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Abstract

We successfully contract timetable networks with realistic transfer times. Contraction gradually
removes nodes from the graph and adds shortcuts to preserve shortest paths. This reduces query times
to 1ms with preprocessing times around 6 minutes on all tested instances. We achieve this by an improved
contraction algorithm and by using a station graph model. Every node in our graph has a one-to-one
correspondence to a station and every edge has an assigned collection of connections. Our graph model
does not need parallel edges. The query algorithm does not compute a single earliest arrival time at a
station but a set of arriving connections that allow best transfer opportunities.

1 Introduction

Compared to road networks, query algorithms for timetable information in public transportation systems
are still slow. As multi-modal routing becomes more and more important, it is necessary to develop speedup
techniques that work well. On the one hand, previous research focused on modelling more and more features
instead of fast algorithms. On the other hand, current speedup techniques for time-dependent routing in
road networks are very fast, e.g. [5, 1], but they have some problems to process transportation networks.
So more research on fast timetable routing is necessary. We successfully adapt a fast speedup technique
for road networks. The positive outcome is mainly due to the station graph model that looks much more
natural and lacks a lot of problems that other models have.

Related Work

Public transportation networks have always been time-dependent, i.e. travel times depend on the availability
of trains, buses or other vehicles. So they are naturally harder than road networks, where simple models
can be independent of the travel time and still achieve good results. There are two intensively investigated
approaches for modeling timetable information: the time-expanded [11, 9, 16, 17], and the so called time-
dependent approach [4, 12, 13, 14]. Note that the time-dependent approach is a special approach to model
the time-dependent information and is no umbrella term for all these approaches. Both approaches answer
queries by applying some shortest-path algorithm to a suitably constructed graph. In the time-expanded
approach, each node corresponds to a specific time event (departure or arrival), and each edge has a constant
travel time. In the time-dependent approach each node corresponds to a station, and the costs on an edge
are assigned depending on the time in which the particular edge will be used by the shortest-path algorithm.

To model more realistic transfers in the time-dependent approach, [4] propose to model each platform as
a separate station and add walking links between them. In [15], a similar extension for constant and variable
transfer times is proposed and described in more detail. Basically, a station is expanded to a train-route
graph where no one-to-one correspondence between nodes and stations exists anymore. A train route is the
maximal subset of trains that follow the exact same route, at possibly different times and do not overtake
each other. Each train route has its own node at each station and they are interconnected within a station
with the given transfer times. This results in a significant blowup in the number of nodes and creates
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a lot of redundancy information that is collected during a query. Recently, another research group [3, 2]
independently proposed a model that is similar to ours. They call it the station graph model and mainly use
it to compute all Pareto-optimal paths in a fully realistic scenario. For unification, we will give our model
the same name although there are some important differences in the details. The most significant differences
are that (1) they require parallel edges, one for each train route and (2) their query algorithm computes a
label for each edge instead of each node. Their improvement over the time-dependent model was mainly
that they compare all labels at a station and remove dominated ones.

Speedup techniques are very successful when it comes to routing in time-dependent road networks,
see [6] for an overview. However, there is only little work on speedup techniques for timetable networks.
Time-dependent SHARC [6] uses the same scenario as we do and achieves query times of 2.4ms but with
preprocessing times of more than 6 hours (we scaled by a factor of 0.5 compared to [6] based on plain
Dijkstra performance of our and their hardware). Based on the station graph model, [2] also applied some
speedup techniques, namely arc flags that are valid on time periods and route contraction. They could not
use node contraction because they were too many parallel edges between stations. Their preprocessing time
(not scaled due to lack of comparable figures) is over 33 CPU hours resulting in a full day profile query time
of more than 1 second (speedup factor 5.2).

We will show that a modified version contraction hierarchies (CH) [1, 8], a very successful speedup
technique for road networks, will work in our scenario with realistic transfers. It is solely based on node
contraction: removing “unimportant” nodes and adding shortcuts to preserve shortest path distances. A
bidirectional query can then find shortest paths looking only at a few hundred nodes.

2 Formal Description

We propose a model that is similar to the realistic time-dependent model introduced by [15] but we keep a
one-to-one mapping between nodes in the graph and real stations.

A timetable consists of data concerning: stations (or bus stops, ports, etc), trains (or buses, ferries, etc),
connecting stations, departure and arrival times of trains at stations, and traffic days. More formally, we are
given a set of stop events Z, a set of stations B, and a set of elementary connections C, whose elements c are
6-tuples of the form c = (Z1, Z2, S1, S2, td, ta). Such a tuple (elementary connection) is interpreted as train
that leaves station S1 at time td after stop Z1 and the immediately next stop is Z2 at station S2 at time ta.
If x denotes a tuple’s field, then the notation of x(c) specifies the value of x in the elementary connection
c. Two consecutive elementary connections, c1 followed by c2, where no transfer is required, share a stop
event, i.e. Z2(c1) = Z1(c2). A stop event can not only be a consecutive arrival and departure of a train, but
also the begin (no arrival) or the end (no departure) of a train.

The departure and arrival times td(c) and ta(c) of an elementary connection c ∈ C within a day are
integers in the interval [0, 1439] representing time in minutes after midnight. Given two time values t and t′,
t ≤ t′, the cycle difference(t, t′) is the smallest nonnegative integer ℓ such that ℓ ≡ t′ − t (mod 1440). The
length of an elementary connection c, denoted by length(c), is cycle difference(td(c), ta(c)). A timetable is
valid for a number of N traffic days, and every train is assigned a bit-field of N bits determining of which
traffic days the train operates (for overnight trains the departure of the first elementary connection counts).
We will generally assume that trains operate daily. At a station S ∈ B, it is possible to transfer from one
train to another. Such a transfer is only possible if the time between the arrival and the departure at the
station S is larger than or equal to a given, station-specific, minimum transfer time, denoted by transfer(S).

Example 1 {(1, 2, A, B, 23:05, 0:55), (2, 3, B, C, 1:02, 2:57), (3, 4, C, D, 3:00,4:20)} describe ele-
mentary connections of a train from station A (stop event 1) via stations B (stop event 2), C (stop event
3) to station D (stop event 4) as shown in Figure 1. E.g. the train departs at station A at 23:05 (hh:mm)
and arrives at station B at 0:55 at the next day. The length of this elementary connection is 1:50 = 110
minutes. {(5, 6, C, E, 3:00, 4:00), (7, 8, C, E, 4:00, 5:00)} describe elementary connections of two trains
from station C to E, the first train departs at 3:00 and arrives at 4:00, the second train one hour later.



A B C D

E

(1, 2, A, B, 23:05, 0:55) (2, 3, B, C, 1:02, 2:57) (3, 4, C, D, 3:00,4:20)

(5, 6, C, E, 3:00, 4:00) (7, 8, C, E, 4:00, 5:00)

Figure 1: Every node is a station and every edge an elementary connection.

Let P = (c1, . . . , ck) be a sequence of elementary connections together with departure times depi(P ) and
arrival times arri(P ) for each elementary connection ci, 1 ≤ i ≤ k. We assume that the times depi(P ) and
arri(P ) include data regarding also the departure/arrival day by counting time in minutes from the first
day of the timetable. Such a time t is of the form t = a1440 + b, where a ∈ [0, N − 1] and b ∈ [0, 1439].
Hence, the actual time within a day is t (mod 1440) and the actual day is ⌊t/1440⌋. Such a sequence P is
called a consistent connection from station A = S1(c1) to station B = S2(ck) if it fulfills some consistency
conditions: (a) the departure station of ci+1 is the arrival station of ci; (b) the time values depi(P ) and
arri(P ) correspond to the time values td and ta, resp., of the elementary connections (modulo 1440) and
respect the transfer times at stations. More formally, P is a consistent connection if the following conditions
are satisfied:

ci is valid on day ⌊depi(P )/1440⌋
S2(ci) = S1(ci+1)

depi(P ) ≡ td(ci) (mod 1440)
arri(P ) = length(ci) + depi(P )

depi+1(P )− arri(P ) ≥

{

0 if Z1(ci+1) = Z2(ci)

transfer(S2(ci)) otherwise

Example 2

ci (Z1, Z2, S1, S2, td, ta) depi arri
c1 (1, 2, A, B, 23:05, 0:55) 23:05 24:55
c2 (2, 3, B, C, 1:02, 2:57) 25:02 26:57
c3 (7, 8, C, E, 4:00, 5:00) 28:00 29:00

P = (c1, c2, c3) is a consistent connection with one transfer. The elementary connections are from
Example 1. Assume a transfer time at station C of transfer(C) = 5 minutes. It would not be consistent to
replace c3 with the train that arrives at arr3(P ) = 28:00 since there are only 3 < 5 = transfer(C) minutes
between the arrival and the departure at station C.

2.1 Time Query

A time query (A,B, t0) consists of a departure station A, an arrival station B and a departure time t0
(including the departure day). Connections are valid if they depart not before the given departure time t0.
A time query solves the earliest arrival problem (EAP) by minimizing the difference between the arrival time
and the given departure time.

2.2 Profile Query

A profile query (A,B) consists of a departure station A and an arrival station B. It computes a dominant
set of all consistent connections between A and B.



3 Station Graph Model

We introduce a model that represents a timetable as a digraph with exactly one node per station. For a
simplified model without transfer times, this is like the time-dependent model. New is that even with positive
transfer times, we keep one node per station and do not have parallel edges. We got the idea while trying to
apply node contraction to time-dependent networks. Our observation was, that too many shortcuts where
added, and there were a lot of edges between the nodes of the same station pair. In a first step, we tried to
reduce the number of nodes by merging route nodes. We can do this when it is never necessary to transfer
between the two routes at this station. However, we were not successful with this step and eventually came
up with the station graph model.

The attribute of an edge e = (A,B) is a set of consistent connections fn(e) that depart in A and arrive in
B. In this section, all connections are consistent, so we omit to mention it again. Previous models required
that all connections of a single edge fulfill the FIFO-property, i.e. they do not overtake each other. In
contrast, we do not require this property and we will see that even for time queries, we can have more than
one dominant arrival event per station.

To link two edges e1 = (A,B) and e2 = (B,C) to an edge e3 = (A,C) we need to pairwise link the
connections in fn(e1) and fn(e2). We need to drop the new connections that are not consistent. Also some
other new connections might not be necessary if they can always be replaced by other new connections without
worsening the objective value. We call such replaceable connections dominated in this set of connections
and all other connections dominant. Note that the exact definition of domination depends on the objective
function.

3.1 Time Query

We solve the EAP with a label correcting algorithm based on the Dijkstra algorithm. A label is a connection
P stored as a tuple (Z1, Z2, dep, arr) where Z1 is the stop event for departure, Z2 is the stop event for arrival
and dep and arr are the departure/arrival time including days. The source station S1(P ) and the target
station S2(P ) are implicitly given by the node/edge that stores this connection.

Not all valid connections are relevant for a time query. We need not to store connections that can be
dominated (replaced) by another stored connection. Before we can specify when two connections dominate
each other, we need some more definitions. Let P be a connection. Define parr(P ) as the previous arrival
time of the stop event Z1(P ) at station S1(P ) or ⊥ when the train begins there. And define ndep(P ) as
the next departure time of the stop event Z2(P ) at station S2(P ) or ⊥ when the train ends there. When
parr(P ) 6=⊥ then we call resd(P ) := dep(P )− parr(P ) the residence time at departure. Consequently, when
ndep(P ) 6=⊥ then we call resa(P ) := ndep(P ) − arr(P ) the residence time at arrival. We call it a critical
departure when parr(P ) 6=⊥ and resd(P ) < transfer(S1(P )) and a critical arrival when ndep(P ) 6=⊥ and
resa(P ) < transfer(S2(P )).

A connection P dominates a connection Q iff all of the following conditions are fulfilled:

(1) S1(P ) = S1(Q) and S2(P ) = S2(Q)

(2) dep(Q) ≤ dep(P ) and arr(P ) ≤ arr(Q)

(3) Z1(Q) = Z1(P ) or Q is not a critical departure or dep(P )− parr(Q) ≥ transfer(S1(P ))

(4) Z2(Q) = Z2(P ) or Q is not a critical arrival or ndep(Q)− arr(P ) ≥ transfer(S2(P ))

We could see the query algorithm also a multi-criteria shortest path problem with relaxed Pareto domi-
nance [10]. The length of a connection is the cost criterion (2), but it is relaxed by the additional train and
transfer information (3),(4).

Given an connection R = (c1, . . . , ck), we call a connection (c1, . . . , ci) with 1 ≤ i ≤ k a prefix of R, a
connection (cj , . . . , ck) with 1 ≤ j ≤ k a suffix of R and a connection (ci, . . . , cj) with 1 ≤ i ≤ j ≤ k a
subconnection of R.

Lemma 1 formalizes the intuition of the domination relation.



Lemma 1 A consistent connection P dominates a consistent connection Q iff for all consistent connections
R with subconnection Q, we can replace Q by P to get a consistent connection R′. Also dep(R) ≤ dep(R′) ≤
arr(R′) ≤ arr(R).

Proof. ⇒ P dominates Q: Condition (1) locates P and Q at the same stations. Condition (2) ensures that
we can replace R = Q by P directly or when transfer times are irrelevant. The last two conditions (3) and
(4) ensure that we can replace Q by P even when Q is just a part of a bigger connection and we need to
consider transfer times. The prefix of this bigger connection w.r.t. Q may arrive in S1(Q) with stop event
Z1(Q) and condition (3) ensures that it is consistent to transfer to Z1(P ). Consequently the suffix of this
bigger connection w.r.t. Q may depart in S2(Q) with stop event Z2(Q) and condition (4) ensures that it is
consistent to transfer to Z2(P ).

⇐ ∀R we can replace Q by P : Condition (1) holds trivially. We get condition (2) with R = Q. Let
Q = (c1, . . . , ck) be a critical departure and Z1(Q) 6= Z1(P ). Then we get condition (3) when we choose R
as the extension of Q that is given by the critical departure. Let Q = (c1, . . . , ck) be a critical arrival and
Z2(Q) 6= Z2(P ). Then we get condition (4) when we choose R as the extension of Q that is given by the
critical arrival. �

With the given model of a connection, we can model waiting times implicitly as the time between the
arrival with one train and the departure of the next train. However initial waiting as it can appear for a
time query (A,B, t0) is currently not possible. So we introduce an arrival connection P that is represented
by a tuple (arr, Z2) and defines a connection from A to S2(P ). We perform the query as a label correcting
algorithm and store a dominant set of arrival connections with a station so that S2(P ) is implicitly given. An
arrival connection is called consistent w.r.t. the query if it is a consistent connection Q with dep1(Q) ≥ t0
and S1(Q) = A. All arrival connections in this section are consistent w.r.t. the query so we do not mention
it again. Linking of a set of arrival connections at station C with an edge (C,D) will result in a set of arrival
connections at station D.

An arrival connection P dominates an arrival connection Q iff all of the following conditions are fulfilled:

(1) S2(P ) = S2(Q)

(2) arr(P ) ≤ arr(Q)

(3) Z2(Q) = Z2(P ) or Q is not a critical arrival or ndep(Q)− arr(P ) ≥ transfer(S2(P ))

A result of Lemma 1 is Lemma 2.

Lemma 2 Let (A,B, t0) be a time query. A consistent arrival connection P dominates a consistent arrival
connection Q iff for all consistent arrival connections R with prefix Q, we can replace Q by P to get a
consistent arrival connection R′. Also arr(R′) ≤ arr(R).

To solve the EAP, we manage a set of dominant arrival connections ac(S) for each station S. The
initialization of ac(A) at the departure station A is a special case since we have no real connection to station
A. That is why we introduce a special stop event ∀ and we start with the set {(t0, ∀)} at station A. Our
query algorithm then knows that we are able to board all trains that depart at t0 or later. We perform
a label correcting query that uses the minimum arrival time of the (new) connections as key of a priority
queue. This algorithm needs two elementary operations: (1) link : We need to traverse an edge e = (S, T )
by linking a given set of arrival connections ac(S) with the connections fn(e) to get a new set of arrival
connections to station T . (2) minimum: We need to combine the already existing arrival connections at T
with the new ones to a dominant set. These two operations also dominate the runtime of the query algorithm
and we describe in Appendix A efficient implementations. The most important part is a handy order of the
connections, primarily ordered by departure time. The minimum operation is then mainly a linear merge
operation and the link operation uses precomputed intervals to look only at a small relevant subset of fn(e).
We gain additional speedup by combining the link and minimum operation.

We found a solution to the EAP once the key of the priority queue is ≥ the minimum arrival time at B.



Function timeQuery(A, B, t0)
foreach S ∈ B \A do ac(S) := ∅
ac(A) := {(t0, ∀)}
Q.insert(t0, A)
while Q 6= ∅

(t, S) := Q.deleteMin()
if S = B then return t
foreach edge e := (S, T )

N := minimum {ac(T ), e.link(ac(S))}
if N 6= ac(T )

ac(T ) := N
k := minP∈N arr(P )
if T in Q then Q.decreaseKey(k, T ) else Q.insert(k, T )

return ⊥

Theorem 1 The time query in the station graph model solves the EAP.

Proof. The query algorithm only creates consistent connections because link and minimum do so. Lemma 2
ensures that there is never a connection with earlier arrival time. The connections depart from station A
not before t0 by initialization. And since the length of any connection is non-negative, the minimum length
arrival connection P at station B after the first deleteMin() of B is a solution to the EAP. �

3.2 Profile Query

A profile query (A,B) is similar to a time query. However, we compute dominant connections instead of
dominant arrival connections. Also we cannot just stop the search when we remove B from the priority
queue for the first time. We are only allowed to stop the search when we know that we have a dominant set
of all consistent connections between A and B. E.g. for daily operating trains, we can compute a maximum
duration for a set of connections and can use it to prune the search. The efficient implementations of the
minimum and link operation, see Appendix A, are also more complex. Similar to a time query, we use a
handy order of the connections, primarily ordered by departure time. The minimum operation is an almost
linear merge: we merge the connections in descending order and remove dominated ones. This is done with
a sweep buffer that keeps all previous dominant connections that are relevant for the current departure time.
The link operation, it links connections from station A to S with connections from station S to T , is more
complex: in a nutshell, we process the sorted connections from A to S one by one, compute a relevant
interval of connections from S to T as for the time query, and remove dominated connections using a sweep
buffer like for the minimum operation.

4 Contraction

In this section, we describe how we contract a station graph timetable network. Interestingly, we cannot
directly use the algorithms used for time-dependent road networks [1]. The most time consuming part of the
contraction is the witness search: given a node v and an incoming edge (u, v) and an outgoing edge (v, w), is
a shortcut between u and w necessary when we contract v? For time-dependent road networks, a min-max
search from u to w is performed. It computes a small corridor; this corridor is used by a profile search
to decide the necessity of a shortcut. However, in timetable networks, min-max search is not successful,
especially the maximum travel time for an edge is very high, e.g. when there is no service during the night.
So we need another way to improve the computation of shortcuts. Our idea is to use a one-to-many search
from u and use it to identify necessary shortcuts for the contraction of all its neighbors v. Before we start
contracting nodes, we do this for all nodes u and store the necessary shortcuts (u,w) with each node v. These
stored shortcuts do not take a lot of space since timetable networks are much smaller than road networks.
When we contract a node v, we just add the necessary shortcuts. We add shortcuts even in case of equality,



so only the endpoints of the newly introduced shortcuts are affected and we need to update their stored
shortcuts. Consider a shortcut (u,w) that is added during the contraction of v. Then we currently do not
know which pair of edges (u,w), (w, x) needs a shortcut when w is contracted. A one-to-many forward
search from u will give all necessary information to update the stored shortcuts at w. And analogously, a
one-to-many backward search from w will give all necessary information to update the stored shortcuts at
u. So at most one one-to-many forward search and one one-to-many backward search from each neighbor
of v is necessary. When we add a new shortcut (u,w) but there is already an edge (u,w), we merge both
edges so there are never parallel edges. Avoiding these parallel edges is important for the contraction, as
it performs worse on dense graphs. Thereby, we also ensure that we can uniquely identify an edge with its
endpoints. The one-to-many searches can be limited by the duration of the longest shortcut between u and
w. We also limit the number of hops and the number of transfers. As observed in [8], this accelerates the
witness search at the cost of missed witnesses and potentially more shortcuts.

We could omit loops in static and time-dependent road networks. But for station graph timetable
networks, loops are sometimes necessary. We will give an example:

Example 3 Consider a train that departs at station A at 12:00 then arrives/departs at station B at 12:01,
then C at 12:02, then again B at 12:03 and then D at 12:04. Let the transfer time at station B be 5 minutes.
We want to go from A to D. In our model, it is not possible to transfer from the train at B at 12:01 to the
same train at B at 12:03. However, it is possible to stay at the train via C and then we get a consistent
connection from A to D arriving at 12:04. Thus when we contract station C, we need to add a loop at station
B.

Loops also make the witness computation and the update of the stored shortcuts more complex. A
shortcut (u,w) for node v with loop (v, v) must not only represent the path 〈u, v, w〉 but also 〈u, v, v, w〉.
So when we add a shortcut (v, v) during the contraction of another node, we need to recompute all stored
shortcuts of node v.

We use two terms for the node ordering: (a) The edge quotient, the quotient between the amount of
shortcuts added and the amount of edge removed from the remaining graph. (b) The hierarchy depth,
an upper bound on the amount of hops that can be performed in the resulting hierarchy. Initially, we
set depth(u) = 0 and when a node v is contracted, we set depth(u) = max(depth(u),depth(v)+1) for all
neighbors u. We weight (a) with 10 and (b) with 1 in a linear combination to compute the node priorities.
The nodes are contracted by computing independent node sets with with a 2-neighborhood as described in
[18].

