Skip to main content

Fast FPT Algorithms for Computing Rooted Agreement Forests: Theory and Experiments

Extended Abstract

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6049))

Abstract

We improve on earlier FPT algorithms for computing a rooted maximum agreement forest (MAF) or a maximum acyclic agreement forest (MAAF) of a pair of phylogenetic trees. Their sizes give the subtree-prune-and-regraft (SPR) distance and the hybridization number of the trees, respectively. We introduce new branching rules that reduce the running time of the algorithms from O(3k n) and O(3k n logn) to O(2.42k n) and O(2.42k n logn), respectively. In practice, the speed up may be much more than predicted by the worst-case analysis. We confirm this intuition experimentally by computing MAFs for simulated trees and trees inferred from protein sequence data. We show that our algorithm is orders of magnitude faster and can handle much larger trees and SPR distances than the best previous methods, treeSAT and sprdist.

Details can be found in [17]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baroni, M., Grünewald, S., Moulton, V., Semple, C.: Bounding the number of hybridisation events for a consistent evolutionary history. J. Math. Biol. 51(2), 171–182 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beiko, R.G., Harlow, T.J., Ragan, M.A.: Highways of gene sharing in prokaryotes. P. Natl. Acad. Sci. USA 102(40), 14332–14337 (2005)

    Article  Google Scholar 

  3. Beiko, R.G., Hamilton, N.: Phylogenetic identification of lateral genetic transfer events. BMC Evol. Biol. 6(1), 15 (2006)

    Article  Google Scholar 

  4. Bonet, M.L., John, K.S.: Efficiently Calculating Evolutionary Tree Measures Using SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 4–17. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Bonet, M.L., John, K.S., Mahindru, R., Amenta, N.: Approximating subtree distances between phylogenies. J. Comp. Biol. 13(8), 1419–1434 (2006)

    Article  Google Scholar 

  6. Bordewich, M., Linz, S., John, K.S., Semple, C.: A reduction algorithm for computing the hybridization number of two trees. Evol. Bioinform. 3, 86–98 (2007)

    Google Scholar 

  7. Bordewich, M., McCartin, C., Semple, C.: A 3-approximation algorithm for the subtree distance between phylogenies. J. Disc. Alg. 6(3), 458–471 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Annals of Comb. 8(4), 409–423 (2005)

    Article  MathSciNet  Google Scholar 

  9. Bordewich, M., Semple, C.: Computing the hybridization number of two phylogenetic trees is fixed-parameter tractable. IEEE/ACM T. Comp. Biol. 4(3), 458–466 (2007)

    Article  MathSciNet  Google Scholar 

  10. Bordewich, M., Semple, C.: Computing the minimum number of hybridization events for a consistent evolutionary history. Disc. Appl. Math. 155(8), 914–928 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Disc. Appl. Math. 71(1-3), 153–169 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hickey, G., Dehne, F., Rau-Chaplin, A., Blouin, C.: SPR distance computation for unrooted trees. Evol. Bioinform. 4, 17–27 (2008)

    Google Scholar 

  13. Hillis, D.M., Moritz, C., Mable, B.K. (eds.): Molecular Systematics. Sinauer Associates (1996)

    Google Scholar 

  14. Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46(3), 523–536 (1997)

    Google Scholar 

  15. Nakhleh, L., Warnow, T., Lindner, C.R., John, K.S.: Reconstructing reticulate evolution in species—theory and practice. J. Comp. Biol. 12(6), 796–811 (2005)

    Article  Google Scholar 

  16. Rodrigues, E.M., Sagot, M.F., Wakabayashi, Y.: The maximum agreement forest problem: Approximation algorithms and computational experiments. Theor. Comp. Sci. 374(1-3), 91–110 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Whidden, C., Beiko, R.G., Zeh, N.: Fast FPT algorithms for computing rooted agreement forests: Theory and experiments. Tech. Rep. CS-2010-03, Faculty of Computer Science, Dalhousie University (2010)

    Google Scholar 

  18. Whidden, C., Zeh, N.: A unifying view on approximation and FPT of agreement forests. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS(LNBI), vol. 5724, pp. 390–401. Springer, Heidelberg (2009)

    Google Scholar 

  19. Whidden, C.: rSPR FPT Software, http://kiwi.cs.dal.ca/Software/RSPR

  20. Wu, Y.: A practical method for exact computation of subtree prune and regraft distance. Bioinformatics 25(2), 190–196 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Whidden, C., Beiko, R.G., Zeh, N. (2010). Fast FPT Algorithms for Computing Rooted Agreement Forests: Theory and Experiments. In: Festa, P. (eds) Experimental Algorithms. SEA 2010. Lecture Notes in Computer Science, vol 6049. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13193-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13193-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13192-9

  • Online ISBN: 978-3-642-13193-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics