
ar
X

iv
:0

90
9.

37
87

v2
 [

cs
.F

L
]

 1
9

D
ec

 2
00

9

Approximating the minimum length

of synhronizing words is hard

Mikhail V. Berlinkov

Department of Algebra and Disrete Mathematis

Ural State University

620083 Ekaterinburg, Russia

berlm�mail.ru

Abstrat We prove that, unless P = NP , no polynomial algorithm

an approximate the minimum length of synhronizing words for a given

synhronizing automaton within a onstant fator.

Bakground and overview

Let A = 〈Q,Σ, δ〉 be a omplete deterministi �nite automaton (DFA),

where Q is the state set, Σ is the input alphabet, and δ : Q × Σ → Q

is the transition funtion. The funtion δ extends in a unique way to a

funtion Q×Σ∗ → Q , where Σ∗
stands for the free monoid over Σ ; the

latter funtion is still denoted by δ . Thus, eah word in Σ∗
ats on the

set Q via δ . The DFA A is alled synhronizing if there exists a word

w ∈ Σ∗
whose ation resets A , that is to leave the automaton in one

partiular state no matter whih state in Q it starts at: δ(q, w) = δ(q′, w)
for all q, q′ ∈ Q . Any suh word w is alled a synhronizing word for

A . The minimum length of synhronizing words for A is denoted by

minsynch(A) .

Synhronizing automata serve as transparent and natural models of

error-resistant systems in many appliations (oding theory, robotis, test-

ing of reative systems) and also reveal interesting onnetions with sym-

boli dynamis and other parts of mathematis. For a brief introdution

to the theory of synhronizing automata we refer the reader to the reent

survey [11℄. Here we disuss only some omplexity-theoretial issues of the

theory. In the following we assume the reader's aquaintane with some

basis of omputational omplexity that may be found, e.g., in [3,6℄.

There is a polynomial algorithm (basially due to

�

Cern�y [1℄) that de-

ides whether or not a given DFA is synhronizing. In ontrast, determin-

ing the minimum length of synhronizing words for a given synhronizing

automaton is known to be omputationally hard. More preisely, deiding,

http://arxiv.org/abs/0909.3787v2

given a synhronizing automaton A and a positive integer ℓ , whether or

not minsynch(A) ≤ ℓ is NP-omplete [2,5,9,8℄. Moreover, deiding, given

the same instane, whether or not minsynch(A) = ℓ is both NP-hard and

o-NP-hard [8℄. Thus, unless NP = co -NP, even non-deterministi algo-

rithms annot �nd the minimum length of synhronizing words for a given

synhronizing automaton in polynomial time.

There are some polynomial algorithms that, given a synhronizing au-

tomaton, �nd synhronizing words for it, see [2,10,7℄. Suh algorithms an

be onsidered as approximation algorithms for alulating the minimum

length of synhronizing words but it seems that they have not been sys-

tematially studied from the approximation viewpoint. Experiments show

that Eppstein's greedy algorithm [2℄ behaves rather well on average and

approximates minsynch(A) within a logarithmi fator on all tested in-

stanes; however, no theoretial justi�ation for these observations has

been found so far.

In this paper we prove that, unless P = NP , no polynomial algo-

rithm an approximate the minimum length of synhronizing words for a

given synhronizing automaton within a onstant fator. This result was

announed in the survey [11℄ (with a referene to the present author's

unpublished manusript) but its proof appears here for the �rst time. We

also mention that a speial ase of our result, namely, non-approximability

of minsynch(A) within fator 2, was announed by Gawryhowski [4℄.

The paper is organized as follows. First we exhibit an auxiliary on-

strution that shows non-approximability of minsynch(A) within fator

2− ε for automata with 3 input letters. Then we show how to iterate this

onstrution in order to obtain the main result, again for automata with

3 input letters. Finally, we desribe how the onstrution an be modi�ed

to extend the result also to automata with only 2 input letters.

1 Non-approximability within fator 2 − ε

First we �x our notation and introdue some de�nitions. When we have

spei�ed a DFA A = 〈Q,Σ, δ〉 , we an simplify the notation by writing

q.w instead of δ(q, w) for q ∈ Q and w ∈ Σ∗
. For eah subset S ⊆ Q and

eah word w ∈ Σ∗
, we write S.w instead of {q.w | q ∈ S} . We say that a

subset S ⊆ Q is oupied after applying some word v ∈ Σ∗
if S ⊆ Q.v .

