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Data Propagation with Guaranteed Delivery for
Mobile Networks

Hakob Aslanyan, Pierre Leone, and Jose Rolim

Computer Science Department, University of Geneva, Battelle Batiment A, route de
Drize 7, 1227 Geneva , Switzerland

Abstract. In this paper, we consider wireless sensor networks where
nodes have random and changeable mobility patterns. We study the
problem where a particular node, called the base station, collects the
data generated by the sensors/nodes. The nodes deliver the data to the
base station at the time when they are close enough to the base station to
ensure a direct transmission. While the nodes are too far to transmit to
the base station, they store the data in a limited capacity internal FIFO
queue. In the case where the queue is full, the new generated data are in-
serted in the queue and the oldest data are lost. In order to ensure, with
a high probability, that the base station receives the generated data, the
nodes disseminate the generated data in the network. The dissemination
process consists in transmitting the data to others mobile nodes which
are close enough to ensure a direct transmission. The nodes must control
the dissemination process. Indeed, if the nodes send systematically the
data to the neighbouring nodes then, the FIFO queues are going to be
quickly saturated and the data lost (the dissemination process duplicate
the generated data). On the other hand if the nodes do not disseminate
the data, the data queued first are prone to be systematically lost if the
capacity of the queue is too limited.
We propose a protocol based on the estimate of the delivery probabili-
ties of the data. Each node estimates the delivery probabilities of all the
queued data. These probabilities depend on the position of the data in
the queue and, on the dissemination process. The lower is the delivery
probability the more the nodes disseminate the data to increase the de-
livery guarantee to the base station. In that way, all the messages get a
high probability to be delivered to the base station (higher that some pre-
defined threshold). Experimental validations of the protocol show that
the protocol performs well and outperforms an existing protocol. 1

Keywords: Sensor networks, Mobility, Guaranteed delivery, Data prop-
agation.

1 Introduction

Wireless sensor networks (WSN) are composed of a large number of sensor nodes
with sensing, processing and wireless communication capabilities. Usually, the

1 Partially supported by the ICT Programme of the European Union under contract
number ICT-2008-215270 (FRONTS).



nodes are spatially distributed in a given region that they monitor. They use their
sensing capabilities to monitor the environment, collecting data like temperature,
pressure, vibration, sound, etc. The sensed data (that the nodes generate) have
to be delivered to a particular node called the base station.

Usually the nodes are battery powered and it is crucial to limit the energy
consumption due to the transmissions in order to increase the operability time
of the network (network lifetime). In some settings, the nodes are able to trans-
mit the messages directly to the base station by using wireless transmissions.
However, it is known that the energy required to transmit data over distance d
is proportional dα where α is usually in the interval [2, 4] (see [13]). Hence, long-
range transmissions are energy-costly. A way to reduce the energy consumption
is to use intermediate nodes to convey the data to the base station with multi-
hops. There is a large amount of research on energy aware data gathering in
wireless sensor networks with static nodes, see for instance [1, 4, 5, 10, 7, 14] and
the references therein.

In this paper, we consider the case where the nodes are mobile. Many of the
routing protocols for wireless sensor networks with static nodes use information
about the network topology. One of the first works on data gathering with mobile
WSN is presented in [8] that considers the case where the nodes have a reduced
mobility pattern and the base station is mobile. The protocol presented in [15] is
similar to the one we present in the present paper: Each node locally calculates
a delivery probability and decides whether the data are forwarded. However, it
is hard to relate the computed estimate with ours and then to proceed to fair
comparison at this stage. In [11] the authors present a data gathering protocol for
networks where the position of each node is a known function of time. Finally, in
[9] the authors present a protocol for networks with randomly moving nodes with
different mobility patterns. The nodes are able to change their mobility patterns
during the time. The authors define a mobility level index that captures the
node speed, dislocation and mobility changes. Based on this index, the authors
suggest to evaluate the probability that a given node will deliver data to the
base station.

The main idea of the algorithm presented in this paper is to transmit (diffuse)
to many nodes a data m generated by the sensor nodes, in such a way that the
probability that at least one of the nodes will get close enough to the base station
and delivers the data is larger than a predefined threshold. We consider that the
nodes have a limited memory and after getting their memory full, they need to
drop data for saving newly generated ones. The nodes manage the memory as
a FIFO queue. The main advantage of our algorithm is that the nodes do not
use information about their positions; they also do not need to know where the
base station is located. The nodes take the decisions whether to forward the data
to another node or not by using only the count of the previously (successfully)
delivered and dropped data. We proceed to the simulation of the algorithm and,
we show the effectiveness of our protocol. We also compare the performance
with the algorithm presented in [9]. Both algorithms consider that the nodes
are randomly moving with varying mobility patterns and with limited memory.