5 Query

As any hierarchical time-dependent time query, we suffer from the unknown arrival time. This problem is
solved in [1] by computing a corridor from the target node using a min-max backward search in the hierarchy.
We replace this min-max search by a breath first search since min-max search does not work so well. Also we
do not use the stall-on-demand technique since the additional overhead does not pay off. Our forward and
backward search are not interleaved; we first perform the backward and then the forward search. In road
networks [1], even for the profile query, the computation of a forward and backward corridor using min-max
searches is beneficial. Again, we omit the min-max searches and just use a bidirectional interleaved profile
query.

Theorem 2 The time query in a station graph CH solves the EAP.

Proof. The proof is similar to the one given in [7]. Here, we will only present a short outline of the proof.
From a given time query (A,B, t0) and a shortest path in the original graph, we construct a path that is found
by our query algorithm. Since we use profile searches for the witness computation, Lemma 1 ensures that
we can recursively remove a node from the path by replacing the neighboring edges either with a shortcut
or a witness path. Different to [7], a shortest path may contain a station more than once. Thus when we



remove a node with loop, we remove not only two but three edges from the path. We cover this case with
our special treatment of nodes with loops during the contraction. �

6 Experiments

Environment. Experiments have been done on one core of a dual Xeon 5345 processor clocked at 2.33
GHz with 16 GB main memory and 2 × 2× 4 MB of cache, running SuSE Linux 11.1 (kernel 2.6.27). The
program was compiled by the GNU C++ compiler 4.3.2 using optimization level 3.

Test Instances. We have used real-world data from the European railways. The network of the long
distance connections of Europe (eur-longdist) is from the winter period 1996/97. The network of the local
traffic in Berlin/Brandenburg (ger-local1) and of the Rhein/Main region in Germany (ger-local2) are
from the winter period 2000/01. The sizes of all networks are listed in Table 1.

Table 1: Network sizes. We give the the number of nodes and edges in the resulting graph for both models.
Note that in the station graph model, the number of nodes corresponds to the number of stations.

trains/ elementary time-dependent station
network stations buses connections nodes edges edges
eur-longdist 30 517 167 299 1 669 666 535 963 1 456 904 88 091
ger-local1 12 069 33 227 680 176 225 797 600 690 33 473
ger-local2 9 902 60 889 1 128 465 183 207 704 673 26 678

Results. We selected 1 000 random queries and give average performance measures. We compare the time-
dependent model and our new station model using a simple unidirectional Dijkstra algorithm in Table 2.
Time queries have a good query time speedup above 4 and even more when compared to the #delete mins.
However, since we do more work per delete min, this difference is expected. Profile queries have very good
speedup around 6 to 8 for all tested instances. Interestingly, our speedup of the #delete mins is even better
than for time queries. We assume that more re-visits occur since there are often parallel edges between a
pair of stations represented by its onboard nodes. Our model does not have this problem since we have
no parallel edges and each station is represented by just one node. It is not possible to compare the space
consumption per node since the number of nodes is different in the different models. So we give the the
absolute memory footprint: it is so small, we did not even try to reduce it, altough there is potential for
that.

Table 2: Performance of the station graph model compared to the time-dependent model on plain Dijkstra
queries. #delete mins denotes the number of nodes removed from the priority queue, query times are given
in milliseconds. Moreover, we report the speedup over the corresponding value from the time-dependent
model.

time-queries profile-queries

space #delete speed time speed #delete speed time speed
network model [MB] mins up [ms] up mins up [ms] up
eur-longdist Dependent 27.5 253 349 1.0 68.0 1.0 1 900 520 1.0 2 482 1.0

Station 48.3 14 519 17.4 14.3 4.8 48 420 39.3 333 7.5
ger-local1 Dependent 11.6 110 864 1.0 26.0 1.0 1 172 320 1.0 1 642 1.0

Station 19.6 5 977 18.5 6.2 4.2 33 647 34.8 289 5.7
ger-local2 Dependent 16.1 98 684 1.0 25.6 1.0 1 145 560 1.0 2 822 1.0

Station 29.4 5 097 19.4 5.5 4.7 27 701 41.3 345 8.2



Before we present our results for CH, we would like to mention that we were unable to contract the same
networks in the time-dependent model. The contraction took days and the average degree in the remaining
graph exploded. Even when we contracted whole stations at once, including onboard and station nodes, it
did not work. It failed since the necessary shortcuts between all the onboard nodes multiplied quickly. So we
developed the station graph model to fix these problems. Table 3 shows the the resulting preprocessing and
query performance. We get preprocessing times between 4 to 6 minutes using a hop limit of 7, these times
are exceptional low compared to previous publications [5, 2]. This is sufficient to reduce time queries below
1ms for all tested instances. CHs work very well for eur-longdist where we get speedups of more than 35
for time queries and 54 for profile queries. When we multiply the speedup of the time-dependent model, we
get even a speedup of 172 (time) and 409 (profile) respectively. The network ger-local2 is also suited for
CH, the ratio between elementary connections and stations is just very high so there is more work per settled
node. More difficult is ger-local1; in our opinion, this network is less hierarchically structured. We see
that on the effect of different hop limits for precomputation: we chose 7 as a hop limit for fast preprocessing
and then selected 18 as it achieves the best query times for ger-local1. The smaller hop limit increases
time query times by about 50%, whereas the other two networks just suffer an increase of about 20%. So
important witnesses in ger-local1 contain more edges indicating a lack of hierarchy.