The length of a word w ∈ Σ∗
is denoted by |w| . If 1 ≤ s ≤ |w| , then

w[s] denotes the letter in the s-th position of w ; similarly, if 1 ≤ s < t ≤
|w| , then w[s..t] stands for the word w[s]w[s + 1] · · ·w[t] .

Let K be a lass of synhronizing automata We say that an algorithm

M approximates the minimal length of synhronizing words in K if, for

an arbitrary DFA A ∈ K , the algorithm alulates a positive integer

M(A) suh that M(A) ≥ minsynch(A) . The performane ratio of M at

A is RM (A) =
M(A)

minsynch(A)
. The algorithm is said to approximate the

minimal length of synhronizing words within fator k ∈ R if

sup{RM (A) | A ∈ K} = k.

Even though the following theorem is subsumed by our main result,

we prove it here beause the proof demonstrates underlying ideas in a

nutshell and in the same time presents a onstrution that serves as the

indution basis for the proof of the main theorem.

Theorem 1. If P 6= NP, then for no ε > 0 a polynomial algorithm

approximates the minimal length of synhronizing words within fator 2−ε
in the lass of all synhronizing automata with 3 input letters.

Proof. Arguing by ontradition, assume that there exist a real number

ε > 0 and a polynomial algorithm M suh that RM (A) ≤ 2−ε for every

synhronizing automaton A with 3 input letters.

We �x an arbitrary n > 2 and take an arbitrary instane ψ of the las-

sial NP-omplete problem SAT (the satis�ability problem for a system

of lauses, that is, formulae in onjuntive normal form) with n variables.

Let m be the number of lauses in ψ . We shall onstrut a synhroniz-

ing automaton A (ψ) with 3 input letters and polynomial in m,n num-

ber of states suh that minsynch(A (ψ)) = n + 2 if ψ is satis�able and

minsynch(A (ψ)) > 2(n − 1) if ψ is not satis�able. If n is large enough,

namely, n ≥ 6
ε
− 2 , then we an deide whether or not ψ is satis�able by

running the algorithm M on A (ψ) . Indeed, if ψ is not satis�able, then

M(A (ψ)) ≥ minsynch(A (ψ)) > 2(n− 1) , but, if ψ is satis�able, then

M(A (ψ)) ≤ (2− ε)minsynch(A (ψ)) = (2− ε)(n + 2)

≤ (2−
6

n+ 2
)(n+ 2) = 2(n − 1).

Clearly, this yields a polynomial algorithm for SAT: given an instane

of SAT, we an �rst, if neessary, enlarge the number of variables to at

least

6
ε
− 2 without in�uening satis�ability and then apply the above

proedure. This ontradits the assumption that P 6= NP .

Now we desribe the onstrution of the automaton A (ψ) = 〈Q,Σ, δ〉 .
The state set Q of A (ψ) is the disjoint union of the three following sets:

S1 = {qi,j | 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1, i 6= m+ 1 or j 6= n+ 1},

S2 = {pi,j | 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1},

S3 = {z1, z0}.

The size of Q is equal to 2(m+ 1)(n + 1) + 1 so a polynomial in m,n .

The input alphabet Σ of A (ψ) is the set {a, b, c} . In order to desribe

the transition funtion δ : Q × Σ → Q , we need an auxiliary funtion

f : {a, b} × {1, . . . ,m} × {1, . . . , n} → Q de�ned as follows. Let the

variables involved in ψ be x1, . . . , xn and the lauses of ψ be c1, . . . , cm .

For a literal y ∈ {x1, . . . , xn,¬x1, . . . ,¬xn} and a lause ci , we write

y ∈ ci to denote that y appears in ci . Now set

f(d, i, j) =

z0 if d = a and xj ∈ ci,

z0 if d = b and ¬xj ∈ ci,

qi,j+1 otherwise.

The transition funtion δ is de�ned aording to the following table:

State q ∈ Q δ(q, a) δ(q, b) δ(q, c)

qi,j for 1 ≤ i ≤ m, 1 ≤ j ≤ n f(a, i, j) f(b, i, j) qi,1

qm+1,j for 1 ≤ j ≤ n qm+1,j+1 qm+1,j+1 qm+1,1

qi,n+1 for 1 ≤ i ≤ m z0 z0 qm+1,1

pi,j for 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n pi,j+1 pi,j+1 pi,j+1

pi,n+1 for 1 ≤ i ≤ m+ 1 z0 z0 qi,1

z1 qm+1,1 qm+1,1 z0

z0 z0 z0 z0

Let us informally omment on the essene of the above de�nition.

Its most important feature is that, if the literal xj (respetively ¬xj)
ours in the lause ci , then the letter a (respetively b) moves the state

qi,j to the state z0 . This enodes the situation when one an satisfy the

lause ci by hoosing the value 1 (respetively 0) for the variable xj .

Otherwise, the letter a (respetively b) inreases the seond index of the

state. This means that one annot make ci be true by letting xj = 1
(respetively xj = 0), and the next variable has to be inspeted. Of

ourse, this enoding idea is not new, see, e.g., [2℄.

By the de�nition, z0 is the zero state of the automaton A (ψ) . Sine
there is a path to z0 from eah state q ∈ Q , the automaton A (ψ) is

synhronizing.

Figure 1 shows two automata of the form A (ψ) build for the SAT

instanes

ψ1 = {x1 ∨ x2 ∨ x3, ¬x1 ∨ x2, ¬x2 ∨ x3, ¬x2 ∨ ¬x3},

ψ2 = {x1 ∨ x2, ¬x1 ∨ x2, ¬x2 ∨ x3, ¬x2 ∨ ¬x3}.

If at some state q ∈ Q the piture has no outgoing arrow labelled d ∈ Σ ,

the arrow q
d
→ z0 is assumed (all those arrows are omitted in the piture

to improve readability). The two instanes di�er only in the �rst lause: in

ψ1 it ontains the variable x3 while in ψ2 it does not. Correspondingly, the

automata A (ψ1) and A (ψ2) di�er only by the outgoing arrow labelled a

at the state q1,3 : in A (ψ1) it leads to z0 (and therefore, it is not shown)

while in A (ψ2) it leads to the state q1,4 and is shown by the dashed line.

Observe that ψ1 is satis�able for the truth assignment x1 = x2 = 0 ,
x3 = 1 while ψ2 is not satis�able. It is not hard to hek that the word

cbbac synhronizes A (ψ1) and the word a7c is one of the shortest reset

words for A (ψ2) .
To omplete the proof, it remains to show that minsynch(A (ψ)) = n+2

if ψ is satis�able and minsynch(A (ψ)) > 2(n − 1) if ψ is not satis�able.

First onsider the ase when ψ is satis�able. Then there exists a truth

assignment τ : {x1, . . . , xn} → {0, 1} suh that ci(τ(x1), . . . , τ(xn)) = 1
for every lause ci of ψ . We onstrut a word v = v(τ) of length n as

follows:

v[j] =

{

a if τ(xj) = 1,

b if τ(xj) = 0.
(1)

We aim to prove that the word w = cvc is a synhronizing word for A (ψ) ,
that is, Q.w = {z0} . Clearly, z1.c = z0 . Further, S

2.cv = {z0} beause

every word of length n+1 that does not end with c sends S2
to z0 . Now

let T = {qi,1 | 1 ≤ i ≤ m + 1} , so T is the ��rst row� of S1
. Observe

that S1.c = T . Sine ci(τ(x1), . . . , τ(xn)) = 1 for every lause ci , there

exists an index j suh that either xj ∈ ci and τ(xj) = 1 or ¬xj ∈ ci and
τ(xj) = 0 . This readily implies (see the omment following the de�nition

of the transition funtion of A (ψ)) that qi,1.v = z0 for all 1 ≤ i ≤ m .

On the other hand, qm+1,1.v = z1 beause every word of length n that

does not involve c sends qm+1,1 to z1 . Thus, S
1.cv = T.v = S3

and

S1.w = {z0} . We have shown that w synhronizes A (ψ) , and it is lear

that |w| = n+ 2 as required.

q3,2q2,2

q2,3

q2,4 q3,4

q2,1 q3,1

q3,3

q4,2

q4,4

q4,1

q4,3

q1,2

q1,4

q1,1

q1,3

q5,2

z1

q5,1

q5,3

b

b

a, b b

a, b

a

a

a, b

a, b

a, b

a, b

a

b

a, b

a

c

c

c

c

c

c

c

c

c

c

c c c c
c

p3,2p2,2

p2,3

p2,4 p3,4

p2,1 p3,1

p3,3

p4,2

p4,4

p4,1

p4,3

p1,2

p1,4

p1,1

p1,3

p5,2

p5,4

p5,1

p5,3

a, b, c

a, b, c

a, b, c a, b, c a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

c c c c c

x1

x2

x3

c1 c2 c3 c4 5

4

z0

c c c
c

S2

S1

S3

a in A (ψ2) b

Figure 1. The automata A (ψ1) and A (ψ2)

Now we onsider the ase when ψ is not satis�able.

Lemma 1. If ψ is not satis�able, then, for eah word v ∈ {a, b}∗ of

length n , there exists i ≤ m suh that qi,n+1 ∈ T.v .

Proof. De�ne a truth assignment τ : {x1, . . . , xn} → {0, 1} as follows:

τ(xj) =

{

1 if v[j] = a,

0 if v[j] = b.

Sine ψ is not satis�able, we have ci(τ(x1), . . . , τ(xn)) = 0 for some lause

ci , 1 ≤ i ≤ m . Aording to our de�nition of the transition funtion

of A (ψ) , this means that qi,j.v[j] = qi,j+1 for all j = 1, . . . , n . Hene
qi,n+1 = qi,1.v ∈ T.v . ⊓⊔

Lemma 2. If ψ is not satis�able, then for eah word v ∈ {a, b}∗ of

length n and eah letter d ∈ Σ , the state qm+1,1 belongs to T.vd.

Proof. If d = c , the laim follows from Lemma 1 and the equalities

qm+1,1 = qi,n+1.c that hold for all i ≤ m . If d 6= c , we observe that

the state qm+1,1 is �xed by all words of length n+1 not involving c . ⊓⊔

Let w′
be a synhronizing word of minimal length for A (ψ) and

denote w = cw′c . Then the word w is also synhronizing and ℓ = |w| > n

beause already the length of the shortest path from qm+1,1 to z0 is

equal to n+1 . Let k be the rightmost position of the letter c in the word

w[1..n] .

Lemma 3. T ⊆ Q.w[1..k].

Proof. Indeed, sine k ≤ n , for eah 1 ≤ i ≤ m+ 1 we have

pi,n+2−k.w[1..k − 1]w[k] = pi,n+1.c = qi,1 ∈ T. �

We denote by v the longest pre�x of the word w[k + 1..ℓ] suh that

v ∈ {a, b}∗ and |v| ≤ n . Sine w ends with c , the word v annot be a

su�x of w . Let d ∈ Σ be the letter that follows v in w . If |v| = n , then

Lemma 2 implies that qm+1,1 ∈ T.vd . If |v| < n , then by the de�nition of

v we have d = c . Hene

qm+1,1.vd = qm+1,|v|+1.c = qm+1,1.

Thus, qm+1,1 ∈ T.vd also in this ase. Combining this with Lemma 3, we

have

Q.w[1..k]vd ⊇ T.vd ∋ qm+1,1. (2)

From the de�nitions of k and v it readily follows that w[k + 1..n] is a
pre�x of v whene |v| ≥ n−k . Thus, |w[1..k]vd| ≥ k+(n−k)+1 = n+1 .
Reall that the length of the shortest path from qm+1,1 to z0 is equal to

n+1 , and the su�x of w following w[1..k]vd must bring the state qm+1,1

to z0 in view of (2). Hene |w| ≥ (n + 1) + (n + 1) = 2n + 2 > 2n and

|w′| > 2(n− 1) . We have proved that minsynch(A (ψ)) > 2(n− 1) if ψ is

not satis�able. ⊓⊔

2 The main result

The main result of this paper is

Theorem 2. If P 6= NP, then no polynomial algorithm an approximate

the minimal length of synhronizing words within a onstant fator in the

lass of all synhronizing automata with 3 input letters.

Proof. Again we �x an arbitrary n > 2 and take an arbitrary instane

ψ of SAT with n variables. We shall prove by indution that for every

r = 2, 3, . . . there exists a synhronizing automaton Ar(ψ) = 〈Qr, Σ, δr〉
with the following properties:

� Σ = {a, b, c} ;

� |Qr| is bounded by a polynomial of n and the number m of lauses

of ψ ;

� if ψ is satis�able under a truth assignment τ : {x1, . . . , xn} → {0, 1} ,
then the word w = cr−1v(τ)c of length n + r synhronizes Ar(ψ)
(see (1) for the de�nition of the word v(τ));

� minsynch(Ar) > r(n− 1) if ψ is not satis�able.

Then, applying the same standard argument as in the proof of Theorem 1,

we onlude that for no ε > 0 the minimal length of synhronizing words

an be approximated by a polynomial algorithm within fator r−ε . Sine
r an be arbitrarily large, the statement of the main result follows.

The indution basis is veri�ed in the proof of Theorem 1: we an hoose

the synhronizing automaton A (ψ) to play the role of A2(ψ) . For the

sake of uniformity, in the sequel we refer to the state set Q of A (ψ) and

its transition funtion δ as to Q2 and respetively δ2 .

Now suppose that r > 2 and the automaton Ar−1(ψ) = 〈Qr−1, Σ, δr−1〉
with the desired properties has already been onstruted. We let

Qr = Qr−1

⋃

(Q2 \ {z0})×Qr−1.

Clearly, |Qr| = |Qr−1| · |Q2| and from the indution assumption it follows

that |Qr| is a polynomial in m,n .

We now de�ne the transition funtion δr : Qr ×Σ → Qr . Let d ∈ Σ ,

q ∈ Qr . If q ∈ Qr−1 , then we set

δr(q, d) = δr−1(q, d). (3)

If q = (q′, q′′) ∈ (Q2 \ {z0})×Qr−1 , we de�ne

δr(q, d) =

z0 if δ2(q
′, d) = z0,

q′′ if δ2(q
′, d) = qm+1,1 and either

q′ = qi,n+1 for i ∈ {1, . . . ,m}

or q′ = qm+1,j for j ∈ {2, . . . , n}

or q′ = z1,

(δ2(q
′, d), q′′) in all other ases.

(4)

Using this de�nition and the indution assumption, one an easily verify

that the state z0 is the zero state of the automaton Ar(ψ) and that there

is a path to z0 from every state in Qr . Thus, Ar(ψ) is a synhronizing

automaton.

In order to improve readability, we denote the subset {qi,j}×Qr−1 by

Qi,j for eah state qi,j ∈ S1
and the subset {pi,j}×Qr−1 by Pi,j for eah

state pi,j ∈ S2
. Slightly abusing notation, we denote by T the ��rst row�

of S1 × Qr−1 , i.e. T =
⋃

1≤i≤m+1Qi,1 . Similarly, let P =
⋃

1≤i≤m+1 Pi,1

be the ��rst row� of S2×Qr−1 . We also speify that the dot-notation (like

q.d) always refers to the funtion δr .

First we aim to show that if ψ is satis�able under a truth assignment

τ : {x1, . . . , xn} → {0, 1} , then the word w = cr−1v(τ)c synhronizes

the automaton Ar(ψ) . By (3) and the indution assumption we have

Qr−1.c ⊆ Qr−1 and Qr−1.c
r−2v(τ)c = z0 . Further, we an deompose

((Q2 \ {z0}) × Qr−1).c as {z0} ∪ Fr−1 ∪ Fr for some sets Fr−1 ⊆ Qr−1

and Fr ⊆ (Q2 \ {z0})×Qr−1 . By the indution assumption,

Fr−1.c
r−2v(τ)c ⊆ Qr−1.c

r−2v(τ)c = z0

Consider the set Fr . Using the de�nition of the ation of c on Q2 via δ2 ,

one an observe that Fr = T ∪G where G stands for S2×Qr−1\P . From

(4) we see that T.c = T and G.c ⊆ T ∪G . Thus we have Fr.c
r−2v(τ)c ⊆

T.v(τ)c ∪ G.v(τ)c, and ombining the �rst alternative in (4) with prop-

erties of the automaton A2(ψ) established in the proof of Theorem 1, we

obtain T.v(τ)c = G.v(τ)c = {z0} .

Now we onsider the ase when ψ is not satis�able. The following

lemma is parallel to Lemma 1 and has the same proof beause the ation

of a and b on the �bloks� Qi,j with 1 ≤ i ≤ m and 1 ≤ j ≤ n via δr
preisely imitates the ation of a and b on the states qi,j in the automaton

A (ψ) , see the last alternative in (4).

Lemma 4. If ψ is not satis�able, then, for eah word v ∈ {a, b}∗ of

length n , there exists i ≤ m suh that Qi,n+1 ⊆ δr(T, v). ⊓⊔

In ontrast, the next lemma whih is a ounterpart of Lemma 2 uses

the fat that in some ases the ation of the letters via δr drops states

from ((Q2 \ z0)×Qr−1) down to Qr−1 , see the middle alternative in (4).

Lemma 5. If ψ is not satis�able, then for eah word v ∈ {a, b}∗ of length

n and eah letter d ∈ Σ , we have Qr−1 ⊆ δr(T, vd).

Proof. If d = c , the laim follows from Lemma 4 and the equalities

δr((qi,n+1, q
′′), c) = q′′ that hold for all i ≤ m and all q′′ ∈ Qr−1 . If

d 6= c , we observe that δr((qm+1,1, q
′′), v) = (z1, q

′′) and δr((z1, q
′′), a) =

δr((z1, q
′′), b) = q′′ for all q′′ ∈ Qr−1 . ⊓⊔

Let w′
be a synhronizing word of minimal length for Ar(ψ) and

denote w = cw′c . Then the word w is also synhronizing and ℓ = |w| >
(r − 1)n by the indution assumption. Let k be the rightmost position

of the letter c in the word w[1..n] . We have the next lemma parallel to

Lemma 3 and having the same proof (with the �bloks� Pi,j with 1 ≤ i ≤
m+ 1 , n+ 2− k ≤ j ≤ n playing the role of the states pi,j).

Lemma 6. T ⊆ δr(Qr, w[1..k]). ⊓⊔

Now, as in the proof of Theorem 1, we denote by v the longest pre�x

of the word w[k + 1..ℓ] suh that v ∈ {a, b}∗ and |v| ≤ n . Clearly, v

annot be a su�x of w . Let d ∈ Σ be the letter that follows v in w . If

|v| = n then Lemma 5 implies that Qr−1 ⊆ δr(T, vd) . If |v| < n , then by

the de�nition of v we have d = c . Hene

δr(Qm+1,1, vd) = δr(Qm+1,|v|+1, c) = Qr−1.

Thus, Qr−1 ⊆ δr(T, vd) also in this ase. Combining this with Lemma 6,

we have

δr(Qr, w[1..k]vd) ⊇ δr(T, vd) ⊇ Qr−1. (5)

From the de�nitions of k and v it readily follows that |v| ≥ n − k .

Thus, |w[1..k]vd| ≥ k + (n − k) + 1 = n + 1 . The su�x of w following

w[1..k]vd must bring the set Qr−1 to a single state in view of (5). However,

by (3) the restrition of δr to Qr−1 oinides with δr−1 whene the su�x

must be a synhronizing word for Ar−1(ψ) . By the indution assumption

minsynch(Ar−1(ψ)) > (r − 1)(n − 1) , and therefore,

|w| > (n+ 1) + (r − 1)(n − 1) = r(n− 1) + 2

and |w′| > r(n−1) . We have thus proved that minsynch(Ar(ψ)) > r(n−1)
if ψ is not satis�able. This ompletes the indution step. ⊓⊔

3 The ase of 2-letter alphabets

We show that the main result extends to synhronizing automata with

only 2 input letters.

Corollary 1. If P 6= NP, then no polynomial algorithm an approximate

the minimal length of synhronizing words within a onstant fator in the

lass of all synhronizing automata with 2 input letters.

