio.uam.es/
http://dx.doi.org/10.1007/978-3-642-13161-5_14


A Decision Support System for Logistics
Operations

Marı́a D. R-Moreno, David Camacho, David F. Barrero and Miguel Gutierrez

Abstract This paper describes an Artificial Intelligence based application for a
logistic company that solves the problem of grouping by zones the packages that
have to be delivered and propose the routes that the drivers should follow. The tool
combines from the one hand, Case-Based Reasoning techniques to separate and
learn the most frequent areas or zones that the experienced logistic operators do.
These techniques allow the company to separate the daily incidents that generate
noise in the routes, from the decision made based on the knowledge of the route.
From the other hand, we have used EvolutionaryComputation to plan optimal routes
from the learning areas and evaluate those routes. The application allows the users to
decide under what parameters (i.e. distance, time, etc) the route should be optimized.

1 Introduction

The actual demand of precise and trustable information in the logistic sector has
driven the development of complex Geographic Information Systems (GIS) very
useful for planning their routes. Those systems are combined with Global Posi-
tion Systems (GPS) for positioning the different elements involved in the shipping.
However, those systems although very useful, cannot take decisions based on, for
example shortcuts in the route that human operators learn from the experience.

David F. Barrero, Marı́a D. R-Moreno
Departmento de Automática. Universidad de Alcalá, Madrid, Spain
e-mail: (david|mdolores)@aut.uah.es

David Camacho
Departamento de Informática. Universidad Autónoma de Madrid, Madrid, Spain
e-mail: david.camacho@uam.es

Miguel Gutierrez
Espi & Le Barbier.
e-mail: miguel.gutierrez@espilebarbier.com

1



2 Marı́a D. R-Moreno, David Camacho, David F. Barrero and Miguel Gutierrez

In our particular problem, the logistic company has a set of logistic distributors
with General Packet Radio Service (GPRS) connexions and Personal Digital As-
sistants (PDAs) (around 1200 in the whole Spanish geography) where the list of
shippings is stored for each day. The order in which they should be carried out is
decided by the distributor depending on the situation: density of the traffic, state of
the highway, hour of the day and place of the shipping. For example, it is better to
ship in industrial areas early in the morning if the traffic is less dense. The list of
tasks for each distributor is supplied each day from a central server.
Within this context, the company needs a decision support tool that, from the

one hand allows them to decide the best drivers behaviors and learn from them.
And from the other hand, to plan the routes and evaluate and compared them under
different parameters.
There are several available tools that address (partially) the described problem.

For example, the ILOG SOLVER provides scheduling solutions in some domains such
as manufacturing or transportation and the ILOG DISPATCHER provides extensions
for vehicle routing. STRATOVISION is a Decision Support and Modeling System for
Logistics Strategy Planning that allows the user to represent a scenario and interact
with it in an easy way. AIMSUN allows evaluating different transportation solutions.
But, none of these tools combine what the experience operators do (learning from
their decisions), and plan optimal routes from the learnt knowledge.
This paper presents a tool that combines Case-Based Reasoning (CBR) to learn

humans decisions and Evolutionary Computation (EC) to plan for optimal routes.
The structure of the paper is as follows. Section 2 presents the different subsystems
that the application is subdivided into. Next, section 3 describes in detail the CBR
architecture and the algorithms used. After, the GA and the parameters used for the
route optimization are introduced in section 4. Then, section 5 shows an experimen-
tal evaluation of the application with the real data provided by the logistic company.
Finally conclusions and future work are outlined.

2 Application Architecture

The application is subdivided in four subsystems:

• The Data Processing Subsystem: takes the data from the files provided by the
logistic company in CSV format (Comma Separated Values). It analyses that
the files are valid, loads the information in data structures and performs a first
statistic analysis of each of the drivers contained in the file such as the number
of working days, number of physical acts, average of physical acts performed, or
average of the type of confirmation received by the client.

• The Loading Data Subsystem: is in charge of obtaining and loading the geo-
graphic information (latitude and longitude) of each address and the distances
among addresses. This information is provided by mean of the Google Maps
API. During the process of calculating the coordinates, we group the same ad-
dresses (a driver can ship several packages in the same address) for a given date



A Decision Support System for Logistics Operations 3

and a driver into one. We name that act. So in the database, the addresses will
be loaded as acts and an extra field will be added to represent the number of
deliveries and pick ups for that act.

• The Learning Working Areas (LWA) Subsystem: creates zones or working areas
for each driver using the data loaded and processed in the previous subsystems.
To generate that subdivision we have used the zip code as the baseline. So, a
zone or a working area can be represented by a zip code or more than one. It also
allows us to visualize (using the Google Maps API) the different working areas.

• The LearningManager Task (LMT) Subsystem: plans for routes in a date selected
by the user. We can specify the number of different plans we want as output and
compare them with the original plan performed by the driver. In the compari-
son and the generation of plans, we can use different parameters to measure the
quality of the plans such as the total distance, positive rate of LWA, time, etc.
The planning algorithm can adapt its answer to the driver behavior and generate
plans according to it, if that is what we want.

3 Case Based Reasoning Architecture

Cased Based Reasoning (CBR) [1] is an Artificial Intelligence (AI) technique that
solves new problems based on the acquired knowledge about how similar problems
were solved in the past. Any CBR system can be defined using two main elements:
the cases or concepts which are used to represent the problem, and the knowledge
base that is used to store and retrieve the cases. To handle this knowledge the CBR
systems needs to define several processes to Retrieve the most similar case(s) in the
knowledge base, Reuse the selected case using its solution adapted to the current
problem, Revise the adapted solution to verify if it can solve the actual case (if not
the process starts again), and finally, Retain the solution if it is satisfactory.
In our case, the knowledge base is extracted from the drivers experience and later

it is reused for optimization and logistic issues. This knowledge is given by the files
provided by the company (see the Data Processing Subsystem section).
The information loaded in the database can be used it straightforward (i.e. ad-

dress and time delivery can be used to estimate how much time is necessary to
complete a particular ship), or it can be used to indirectly learn from the experience
drivers. The drivers know which areas have thick traffic so they can take alternative
paths to reduce time and gas consumption. During the working day, the driver may
stop in places not related to the shipping to rest or eat. So this information has also
some disadvantages, mainly caused by the deficiency and irregularity of the data
given by the company. The information has a lot of noise: there are many mistakes
in the zip codes and the street names that are hard to correct. The shipping time that
could be used to calculate the time between some points in the path, it is not reliable
since sometimes the drivers annotate the hour after they have done some deliveries.
So, our CBR algorithm uses this information in a simplified way to prevent that

the noisy information could affect to the optimization process. The generation of



4 Marı́a D. R-Moreno, David Camacho, David F. Barrero and Miguel Gutierrez

the final CBR information, such as the working areas of the drivers, are carried out
using statistical considerations (average of behaviours followed by all the drivers
analysed) to minimize the noise.
Then, the following step in our CBR algorithm is to group the shippings. We can

define the concept of the working zone or working area (WA). It represents a partic-
ular zone in a city, or in a country, where one or several drivers will work shipping
objects (as mentioned before, we have called them acts). Usually the logistic com-
pany define (using a human expert) these WA and assign them to a set of drivers.
Minimizing the overlapping of these areas among different drivers is essential to
minimize the number of drivers and the deliver time for a set of acts. The automatic
generation of these working areas is the target of our CBR algorithm, these WA will
be used later in the optimization process.
The algorithm starts defining a grid that represents all the available postal codes

(Zi, i ∈ [1..n]) for a particular city (or county). These postal codes are used to fix a
geographical centroid so we can calculate (using any standard algorithm, i.e. based
on GPS values) the distance between two postal codes Zi and Z j (distZi,Zj). On the
other hand, the information from driver’s log is used to calculate how many acts be-
longs to the same postal code, and how many acts occurs between adjacents postal
codes (a driver could work in a particular postal code, or could work in several
postal codes). This information is represented using a parameter s i which is calcu-
lated as si = (acts(Zi → Zj)+acts(Zj → Zi)), this parameter represents the jumps
between two postal codes (we can expect that if several acts are interleaved, and
they are placed in different postal codes, these should be enough closer to maintain
the shipping costs low).
Let us now consider a particular driver’s log as a list of m ordered acts (act k,k ∈

[1..m]). A new value = (dk/sk), is calculated for each log, where
dk = dist(actk(Zk),actk+1(Zk+1)).
Using the postal codes stored in each log we generate a set of LWA using a clus-

tering algorithm based on the value of and 1. The algorithm works as follows,
using the drivers available (and the predefined value of ) all the acts are grouped
into a set of clusters, then these clusters are compared among drivers: If a particular
cluster is detected in different drivers, it is given to the system as a new learned
working area. The quality of the learned clusters will depend on the number of
drivers that has this cluster, so the system can take different actions in the planning
process taking into account how good this cluster is. Currently, we consider that any
learned cluster that belongs at least to three different drivers has enough quality to
be used directly by the system. This could be modified in the near future and allow
the user to modify the planning process using a reliability factor of these learned
clusters.
Finally, each LWA learned is stored as a new case in the data base, for each driver

the algorithm is applied and the LWA zones are generated.

1 The value of was obtained from an empirical evaluation of several drivers and working days
randomly selected. This value was selected analysing the LWA1 generated in the first execution of
the algorithm.



A Decision Support System for Logistics Operations 5

4 Route Optimization

One of the main features of the proposed system is its capacity to suggest efficient
routes. The term eficient in this context should be interpreted as relative to a set
of routes designed by a human expert and provided to the system as input. So,
the goal of the described system is to improve a given set of routes rather than
generate complete new routes. This characteristic is used by the optimization engine
to guide its search. The definition of the zones is provided by the CBR described
in the previous section so it doesn’t have to handle this task and thus, the route
optimization can be considered as a variation of the Travel Salesman Problem (TSP).
The selection of the optimization algorithm is critical to the success of the system.
Evolutionary Computation (EC) [3] provides a set of tools that can be used within
this scenario.
EC is a collection of algorithms inspired in the biological evolution. Regardless

of the flavour of the specific EC technique, they share three characteristics, (1) they
use a population of individuals that represent each one a solution in the search space,
(2) individuals are modified using a genetic operator, and (3), individuals are under
a selective pressure. The result is a evolution of the population that would eventually
converge to a global solution. From an AI point of view, EC is a set of stochastic
search algorithms. Depending on how individuals are represented and, how they are
modified, we can find several algorithms, one of the most sucessful ones are Genetic
Algorithms (GA) [4].
The GA implemented is based on the work of Sengoku described in [5]. This

GA encodes the solution using a classical permutation codification [2], where the
acts are coded as integer numbers between one and the number of acts in a fixed
length chromosome. Since no act can be visited twice, no integer in the chromo-
some is allowed to be repeated. Indeed the valuable information is not the presence
of the integer but rather information is kept in the adjacency. In this way, the chro-
mosome A1 = {4,3,2,5,6,1} represents the path 4→ 3→ 2→ 5→ 6→ 1, and it is
equivalent to another chromosome A2 = {5,6,1,4,3,2} representing 5→ 6→ 1→
4→ 3→ 2. The route that they code is the same because the genes have the same
adjacency.
GAs require a mechanism to evaluate the quality of individuals, or fitness. This

is a key subject in any GA design that may determine its sucess or failure. The
fitness function has a close relationship with the value that the solution provides
to the user. When optimizing routes, the fitness that an individual scores provide a
refference of time or distance savings. In our case, we have used an aggregate scalar
fitness function which evaluates the individual based on different characteristics.
A human made route is given to the GA as reference as well as a classification of

act in zones. The fitness evaluation is done comparing the solution to this reference
route. Of course, a route can outperform or not another route depending on the cri-
teria that is applied. Our system uses four criteria or qualifications: Time, Distance,
Zone and Act.
Using these qualifications we can evaluate different aspects related to the route,

such as time or distance. In order to provide a syntetic estimation of the quality



6 Marı́a D. R-Moreno, David Camacho, David F. Barrero and Miguel Gutierrez

of the individual, these qualifications are aggregated in a linear combination that
conforms the fitness function, as is expressed in equation 1.

f (A) = 0.4 d d(A)+ 0.4 t t(A)+ z z(A)+ a a(A) (1)

where i are coeffients associated to distance ( d), time ( t ), zones ( z) and acts
( a). These coefficients are used to weight the contribution of each category to the
fitness. It is possible to change the priority of qualifications that the user prefer to
optimize just modifing the coefficients i. The function i(A) returns the relative
difference between the route codified in the chromosome A and the reference route
for each one of the described categories. By default, d and t are set to 0.35 while
z and a are both set to 0.15.
The TSP is a problem where it is not possible to know when a global maximum

is achieved, so a convergence criteria is required to stop the execution of the GA. In
this case, the GA is suppossed to have converged if the average fitness in generation
i is less than 1% better than the fitness in generation i− 1. The initial population is
generated randomly avoiding repeated individuals.
Our GA uses the same evolution strategy than [5]. Given a populationM of routes

in generation i, the N best routes are cloned. In an attempt to avoid a premature con-
vergence due to the loose of genetic diversity, the routes are sorted by their fitness
value and the adjacent one are compared. Those routes whose fitness have a dif-
ference less than are removed. To maintain constant the number of individuals in
each generation, M−N individuals are generated by means of a Greedy Subtour
Crossover [5] where the parents are radomly selected. Then a mutation operator
called 2opt is applied with a probability pc. This operator swaps two random points
in the route if and only if the new individual is fitter than the old one. In case that
2opt did not generate a fitter individual it is not modified.

5 Experimental Results

One of the main problems we encountered in testing was the high percentage of
mistakes in the addresses in the input files. Without any pre-processing the number
of errors in the streets or zip codes is around 35%. After some preprocessing (such
as using the address to update incorrect zip codes, or eliminating or adding some
characters and searching again) the percentage drops to 20%. This is still very high
when attempting to perform an automatic comparison of the routes followed by the
drivers and the ones generated by our tool.
In our first attempt to compare the results, we manually cleaned the input files of

10 drivers during one month. The drivers choosen average 25 to 40 acts each day.
The improvement obtained on average by our tool is 26% if we use the distance as
the comparison parameter and 20% if we use the time.
But these results require of some explanations using a typical driver of the set

analised previously. By typical we mean that his behaviour is normal and the route



A Decision Support System for Logistics Operations 7

generated does not contain too much noise (i.e. a noisy route would perform in 30
mn half of the shippings).
The comparison of the results is carried out on the fitness of the best individual

obtained after the execution of the algorithm compared to the fitness of the original
itinerary on the acts of one day. Table 1 shows the values of the fitness in both
itenaries and the values of the different parameters that are in the fitness.

Table 1: Values of the fitness in the original and planned routes.

Route Fitness Distance Distance Time Time Zone Act
value (kms) improv. (%) (minutes) improv. (%) calification calification

Original 2.839 140.7 0.0 209.8 0.0 0.892 1.0
Planned 10.75 97.0 31.04 149.5 28.75 1.0 0.585

Comparing the original fitness (2.839) with the planned one (10.75) does not of-
fer much information until we analyse the contributions of the different parameters.
The number of kms varies from 140.7 Km in the original itinerary to 97 Km in the
planned one. This provides a distance improvement of the 31.04%.
The information related to the time is extracted from the columns time (min) and

time improvement in (%). The driver took 209.8minutes to perform all the shippings
while our algorithm took 149.5 minutes. This means a reduction of 28.75% of the
employed time.
Analazing graphically the results, a similar behavior is observed with the time

and the distance in both routes. At the beginning, the shippings performed by the
driver takes a big advantage over the planned ones (over 30 kms or 60 minutes).
But in the last part of the shippings the planned route beats the original plan. This
is a common behaviour in all the drivers analysed: at the beginning the humans try
to do the shippings closer to the starting point. Instead, the EC algorithm looks for
a solution that does not minimize the initial part of the route but all of it. Figure1
shows the original and planned routes using the Google Maps API. Another com-
mon mistake that we have detected is that the drivers try to do the shippings that
are in the same street. Although it seems a logical reasoning, some streets cross the
city from north to south or east to west. Following that criteria can higly increase
the number of kms since the driver has to drive back to a point close to the previous
shipping.
The time for generating the results by our EC algorithm is not crucial since plan-

ning routes can be generated off-line by our tool and given to the driver before he
starts his working day. The logistic company distributes the packages of each driver
in advance and just a small percentage of new unknown pick ups occur when the
driver has already started the shipping.



8 Marı́a D. R-Moreno, David Camacho, David F. Barrero and Miguel Gutierrez

Fig. 1: Plans comparison using Google Maps.

6 Conclusions and future work

In this paper we have described the AI-based application that we have developed
for a logistic operator company that combines Case-Based Reasoning (CBR) and
Evolutionary Computation (EC) techniques. CBR is used to separate and learn the
most frequent areas that the experienced drivers follow. These techniques allow one
to separate the daily incidents that generate noise in the routes, from the decision
made based on the knowledge of the route. The EC techniques plan optimal routes
from the learning areas and evaluate those routes.
Our next step will be to include a new module in the application that pre-process

automatically or in a mixed-initiative way the addresses bad introduced by the
drivers. Due that the 20% of the streets and zip code cannot be automatically cor-
rected, this represent a bottleneck to efficiently show the results of the tool.

Acknowledgements We want to thank Antonio Montoya for his contribution in the tool devel-
oped. This work has been supported by the Espi & Le Barbier company and the public projects
funded by the Spanish Ministry of Science and Innovation under the projects COMPUBIODIVE
(TIN2007-65989), V-LeaF (TIN2008-02729-E/TIN) and by Castilla-La Mancha project PEII09-
0266-6640.

References

1. Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, methodological
variations, and system approaches. Artificial Intelligence Communications, 7(1):39–52, 1994.

2. Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz. Evolutionary Computation 1. Basic
Algorithms and Operators, chapter Permutations, pages 139–149. Institute of Physics Publish-
ing, 1984.

3. A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, 2009.
4. John H. Holland. Adaptation in natural and artificial systems. MIT Press, Cambridge, MA,
USA, 1992.

5. Hiroaki Sengoku and Ikuo Yoshihara. A fast tsp solver using ga on java. In 3rd AROB, 1998.