We do not really have to worry about preprocessing space since those networks are very small. The
number of edges roughly doubles for all instances. We observe similar results for static road networks [8],
but there we can save space with bidirectional edges. But in timetable networks, we do not have bidirectional
edges with same weight, so we need to store them separately. In contrast to time-dependent road networks
[1] (Germany midweek: 0.4 GB → 4.4 GB), CHs increase the memory consumption by not more than a
factor 2.8 (ger-local1: 19.6 MB → 54.6 MB). So in our model, CHs have not only fast preprocessing and
query times but are even space efficient.

It is hard to compare ourselves to [2] since we do not use the same graph and also not the same scenario.
When we just look at the numbers, we are about 2-3 orders of magnitude faster, both for preprocessing and
for query times, but our scenario lacks a lot of features.

Table 3: Performance of CH. Preprocessing times are given in seconds, the overhead in megabytes. Moreover,
we report the increase in edge count over the input. #delete mins denotes the number of nodes removed
from the priority queue, query times and speed-up over a plain Dijkstra are given.

preprocessing time-queries profile-queries

hop- time space edge #del. speed time speed #del. speed time speed
network limit [s] [MB] inc. mins up [µs] up mins up [ms] up
eur- 7 277 48.6 88% 194 75 399 35.8 266 182 6.1 54.6
longdist 18 1 000 48.0 85% 186 78 331 43.2 260 186 5.4 61.7
ger- 7 244 35.0 134% 203 29 968 6.4 431 78 50.2 5.8
local1 18 1 348 33.4 125% 186 32 658 9.5 389 86 40.7 7.1
ger- 7 367 41.2 122% 155 33 424 13.0 251 110 17.8 19.4
local2 18 746 39.8 115% 151 34 358 15.4 258 107 15.7 22.0

7 Conclusions

Our model, that has just one node per station, is clearly superior to the time-dependent model for the given
scenario. Although the link and minimum operations are more expensive, we are still faster than in the
time-dependent model since we need to execute them less often. Also all known speedup techniques that
work for the time-dependent model should work for our new model. Most likely, they even work better since
the hierarchy of the network is more visible because of the one-to-one mapping of stations to nodes and the
lack of parallel edges. We demonstrate that with CHs, they work very well. We achieve query times below
1ms with preprocessing times around 6 minutes. Our algorithm is therefore suitable for simple web services,



where small query times are very important and can compensate for the quality of the results.

8 Future Work

Our tested instances are very small, especially when we compare it to road networks. However, it is very
hard to get more data from the travel agencies. Moreover, combining data from several agencies is hard
because of proprietary formats, different levels of granularity, etc. The experience for road networks shows
that speedups increase with the size of the network. So we can hope for even better speedups in larger
networks. Not only larger, but more realistic scenarios are also important. Our scenario is very basic and
the one from [2] has a lot of features. It would be interesting to see the effects of the single features on
the speedup techniques, i.e. where do the 2-3 orders of magnitude in performance come from? What are
the performance costs of multi-criteria, traffic days, footpaths, etc. and what can we learn to develop faster
algorithms? Or is our implementation just highly tuned and the implementation of [2] could be improved
with our ideas?

We already saw in Section 6 that CHs work worse when the network is not very hierarchical. Public
transportation in Europe is very good and also has a lot of hierarchy. But in other countries, e.g. the United
States or Brazil, these networks are worse. There exists e.g. large bus networks with little structure; most
likely improved goal directed speedup techniques are necessary for such networks. In some networks, there is
no continuous service throughout the day and stations are only important for a few hours. Also the station
placement is not very good in every network, e.g. there is a separate station for each bus, and transfers
often require a lot of walking, or there are dozens of stops in a very small area. We conjecture, that even in
a network with hierarchy, contraction fails when there are too many important footpaths.

But there are not only difficult but also different public transportation timetables, e.g. in London, they
specify how frequent a bus will arrive at a station instead of fixed arrival times. We can integrate this
frequency based routing in our station graph model. Technically, an edge stores not only a set of timetable
connections but also a set of frequency intervals. Of course, in most cases, one of the sets will be empty.
When we link an timetable connection and a frequency based connection, we get a connection with a specific
departure and arrival time and thus we can handle it as a normal timetable connection.

We should also evaluate different speedup techniques in combination with the station graph model. We
only tried CHs, since our original motivation was to proof that they work in timetable networks. But
combinations with goal-directed techniques should accelerate the query even more.
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A Implementation Details

The set of connections for each edge are stored as an ordered array. They are primarily ordered by departure
time and then secondarily ordered by arrival time and then critical arrival before non-critical arrivals. For
each connection, we only store a representative with departure time in [0, 1439]. So the array actually
represents a larger outrolled array by simply concatenating and shifting the times by 1440. The first piece
is at day 0, the second piece at day 1, etc. The set of arrival connections is also stored by an ordered array.
They are primarily ordered by arrival time and then critical arrival before non-critical arrivals. This ensures
that no arrival connection in the array dominates an arrival connection with lower index.

A basic link algorithm for the time query would link to all connections and afterwards remove the
dominated arrival connections. Let g := |ac(S)| and h := |fn(e = (S, T ))|, the basic algorithm would create
up to Θ(g · h) connections. Especially h can be very large even though usually only a small range in fn(e)
is relevant for the link operation. When we identified the first connection we can link to, we can store a
dominant range with it so that all connections after this range result in dominated arrival connections. We
could distinguish between linking to a certain connection with and without transfer but we restrict ourselves
only to the case with transfer. This results in a practically very efficient link operation. So given an array of
arrival connections ac(S) and an array of connections of an edge fn(e) to relax, the link will work as follows:

1. edt := minP∈ac(S) arr(P ) (mod 1440) // earliest departure time, in [0, 1439]

2. ett := edt+ transfer(S) (mod 1440) // earliest departure with transfer time

3. Find first connection Pn ∈ fn(e) with minimal cycle difference(edt, dep(Pn)) using buckets.

4. Find first connection Pt ∈ fn(e) with minimal cycle difference(ett, dep(Pt)). Connection Pt gives a
dominant range that is identified by the first connection Pe outside the range This partitions the
outrolled array of fn(e):

...
Pn

link w/o transfer
Pt

link w/ transfer
Pe

...

We may only link to a connection in [Pn, Pt) without (w/o) transfers and thus all arrival connections
in ac(S) are relevant to decide which consistent arrival connections we can create there. It is consistent
to link to all connections with transfers from Pt on.

5. While we link, we remember the minimal arrival time and use it to skip dominated arrival connections.

6. Finally we sort the resulting connections and remove the dominated ones. This step is necessary
because the minimum arrival time may decrease while we link and we may have to remove duplicates,
too.

Given two sets of arrival connections at a node, we want to build the dominant set of the union, the
minimum. This can be done in linear time by just merging them. Sometimes arrival connections are
equivalent but not identical. Two arrival connections are equivalent if they are identical or have the same
arrival time and neither of them has a critical arrival. In this case we must keep just one of them. We base
this decision so that we minimize the number of queue inserts in the query algorithm, e.g. prefer the one
from ac(T ) if available.

Runtime. The above link operation is is more complex than a usual link operation that maps departure
time to arrival time. However, we give an idea why this link operation is very fast and may work in constant
time in many cases. The experiments in Section 6 show that it is indeed very efficient. Let b be the number
of connections in the bucket. Let cd be the number of connections that depart within the transfer time
window [Pn, Pt) at the station. Let ca be the number of arrival connections |ac(S)|. Let r be the number of
connections that depart within the range [Pt, Pe). The runtime of link is then O(b+ cdca + r). We choose
the number of buckets proportional to the number of connections, so b is in many cases constant. For linking



connections without transfer, we have the product O(cdca) as summand in the runtime. We could improve
the product down to O(cd + ca + u) with hashing, where u is the number of linked connections. But this
is slower in practice since cd and ca are usually very small. That is because the station-dependent transfer
time window is usually very small, and also only very few connections depart and arrive within a single
window. It is harder to give a feeling of the size of the range [Pt, Pe). Assume that every connection operates
daily. Let be d the difference between the length of Pt and the minimum length of any connection in fn(e).
d+ transfer(S) is an upper bound on the size of the time window of this range. So when d is small, and this
should be in many cases, also r is small.

Computing the Dominant Range. Besides the buckets we also need to compute the dominant ranges.
Lemma 3 gives the instructions how to efficiently compute them using a sweep algorithm approach.

Lemma 3 Given an array F of connections between two stations S1 and S2 that operate daily. The array
is primarily orderd by departure time and the secondarily ordered by arrival time and then critical arrival
before non-critical arrivals. Let P be a arrival connection at station S1 that can link with a connection
Q in the outrolled array with a transfer. Then all connections that are later in this outrolled array and
may not be dominated by the new arrival connection, created by the link of P and Q, depart earlier than
dep(Q) + d + transfer(S2). d is the difference between the length of Q and the minimum length of any
connection in F .

Proof. Let Q′ be a connection that does not depart earlier than dep(Q) + d+ transfer(S2). Since arr(P ) +
transfer(S1) ≤ dep(Q), and dep(Q) ≤ dep(Q′), we can link P with Q′. By definition of d is length(Q) ≤
length(Q′) + d and thus arr(Q) = dep(Q) + length(Q) ≤ dep(Q) + length(Q′) + d ≤ (dep(Q′) − d −
transfer(S2)) + length(Q′) + d ≤ arr(Q′) − transfer(S2). When Q′ has a critical arrival, then arr(Q′) ≤
ndep(Q′) so that P linked with Q will dominate P linked with Q′. �

Linking two edges for shortcuts and profile search is done by doing the dominant range computation at
link time. We change the order of the connections in the array of connections when supporting this operation.
They are still primarily ordered by departure. But within the same departure time, the dominant connection
should be after the dominated one. That allows for an efficient backward sweep to remove dominated
connections. Namely we secondarily order by length descending, then non-critical before critical departure,
then non-critical before critical arrival. Finally, we order by the first and last stop event, preferring a stop
event with critical departure or arrival. The last order is necessary for an efficient building of a dominant
union (minimum) of two connection sets where the preference is on one set.

