Skip to main content

Classical Simulation and Complexity of Quantum Computations

(Invited Talk)

  • Conference paper
Computer Science – Theory and Applications (CSR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6072))

Included in the following conference series:

Abstract

Quantum computing is widely regarded as being able to offer computational complexity benefits beyond the possibilities of classical computing. Yet the relationship of quantum to classical computational complexity is little understood. A fundamental approach to exploring this issue is to study the extent to which quantum computations (especially with restricted sub-universal ingredients) can be classically efficiently simulated. We will discuss a series of results relating to the classical simulation of some interesting classes of quantum computations, particularly Clifford circuits, matchgate circuits and a simple class of quantum circuits (so-called IQP circuits) comprising commuting gates. We will outline an argument that a suitably efficient classical simulation of the latter class would imply a collapse of the polynomial hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jozsa, R., Linden, N.: On the Role of Entanglement in Quantum Computational Speedup. Proc. R. Soc. Lond. A 459, 2011–2032 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Van den Nest, M.: Simulating Quantum Computers With Probabilistic Methods (preprint, 2009), http://arXiv.org/abs/0911.1624

  4. Gottesman, D.: Stabilizer Codes and Quantum Error Correction, PhD thesis. California Institute of Technology, Pasadena, CA (1997)

    Google Scholar 

  5. Valiant, L.: Quantum Circuits that can be Classically Simulated in Polynomial Time. SIAM J. Computing 31, 1229–1254 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Valiant, L.: Holographic algorithms. SIAM J. Computing 37, 1565–1594 (2002)

    Article  MathSciNet  Google Scholar 

  7. Knill, E.: Fermionic Linear Optics and Matchgates (preprint, 2001), http://arXiv.org/abs/quant-ph/0108033

  8. Terhal, B., DiVincenzo, D.: Classical Simulation of Noninteracting-fermion Quantum Circuits. Phys. Rev. A 65, 32325 (2002)

    Article  Google Scholar 

  9. Jozsa, R., Miyake, A.: Matchghates and Classical Simulation of Quantum Circuits. Proc. Roy. Soc. Lond. A 464, 3089–3106 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jozsa, R.: Embedding Classical into Quantum Computation. In: Calmet, J., Geiselmann, W., Mueller-Quade, J. (eds.) Mathematical Methods in Computer Science. LNCS, vol. 5393, pp. 43–49. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Aaronson, S., Gottesman, D.: Improved Simulation of Stabiliser Circuits. Phys. Rev. A 70, 052328 (2004)

    Google Scholar 

  12. Jozsa, R., Kraus, B., Miyake, A., Watrous, J.: Matchgate and Space-bounded Quantum Computations are Equivalent. Proc. Roy. Soc. Lond. A 466, 809–830 (2010)

    Article  MathSciNet  Google Scholar 

  13. Shepherd, D., Bremner, M.: Temporally Unstructured Quantum Compuitation. Proc. Roy. Soc. Lond. A 465, 1413–1439 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bremner, M., Jozsa, R., Shepherd, D.: Preprint in preparation (2010). A preliminary version of some of this work was presented in a poster at QIP 2010, Zürich (January 2010)

    Google Scholar 

  15. Aaronson, S.: Quantum Computing, Post-selection and Probabilistic Polynomial-time. Proc. Roy. Soc. Lond. A 461, 3473–3483 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Han, Y., Hemaspaandra, L., Thierauf, T.: Threshold Computation and Cryptographic Security. SIAM Journal on Computing 26, 59–78 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kuperberg, G.: How Hard is it to Approximate the Jones Polynomial? (preprint 2009), http://arXiv.org/abs/0908.0512

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jozsa, R. (2010). Classical Simulation and Complexity of Quantum Computations. In: Ablayev, F., Mayr, E.W. (eds) Computer Science – Theory and Applications. CSR 2010. Lecture Notes in Computer Science, vol 6072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13182-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13182-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13181-3

  • Online ISBN: 978-3-642-13182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics