Skip to main content

Geometric Minimum Spanning Trees with GeoFilterKruskal

  • Conference paper
Book cover Experimental Algorithms (SEA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6049))

Included in the following conference series:

Abstract

Let P be a set of points in ℝd. We propose GeoFilterKruskal, an algorithm that computes the minimum spanning tree of P using well separated pair decomposition in combination with a simple modification of Kruskal’s algorithm. When P is sampled from uniform random distribution, we show that our algorithm takes one parallel sort plus a linear number of additional steps, with high probability, to compute the minimum spanning tree. Experiments show that our algorithm works better in practice for most data distributions compared to the current state of the art [31]. Our algorithm is easy to parallelize and to our knowledge, is currently the best practical algorithm on multi-core machines for d > 2.

This research was partially supported by National Science Foundation through CAREER Grant CCF-0643593 and the AFOSR Young Investigator Program. Advanced Micro Devices (AMD) provided the 32-core workstation for experiments. Dr. Giri Narsimhan provided the source code for his Geometric Minimum Spanning tree algorithm [31], which was used as one of the benchmarks for the algorithm implemented in this paper. The source code associated with this paper is part of the STANN library and can be downloaded from www.compgeom.com/~stann

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Edelsbrunner, H., Schwarzkopf, O., Welzl, E.: Euclidean minimum spanning trees and bichromatic closest pairs. Discrete Comput. Geom. 6(5), 407–422 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–923 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barrow, J.D., Bhavsar, S.P., Sonoda, D.H.: Minimal spanning trees, filaments and galaxy clustering. MNRAS 216, 17–35 (1985)

    Google Scholar 

  5. Bentley, J.L., Weide, B.W., Yao, A.C.: Optimal expected-time algorithms for closest point problems. ACM Trans. Math. Softw. 6(4), 563–580 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bhavsar, S.P., Splinter, R.J.: The superiority of the minimal spanning tree in percolation analyses of cosmological data sets. MNRAS 282, 1461–1466 (1996)

    Google Scholar 

  7. Brennan, J.J.: Minimal spanning trees and partial sorting. Operations Research Letters 1(3), 138–141 (1982)

    Article  Google Scholar 

  8. Paul, B.: Callahan. Dealing with higher dimensions: the well-separated pair decomposition and its applications. PhD thesis, Johns Hopkins University, Baltimore, MD, USA (1995)

    Google Scholar 

  9. Chan, T.M.: Manuscript: A minimalist’s implementation of an approximate nearest n eighbor algorithm in fixed dimensions (2006)

    Google Scholar 

  10. Chan, T.M.: Well-separated pair decomposition in linear time? Inf. Process. Lett. 107(5), 138–141 (2008)

    Article  MATH  Google Scholar 

  11. Clarkson, K.L.: An algorithm for geometric minimum spanning trees requiring nearly linear expected time. Algorithmica 4, 461–469 (1989); Included in PhD Thesis

    Article  MATH  MathSciNet  Google Scholar 

  12. Connor, M., Kumar, P.: Stann library, http://www.compgeom.com/~stann/

  13. Connor, M., Kumar, P.: Parallel construction of k-nearest neighbor graphs for point clouds. In: Proceedings of Volume and Point-Based Graphics, August 2008, pp. 25–32. IEEE VGTC (2008); Accepted to IEEE Transactions on Visualization and Computer Graphics (2009)

    Google Scholar 

  14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press/McGraw-Hill (2001)

    Google Scholar 

  15. Dagum, L., Menon, R.: Openmp: an industry standard api for shared-memory programming. IEEE Computational Science and Engineering 5(1), 46–55 (1998)

    Article  Google Scholar 

  16. Dwyer, R.A.: Higher-dimensional voronoi diagrams in linear expected time. In: SCG 1989: Proceedings of the fifth annual symposium on Computational geometry, pp. 326–333. ACM, New York (1989)