We compare the performance of both algorithms in terms of data delivery rate,
average data delivery delay and average number of sent messages per node.

The rest of the paper is organized as follows. We describe the proposed
algorithm in Section 2. The theoretical validation is described in Section 3 while
we present the experimental validation in Section 4.

2 Description of the Algorithm

We consider that the memory capacity of the nodes is limited. The nodes convey
data to the base station coming from two sources. The first type of data, called
generated data, are the data that the nodes acquire with their sensing devices.
The second type of data, called received data, are the data that are transmitted
by others nodes, i.e. disseminated. Thus, after spending some time away from
the base station the generated and received data might saturate the memory of
some nodes. In this case, the nodes no longer accept received data. However, the
node inserts the generated data in the FIFO queue and the data in the head of
the queue are lost.

Let us assume that each node i knows the probability pi(m) that the data
m will be successfully delivered to the base station. We point out that this
probability depends on the position in the queue where the data are first inserted.
Because the position of the data might change with time, we assume that this
information is attached to the data m. Then, qi(m) = 1−pi(m) is the probability
that the node i will not deliver the data m to the base station. If the data m in
some way appear on nodes j1, . . . , jk, the probability that at least one of those
nodes will deliver m to the base station is

Pm = 1−
k∏
i=1

qji(m). (1)

We call (1) the delivery probability of data m, and consequently

Qm =

k∏
i=1

qji(m), (2)

is the probability that the data m are not delivered.
The main goal of our algorithm is to diffuse the data in the network in such

a way that the delivery probability Pm satisfies Pm ≥ d for some predefined
threshold d (for example we put d = 0.993 in our simulations). Or equivalently,
Qm ≤ 1− d.

The discussion above shows that if we are able to compute the delivery prob-
ability pi(m), then the diffusion process ensures that the delivery probability is
larger than d.

The nodes manage the incoming data (generated or transmitted) in a FIFO
queue. The new accepted data are stored at the end of the queue. Once the



memory is full, a node drops the data from the beginning of the queue to make
space for the new generated ones. In this case, no new forthcoming received data
are accepted. Data m have a supplementary field where the probability Qm that
the data will not be delivered by the nodes to the base station is stored . Newly
generated data before being saved to the node memory have Qm = 1. When
node i accepts (generated or received from other nodes) data and stores it in
the queue, the probability is updated with Qm · qi(m) to take into account the
probability that the data will be delivered. Although it is not explicitly denoted,
the probability qi(m) depends on the index where the data are inserted in the
queue.

In a second phase, the node i proceeds to the diffusion of the data in the
network to ensure that the probability of delivery is large enough. If the new
probability that m is not delivered satisfies Qm ≥ 1−d and the node encounters
another node j then it transmits the data to j. When node j accepts the data, i
marks the data as diffused and stops the diffusion process. Node j updates the
probability Qm by Qm · qj(m) and stores the data in its queue. Node j diffuses
the data further if Qm ≥ 1− d.

From the point of view of the node j that is requested to convey the data,
the diffusion process consists in: 1. j refuses the data if its queue is full 2. else,
accepts the data, updates the probability of delivery and diffuses the data further
if Qm ≥ 1− d.

Finally when a node meets the base station it forwards all the data from
its queue. The node does not remove the delivered data from the queue but,
simply keeps them to prevent the multiple acceptance of already delivered data.
However, the node inserts new data in the queue as if it was empty by ignoring
the already delivered data.

The algorithm that we present in the preceding section uses the probabilities
pi(m) that data m will be delivered to the base station. These probabilities
depend on many parameters such as: The index where the data are inserted in
the queue, the size of the queue, the mobility pattern and the size of the area
covered by the mobile nodes. In order to ensure the flexibility and robustness of
the protocol we suggest that the nodes estimate themselves these probabilities.
Basically, we propose that the nodes use two counters C1[k] and C2[k] per queue’s
entry k. The counter C1[k] counts the number of data inserted in position k that
are delivered by the node to the base station (the value of these counters depend
with the time t but we do not introduce this dependency in order to simplify
the notation). The counter C2[k] counts the total number of data inserted in the
queue at position k. We then suggest to estimate the probability of delivery with
the estimation

pi(m) ≈ C1[k]

C2[k]
. (3)

On the left side of Figure 1, we can observe the time the nodes needs to
estimate a suitable delivery probability. We observe that the nodes improve the
estimates in order to provide a nearly 100% data delivery rate.



Although the purpose of this paper is to provide evidence that the protocol
is suitable and a full theoretical analysis of the performance is beyond the scope
of this paper, we provide some theoretical evidence here.

3 Theoretical Analysis of the Performance of the
Algorithm

We first notice that the mobility pattern of a node is independent of the data
generated and received. The random mobility patterns that we consider are pro-
posed in [9] in a similar setting that ours. In [3] the authors classify such random
mobility patterns as Random Direction Mobility Patterns since the nodes choose
a direction and a travel time repetitively. The aim of such mobility patterns is
to make the distribution of the nodes as even as possible in the covered area
as well as to ensure that the encounters between mobile nodes are as constant
as possible. Indeed, the mean number of neighboring nodes is rather constant,
compared, for instance, to the Random Waypoint Mobility Model, see [3].

We use this property and assume that for a given node the expected number
of received data on a time span T is µT . Alternatively, we may define µ =
limt→∞E(#received data in [0, t])/t, and prove that the limit exists by using
the stationarity of the nodes’ motion. In particular it is independent of the
position of the nodes.

The expected number of generated data is also assumed to evolve linearly
with time and we denote λT this number. This corresponds to the situation
where the nodes collect data repetitively in a deterministic way or in a random
but stationary way.

In the following, we discuss how to prove that the estimates (3) converge
(see equation (5)). In order to ensure the convergence, it is necessary that that
the number of data generated and received by a node, denoted Mn, during the
travel time does not depend on the time (time homogeneous) [2]. Although this
has to be proved formally, the discussion above shows that this is a reasonable
assumption.

Instead of considering the probability pi(m) that a node i delivers the data m,
we consider an averaged value p. This is equivalent to consider the complete set
of data and compute the average probability of delivery. Equivalently, we replace
the value pi(m) by an average value p given that the nodes’ encounters as well as
the index where the data are queued are random. Given the probability p, data
m are diffused an expected number α times, ensuring that (1 − p)α+1 < 1 − d
(α = α(p) = log(1 − d)/log(1 − p) − 1). Notice that we implicitly assume that
the probabilities of delivery are independent of the nodes and the index of the
queue.

Each time a node transmits the data to the base station, the node updates
the probability of delivery using (3). We denote by pn the n-th estimate. Let us
denote by Nn the total number of data received by the node at the time step
n. Nn is the value of C2 in (3) where we removed the dependencies in k and in
time. By the definition of pn (pn = C1/C2), C1 is then given by Nnpn. Between



the time steps n and n+ 1 the node travels during a time T and has to convey
Mn generated and received data. Then, the new estimate pn+1 is given by

pn+1 =
1

Nn +Mn

(
Nnpn + (M ∧Mn)

)
2.

The value Mn is the total number of data collected by the node between the
time steps n and n + 1, Nnpn is the expected total number of data delivered
at time step n and M ∧Mn is the total number of data delivered to the base
station at the time step n+ 1.

After some algebraic manipulations using that Nn →∞ we get that

pn+1 ≈ pn −
1

Nn

(
Mnpn − (M ∧Mn)

)
. (4)

This last equation shows how the estimate of p = limn→∞ pn evolves. Con-
sider first that the queue is never full, i.e. M ∧Mn = Mn, ∀n. In this case, pn
increases up to the time when pn = 1. The behaviour is correct since no data are
lost and then, the probability of delivery is 1. On the other case, if some data
are lost, i.e. M ∧Mn = M , pn might converge towards the value ensuring that
pn+1 = pn. One can prove that under some mild assumptions, we have

p = lim
n→∞

pn =
E
(
M ∧Mn

)
E
(
Mn

) . (5)

This last equation shows that the estimates pn are converging to the right
limit since the right side of the equation is the fraction of data that are delivered
to the total number of data received and generated by the node.

The rate of convergence of the estimate (3) is difficult to compute. However,
we observe on the left of Figure 1 that after a simulation period of 50′000 seconds
the estimate are good enough to provide nearly the maximum delivery guarantee.
In the conditions of the simulations, this is the time corresponding to going back
to the base station 25 times in average.

With the definition of the parameters λ and α provided in the beginning of
the section, we obtain that E(Mn) = T (λ + µ), with T is the expected travel
time. Notice that we depart from our implementation of the algorithm since the
expression for E(Mn) given here counts the received data even if the queue is full.
Using (5), we observe that once the convergence occurs, the nodes can estimate
the value of T by using only the statistics related to the queue occupation, λ
and µ with

T =
E
(
M ∧Mn

)
p(λ+ µ)

. (6)

Notice that we also expect that λ+µ = λ(1+α) since the expected total number
of data diffused in the network is αλ, these data have to be carried by the nodes

2 a ∧ b is the minimum of a and b, recall that M is the capacity of the queue.



and we assume that the diffusion process distribute the data uniformly among
the nodes.

The analysis we have proposed is likely to be rooted in some formal frame-
work. Indeed, we postulate the existence of the constant λ, µ and, we conjecture
that this existence can be asserted by using a renewal argument [6]. The renewal
theory framework is natural in our setting, since each time a node gets by the
base station corresponds to a renewal. In our short investigations, we assume
that the estimate pn is more or less similar for all nodes since we define α as a
function of pn. However, from the numerical experiments that we conducted, it
appears that the probability of delivery depends on the mobility pattern. The
’mean-field’ analysis that we propose here is prone to be more accurate in the
case where the mobility patterns of all the nodes are the same. On the other
case, the value we obtain is an averaged value. Moreover, the analysis of the
convergence of the estimate (3) can be conducted with the ODE method [12, 2].

We point out that the estimate (6) counts the data received after the queue
is full. In our implementation of the algorithm we do not accept data from others
nodes while the queue is full, only generated data are inserted in the queue.

Fig. 1. Time evolution of the algorithm performance with the complex mobility pattern
and 20, 80, 300 and 400 nodes. From left to right: The data delivery probability, the
average message delay and the average number of messages sent per node. Axis X is a
time scale in 1000 seconds.

In the next section we validate experimentally our protocol where nodes use
(3) for the estimation of the delivery probability.

4 Experimental Validations

In Figure 1 we present the time evolution of some parameters. Under our simula-
tion conditions the average travel time is about 2000 seconds (not very dependent
on the simple or complex mobility pattern). The figure on the left shows how the
data delivery rate evolves. We observe that after a period of 50′000 seconds, the
behaviour stabilizes and the network delivers the data with the required guar-
antees. In the simulation conditions, the period of 50′000 seconds corresponds
to going back an average of 25 times. This means that by applying formula (3)
25 times, we obtain some estimates that are sufficiently accurate to ensure the



delivery guarantees. The figure on the center shows the average delay. We ob-
serve that the delay is much lower, about 1000 seconds. This means that the
diffusion process is really participating efficiently to convey the data to the base
station. On the right of Figure 1 we display the average total number of data
sent by node. We first observe that this increases linearly with time. This sup-
ports our assumption that the network dynamics is stationary. Moreover, the
40′000 transmissions are due to an average of 10′000 generated data and the
diffusion of an average of 15′000 data. Because the average travel time is about
2000 seconds, each node delivers about 125 data to the base station. This shows
that on average the network can support the load of conveying the generated
data and, that the network is also able to adapt to the period where more data
are produced than in average. We suspect that the conditions of the simulations
are close to the limit, in the sense that increasing the rate of generated data
might lead to a decrease in the data delivery rate.

Fig. 2. Network connectivity at random time. Left to right 20 nodes, 80 nodes, 300
nodes, 400 nodes.