Proof. For any synhronizing automaton A = (Q, {a1, a2, a3}, δ) we an

onstrut a synhronizing automaton B = (Q′, {a, b}, δ′) suh that

minsynch(A) ≤ minsynch(B) ≤ 3minsynch(A) (6)

and |Q′| is a polynomial of |Q| . Then any polynomial algorithm approxi-

mating the minimal length of synhronizing words for 2-letter synhroniz-

ing automata within fator r would give rise to a polynomial algorithm

approximating the minimal length of synhronizing words for 3-letter syn-

hronizing automata within fator 3r . This would ontradit Theorem 2.

We let Q′ = Q × {a1, a2, a3} and de�ne the transition funtion δ′ :
Q′ × {a, b} → Q′

as follows:

δ′((q, ai), a) = (q, amin(i+1,3)),

δ′((q, ai), b) = (δ(q, ai), a1).

Thus, the ation of a on a state q′ ∈ Q′
substitutes an appropriate letter

from in the alphabet {a1, a2, a3} of A for the seond omponent of q′

while the ation of b imitates the ation of the seond omponent of q′ on

its �rst omponent and resets the seond omponent to a1 . Now is let a

word w ∈ {a1, a2, a3} of length ℓ be a synhronizing word for A . De�ne

vs =

b if w[s] = a1,

ab if w[s] = a2,

aab if w[s] = a3.

Then the word v = bv1 · · · vℓ is easily seen to be a synhronizing word for

B and |v| ≤ 3ℓ unless all letters in w are a3 but in this ase we an just

let a2 and a3 swap their names. Hene the seond inequality in (6) holds

true, and the �rst inequality is lear.

Aknowledgments

The author aknowledges support from the Federal Eduation Ageny

of Russia, grant 2.1.1/3537, and from the Russian Foundation for Basi

Researh, grant 09-01-12142.

Referenes

1.

�

Cern�y, J.: Pozn�amka k homog�ennym eksperimentom s kone�n�ymi automatami.

Matematiko-fyzik�alny

�

Casopis Slovensk. Akad. Vied 14(3) 208�216 (1964) (in Slo-

vak)

2. Eppstein, D.: Reset sequenes for monotoni automata. SIAM J. Comput. 19, 500�

510 (1990)

3. Garey, M. R.; Johnson, D. S.: Computers and Intratability: A Guide to the Theory

of NP-ompleteness, Freeman, San Franiso (1979)

4. Gawryhowski, P.: Complexity of the approximation of the shortest synhronizing

word. In: Workshop �Around the

�

Cern�y Conjeture�. Univ. Wro law, 2008 (unpub-

lished)

5. Goral�ik, P.; Koubek, V. Rank problems for omposite transformations. Int. J.

Algebra and Computation 5, 309�316 (1995)

6. Papadimitriou, C. H.: Computational Complexity, Addison-Wesley, Reading, MA

(1994)

7. Roman, A.: Synhronizing �nite automata with short reset words. Appl. Math.

and Computation 209, 125�-136 (2009)

8. Samotij, W.: A note on the omplexity of the problem of �nding shortest synhro-

nizing words. In: Eletroni Pro. AutoMathA 2007, Automata: from Mathematis

to Appliations. Univ. Palermo, Palermo (2007)

9. Salomaa, A.: Composition sequenes for funtions over a �nite domain. Theoret.

Comp. Si. 292, 263�281 (2003)

10. Trahtman, A.: An e�ient algorithm �nds notieable trends and examples on-

erning the

�

Cern�y onjeture. In: Kr�alovi�, R.; Urzyzyn, P. (eds.), 31st Int. Symp.

Math. Foundations of Comput. Si. Let. Notes Comput. Si., vol. 4162, pp. 789�

800. Springer, Heidelberg (2006)

11. Volkov, M.V.: Synhronizing automata and the

�

Cern�y onjeture. In: Mart��n-Vide,

C.; Otto, F.; Fernau, H. (eds.) Languages and Automata: Theory and Appliations.

Let. Notes Comput. Si., vol. 5196, pp. 11�27. Springer, Heidelberg (2008)

	Approximating the minimum length of synchronizing words is hard