Given two edges e1 = (S1, S2) and e2 = (S2, S3), we want to link all consistent connections to create
fn(e3) for an an edge e3 = (S1, S3). A trivial algorithm would link each consistent pair of connections in
fn(e1) and fn(e2) and then compare each of the resulting connections with all other connections to find a
dominant set of connections. However, this is impractical for large g = |fn(e1)| and h = |fn(e2)|. We would
create Θ(g · h) new connections and do up to Θ

(

(gh)2
)

comparisons.
So we propose a different strategy for linking that is considerably faster for practical instances. We

process the connections in fn(e1) in descending order. Given a connection P , we want to find a connection Q
that dominates P at the departure at S1. So we only need to link P to connections in fn(e2) that depart in
S2 after the arrival of P but before the arrival of Q. Preferably we want to find the Q with the earliest arrival
time. However, we find the Q with the earliest arrival time in S2 with dep(Q) ≥ dep(P ) + transfer(S2).
Then Q will not only dominate P at the departure but also any connection departing not later than P . So
we can use a simple finger search to find Q. Now we link P only to connections in fn(e2) departing between
the arrival of P and Q. We use finger search to find the first connection that departs in fn(e2) after the
arrival of P . Of course, we need to take the transfer time at S2 into account when we link. It is not always
necessary to link to all connections that depart before Q arrives; we can use the knowledge of the minimum
length in fn(e2) to stop linking when we cannot expect any new dominant connections. The newly linked
connections may (1) not be dominant and also may (2) not be in order.



(1) To remove dominated connections, we use a sweep buffer that has as state the current departure time
and holds all relevant connections with higher order to dominate a connection with the current departure
time. The number of relevant connections is usually small. We need at most all the connections that depart
less than transfer(S1) later than the current departure time and also all connections that depart at least
transfer(S1) later than the current departure time but their arrival time is not more than transfer(S3) later
than the current earliest arrival time. Assuming that only few connections depart in S1 within transfer(S1)
minutes, and only few connections arrive in S3 within transfer(S3) minutes, the sweep buffer has only a few
entries.

(2) Connections can only be unordered within a range with same departure time, e.g. when they have
ascending durations. So we use the idea of insertion sort to reposition a connection that is not in order.
While we reposition a new connection, we must check whether it dominates the connections that are now
positioned before it. E.g. a new connection with same departure than the previous one but smaller duration
may dominate the previous one if the departure is not critical.

After we processed all connections in fn(e1), we have a superset of fn(e3) that is already ordered, but
some connections may be dominated. This happens when the dominant connection departs after midnight
and the dominated connection before, so the periodic border is between them. To remove all dominated
connections, we continue scanning backwards through the new connections but now on “day -1” using the
sweep buffer. We can stop when no connection in the sweep buffer is of “day 0”.

Runtime. We give an idea why this link operation is very fast and may work in linear time in many
cases. The experiments in Section 6 show that it is indeed very efficient. Let cP be the size of the range in
fn(e3) that departs between the arrival of P and Q. Let bP be the runtime of the finger search to find the
erliest connection in fn(e2) that departs after the arrival of P Let s be the maximum number of relevant

connections in the sweep buffer. The runtime of link is then O
(

∑

P∈fn(e1)
(cP s+ bP )

)

. This upper bound

reflects the linking and usage of the sweep buffer. The backward scanning on “day -1” is also included, since
it just adds a constant factor to the runtime. The finger search for Q is amortized in O(1), so it is also
included in the runtime above. It is hard to get a feeling for cP and bP , they can be large when h = |fn(e2)|
is much larger than g = |fn(e1)|. Under the practical assumption that

∑

P∈fn(e1)
(cP + bP ) = O(g + h), we

get a runtime of O((g + h)s). As we already argued when we described the sweep buffer, s is small and in
many cases constant, so our runtime should be O(g + h) in many cases.

Building the Minimum of two Sets of Connections. Query algorithms need two basic operations:
link and minimum. For newly visited nodes only link is relevant, otherwise a minimum follows a link so it
is efficient to integrate both. But first we will describe a standalone minimum operation, we use it compare
witness paths and possible shortcuts. It is basically a backwards merge of the ordered arrays of connections
and uses a sweep buffer as for the link operation. Also like the link operation, we continue backward scanning
on “day -1” to get rid of dominated connections over the periodic border.

Like for an arrival connection, two connections are equivalent when they have the same length, an
equivalent departure and equivalent arrival. Two connections P and Q have an equivalent departure when
their departure is identical or when the departure is not critical and they have the same departure time.
Analogously, two connections P and Q have an equivalent arrival when their arrival is identical or when the
arrival is not critical and they have the same arrival time. Because of the order, equivalent connections are
next to each other. So we can easily detect them during the merge. Tie breaking is done in a way to reduce
the number of priority queue operations.

Runtime. Let g and h be the cardinalities of the two sets we merge. Let s be the maximum size of
the sweep buffer. Then the runtime of the minimum operation is O((g + h)s). Since s is small and in many
cases constant, the runtime should be O(g + h) in many cases.



Integrating Link and Minimum. A minimum operation always follows a link operation when we relax
an edge to an already reached station S. This happens quite often for profile queries, so we can exploit this
to tune our algorithm. It is quite simple, we directly process the newly linked connections one by one and
directly merge them with the current connections at S. When a new connection is not in order, we fix this
with the insertion sort idea. The rest is like in the stand-alone minimum operation. This integration reduces
required memory allocations and gives significant speedups.

More Features. Our implementations of link and minimum are tuned for the EAP. But we believe that we
can extend our implementation to more features, e.g. multi-criteria, without loosing too much efficiency. The
idea with the dominant ranges can be generalized to support different dominance relations. Also, since we
already work with sets of connections, we do not have to pay an additional penalty for memory management
when we switch to multi-criteria. In a sense, we already have a multi-criteria optimization problem, we
optimize for travel time but relax it with the train and transfer information. However, for traffic days, the
dominant ranges may work not well. In this case we can e.g. split the connections by day or introduce a
dominant linked list of connections, that are relevant from a given earliest departing transfer connection.
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