We proceed to a set of simulations with different network configurations in
order to evaluate the performance of the protocol that we propose in this arti-
cle. We also proceed to a set of simulations with the same set parameters to the
mobility level based protocol (local adapt with random neighbor selection) pre-
sented in [9] in order to compare the performance. Actually, both protocols are
comparable since they consider nodes with random motions and limited mem-
ories. To simplify the presentation, we use the well defined mobility patterns
introduced in [9]. The four simple mobility patterns defined are Working Mobil-
ity, Walking Mobility, Biking Mobility and Vehicular Mobility. These mobility
patterns are similar to the motion of a human who is working in his office, walk-
ing outside, biking or driving. Figure 3 presents some traces of the motions of
the above-defined simple mobility patterns. For each mobility pattern, a node
selects a direction and a speed and moves a random time in the direction at
the given speed. Basically, the speeds range makes the difference between the
various mobility patterns. Using these simple mobility patterns, we define more
complex ones where a node changes its mobility pattern by passing from one
pattern to another one with some probability. These complex mobility patterns
are easy to present with the transition graphs on the Figures 4 and 5. Each
vertex of a graph corresponds to a simple mobility pattern, and two vertices are



Fig. 3. Motions of simple mobility patterns. Left to rightWorking Mobility, Walking
Mobility, Biking Mobility, Vehicular Mobility.

connected by a directed edge, on the top of which is written the probability of
passing from on pattern to the other one. C1 − C4 complex mobility patterns,
presented on Figures 4 and 5 are similar to the ones in [9] and detailed infor-
mation about the mobility patterns can be found therein. In our simulations all
the nodes have the same size of memory, which is enough to accommodate 128
messages, the transmission range of nodes and base station is 70m and network
is a 1000 × 1000m2 square. Also, each node in average generates one message
per 40 seconds (0.025msg/second).

We present two sets simulations. In the first, we assign each simple mobility
pattern to 1/4 of total number of nodes in network. In the second round, we use
the complex mobility patterns in the same portions. Every round contains four
simulations with different numbers of nodes in networks 20, 80, 300 and 400, in
total eight different simulations. In Figure 2 we show the network connectivity
at random time for different numbers of nodes. For each of eight simulations, we
simulate the protocol for 400.000 seconds (111 hours) and, we chose the required
delivery rate d = 0.993 and use (3) for the estimation of the delivery probability.

Fig. 4. Transition graphs of complex mobility patterns used in our simulations (in
Mstop state node has no motion). On the left C1 Mobility on the right C2 Mobility.

We compare the performance of our algorithm with the one presented in [9].
We consider three criteria. The first is the data delivery rate, which is the per-
cent of delivered data to the base station. The second is average data delivery



Fig. 5. Transition graphs of complex mobility patterns used in our simulations (in
Mstop state node has no motion). On the left C3 Mobility on the right C4 Mobility.

delay which is the average time the data are delivered to base station after being
generated. And as the main part of energy goes for data transmissions, we com-
pare the average number of sent data per node which will roughly represent the
energy consumption of the protocols. In Figure 6 the delivery rate comparison
of protocols are presented, respectively for networks where nodes have simple
and complex mobility patterns. We observe that both protocols have stable de-
livery rates, according to number of nodes in network. And in all eight cases our
protocol ensures the requested delivery rates. The comparisons of the average

Fig. 6. Data delivery rate comparison. On the left simple mobility on the right complex
mobility.

data delivery delay of both protocols are presented in Figure 7. Here we observe
that as the number of nodes composing the network increases, the data delivery
delay tends to a constant. The delivery delay decreases as the number of nodes
increases. The algorithm proposed in [9] behaves similarly and the delivery delay
is shorter for this algorithm than for ours. It is the only criterion for which that
happens.

Figure 8 presents the protocol comparisons in terms of average sent data
per node, we observe that the success of mobility level based protocol in dense
networks in terms of average message delivery delay is due to the high number
of sent data (replication). However, this requires a larger amount of energy. We



Fig. 7. Average data delivery delay comparison. On the left simple mobility on the
right complex mobility.

observe that our algorithm ensures that the number of data sent does not increase
as the number of nodes becomes large. Indeed, we observe that the number of
data sent tends to a constant. We observe that if the number of nodes in the

Fig. 8. Average sent data per node comparison. On the left simple mobility on the
right complex mobility.

network is not large enough, the diffusion process does not manage to provide
the guaranteed delivery of data. This is due to the fact that the nodes do not
encounter others nodes. However, our experimental validations show that with 20
nodes, see left of Figure 2, we do not manage to ensure that Qm < 1−d. However,
the performance are still valuable since the algorithm ensures 97.84% and 96.82%
of data delivery for respectively simple and complex mobility patterns. Figure
8 shows that with 20 nodes the number of data sent is small and, this confirms
that the nodes’ encounters are not sufficiently frequent. This has also an impact
on the data delivery delay that is larger than for networks with more nodes.
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