    Chapter  Google Scholar 

  17. Erickson, J.: On the relative complexities of some geometric problems. In: Proc. 7th Canad. Conf. Comput. Geom., pp. 85–90 (1995)

    Google Scholar 

  18. Erickson, J.G.: Lower bounds for fundamental geometric problems. PhD thesis, University of California, Berkeley, Chair-Seidel, Raimund (1996)

    Google Scholar 

  19. Franceschini, G., Muthukrishnan, S.M., Pǎtraşcu, M.: Radix sorting with no extra space. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 194–205. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: STOC 1984: Proceedings of the sixteenth annual ACM symposium on Theory of computing, pp. 135–143. ACM, New York (1984)

    Chapter  Google Scholar 

  21. Morton, G.M.: A computer oriented geodetic data base; and a new technique in file sequencing. Technical report, IBM Ltd., Ottawa, Canada (1966)

    Google Scholar 

  22. Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm to find minimum spanning trees. Journal of the ACM 42, 321–328 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm for finding minimum spanning trees. In: STOC 1994: Proceedings of the twenty-sixth annual ACM symposium on Theory of computing, pp. 9–15. ACM, New York (1994)

    Chapter  Google Scholar 

  24. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. In: Proc. American Math. Society, pp. 7–48 (1956)

    Google Scholar 

  25. Krznaric, D., Levcopoulos, C., Nilsson, B.J.: Minimum spanning trees in d dimensions. Nordic J. of Computing 6(4), 446–461 (1999)

    MATH  MathSciNet  Google Scholar 

  26. Langetepe, E., Zachmann, G.: Geometric Data Structures for Computer Graphics. A. K. Peters, Ltd., Natick (2006)

    MATH  Google Scholar 

  27. March, W., Gray, A.: Large-scale euclidean mst and hierarchical clustering. In: Workshop on Efficient Machine Learning (2007)

    Google Scholar 

  28. Mencl, R.: A graph based approach to surface reconstruction. Computer Graphics Forum 14, 445–456 (2008)

    Article  Google Scholar 

  29. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  30. Motwani, R., Raghavan, P.: Randomized algorithms. ACM Comput. Surv. 28(1), 33–37 (1996)

    Article  Google Scholar 

  31. Narasimhan, G., Zachariasen, M.: Geometric minimum spanning trees via well-separated pair decompositions. J. Exp. Algorithmics 6, 6 (2001)

    Article  MathSciNet  Google Scholar 

  32. Osipov, V., Sanders, P., Singler, J.: The filter-kruskal minimum spanning tree algorithm. In: Finocchi, I., Hershberger, J. (eds.) ALENEX, pp. 52–61. SIAM, Philadelphia (2009)

    Google Scholar 

  33. Preparata, F.P., Shamos, M.I.: Computational geometry: an introduction. Springer, New York (1985)

    Google Scholar 

  34. Putze, F., Sanders, P., Singler, J.: Mcstl: the multi-core standard template library. In: PPoPP 2007: Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice of parallel programming, pp. 144–145. ACM, New York (2007)

    Chapter  Google Scholar 

  35. Rajasekaran, S.: On the euclidean minimum spanning tree problem. Computing Letters 1(1) (2004)

    Google Scholar 

  36. Shewchuk, J.R.: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996); From the First ACM Workshop on Applied Computational Geometry

    Chapter  Google Scholar 

  37. Suraweera, F., Bhattacharya, P.: An o(log m) parallel algorithm for the minimum spanning tree problem. Inf. Process. Lett. 45(3), 159–163 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. Transactions on Computers C-20(1), 68–86 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatterjee, S., Connor, M., Kumar, P. (2010). Geometric Minimum Spanning Trees with GeoFilterKruskal . In: Festa, P. (eds) Experimental Algorithms. SEA 2010. Lecture Notes in Computer Science, vol 6049. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13193-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13193-6_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13192-9

  • Online ISBN: 978-3-642-13193-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics