
(Behavioural) Design Patterns as

Composition Operators

Kung-Kiu Lau, Ioannis Ntalamagkas, Cuong M. Tran, and Tauseef Rana

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom

{kung-kiu,intalamagkas,ctran,ranat}@cs.manchester.ac.uk

Abstract. Design patterns are typically defined informally, albeit in
a standard format, and have to be programmed by the software de-
signer into each new application. Thus although patterns support solu-
tion reuse, in practice this does not translate into code reuse. In this
paper we argue that to achieve code reuse, patterns should be defined
and used in the context of software component models. We show how in
such a model, behavioural patterns can be defined as composition op-
erators which can be stored in a repository, alongside components, thus
enabling code reuse.

1 Introduction

Design patterns [5], as generic reusable solutions to commonly occurring prob-
lems, are one of the most significant advances in software engineering to date, and
have become indispensable tools for object-oriented software design. However, a
pattern is typically only defined informally, using a standard format containing
sections for pattern name, intent, motivation, structure, participants, etc. To use
a pattern for an application, a programmer has to understand the description of
the pattern and then work out how to program the pattern into the application.
Although patterns are supposed to encourage code reuse (by way of solution
reuse), in practice such reuse does not happen, since the programmer has to
program the chosen pattern practically from scratch for each application.

In this paper we argue that to really achieve code reuse, patterns should be
defined and used in the context of software component models [8,19]. Moreover,
patterns should be formal entities in their own right, so that they are units
with their own identity that can be composed with specific components to form
a solution to a specific problem. In other words, patterns should be explicitly
defined composition operators (in a component model) that can be used to com-
pose components. As composition operators, patterns would be like functions
with generic parameters, and as such would be reusable with different sets of
components for different problems. Furthermore, the semantics of a pattern can
be defined formally, and then embodied in the corresponding composition oper-
ator, so that choosing a pattern can be done on the basis of formal semantics,
rather than informal description, as is current practice.

L. Grunske, R. Reussner, and F. Plasil (Eds.): CBSE 2010, LNCS 6092, pp. 232–251, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

(Behavioural) Design Patterns as Composition Operators 233

In our work on software component models [18,15], we have defined (a com-
ponent model with) explicit composition operators. Such operators can them-
selves be composed into composite operators [13]. In this paper, we show how
we define composition operators, in particular composite ones, and how (some)
behavioural patterns can be defined as such operators. We define the Chain of
Responsibility (CoR) pattern as a basic composition operator, the Observer pat-
tern as a composite composition operator, and a composite pattern composed
from CoR and Observer as another composite operator composed from the two
former operators. We also show an implementation in which patterns are stored
in a repository, alongside components, thus enabling code reuse.

2 Related Work

Design patterns have been formalised by using some formalisation of objects
and their relationships. For example, in [24] patterns are defined by using the
object-oriented specification language DISCO [10]. These approaches basically
take the informal description of a pattern, as given in e.g. [5], and re-write it
in a formal manner. However, they do not define patterns as operators that can
be applied to generic parameters. Consequently, the formalisation provides just
another definition of patterns, and the programmer still has to program a chosen
pattern from scratch for each application. Therefore there is no code reuse.

Composite design patterns [33] and techniques for composing patterns have
also been investigated. For example, the composite patterns active bridge, bu-
reaucracy and model-view-controller were proposed in [27] Composition tech-
niques can be classified as (i) stringing or (ii) overlapping [35,7]. In stringing,
patterns are glued together; in overlapping, a participant in one pattern also
participates in another pattern at the same time. In these techniques, composi-
tion is constrained by relationships between roles. For example, design patterns
that are architectural fragments are composed by merging roles in [1] using su-
perimposition. However, these techniques are defined informally, and are applied
in an ad hoc manner. Therefore, they do not support systematic code reuse.

To achieve code reuse in a more direct manner, there has been research into
componentising patterns, by implementing packages for patterns that program-
mers can use to program patterns for different applications. For example, [23]
shows that two thirds of the common patterns like Visitor can be ‘componen-
tised’ in this way. Patterns are implemented as Eiffel packages that require other
Eiffel packages. However, in a pattern package, the roles of and the constraints
on the participant objects are not (cannot be) specified. As a result, a package
does not truly represent a pattern. Although some code reuse is achieved by the
use of skeleton code provided by packages, most of the coding effort remains, in
partcular for code that defines the participants’ roles and constraints.

Component composition patterns were identified in [34] to define domain-
specific communication patterns using modified sequence diagrams. Component
roles are used to restrict the behaviour of the participating components, but in
terms of their interface behaviour. The focus of this work is on the definition of

234 K.-K. Lau et al.

domain-specific communication patterns and not on generic software patterns,
and pattern composition is undefined.

3 Our Approach

We believe that true code reuse can be achieved by defining design patterns
in the context of a properly defined software component model. Such a model
defines what components are, and mechanisms for composing them.

A generic view of a component is a composition unit with required services
and provided services. Following UML2.0 [25], this is expressed as a box with lol-
lipops (provided services) and sockets (required services), as shown in Fig.1(a).
In current software component models [19], components are either objects or
architectural units. Exemplars of these models are EJB [4] and ADLs (architec-
ture description languages) [21] respectively. An object normally does not have
an interface, i.e. it does not specify its required services or its provided services
(methods), but in component models like JavaBeans [29] and EJB, beans are ob-
jects with an interface showing its provided methods but usually not its required
services (Fig.1(b)). Architectural units have input ports as required services and
output ports as provided services (Fig.1(c).) Therefore, objects and architectural
units can both be represented as components of the form in Fig.1(a).

Provided
service
Required

service
Provided
method

input output

(a) A generic (b) An object (c) An architectural
component unit

Fig. 1. Components

Objects and architectural units are composed by connection (Fig.2), whereby
matching provided and required services are connected by assembly connec-
tors. In order to get a required service from another object, an object calls the

Assembly connector

Fig. 2. Connection

appropriate method in that object. Thus objects
are connected by method delegation, i.e. by direct
message passing. For architectural units, connectors
between ports provide communication channels for in-
direct message passing.1

We have defined a component model [18,15] in
which composition operators are explicitly defined en-
tities with their own identities. In our model, compo-
nents are encapsulated : they encapsulate control, data as well as computation,
as in ‘enclosure in a capsule’. Our components have no external dependencies,
and can therefore be depicted as shown in Fig.3(a), with just a lollipop, and no
socket. There are two basic types of components: (i) atomic and (ii) composite.

1 In [30] object delegation and architectural unit composition are differentiated.

(Behavioural) Design Patterns as Composition Operators 235

IU

ATM BB
U

A B

IA IB

Composite(c) (d) BankComposition(b)Atomic(a)
component connector component system

SEQ

Fig. 3. Our component model

Fig 3(a) shows an atomic component. This consists of a computation unit (U)
and an invocation connector (IU). A computation unit contains a set of meth-
ods which do not invoke methods in the computation units of other components;
it therefore encapsulates computation. An invocation connector passes control
(and input parameters) received from outside the component to the computation
unit to invoke a chosen method, and after the execution of method passes con-
trol (and results) back to whence it came, outside the component. It therefore
encapsulates control.

A composite component is built from atomic components by using a compo-
sition connector. Fig.3(b) shows a composition connector. This encapsulates a
control structure, e.g. sequencing, branching, or looping, that connects the sub-
components to the interface of the composite component (Fig.3(c)). Since the
atomic components encapsulate computation and control, so does the composite
component. Our components therefore encapsulate control (and computation)2

at every level of composition. Note that we have emphasised the significance of
control encapsulation in [16].

Our components can be active or passive. Active components have their own
threads and execute autonomously, whereas passive components only execute
when invoked by an external agent. In typical software applications, a system
consists of a ‘main’ component that initiates control in the system, as well as
components that provide services when invoked, either by the ‘main’ component
or by the other components. The ‘main’ component is active, while the other
components are passive. For simplicity, in this paper we focus on passive com-
ponents in our model; composition of active components is much more involved,
by comparison (see [14]). In our model, passive components receive control from,
and return it, to connectors. In a system, control flow starts from the top-level
(composition) connector.

Fig.3(d) shows a simplified bank system with two components ATM and BB
(bank branch), composed by a sequencer composition connector SEQ. Con-
trol starts when the customer keys in his PIN and the operation he wishes
to carry out. The connector SEQ passes control to ATM , which checks the
customer’s PIN; then it passes control to BB, which gets hold of the customer

2 As well as data [17].

236 K.-K. Lau et al.

account details and performs the requested operation. Control then passes back
to the customer.

In summary, composition in our model is hierarchical: components can be ‘re-
cursively’ composed into larger composites, as can be seen in Figs. 3(c) and 3(d).

4 Composition Operators

In [18] we defined the composition operators informally, and in [15] we defined
them in terms of many-sorted first-order logic. In addition, we defined a catalog of
composition operators in [32]. To relate our composition operators to behavioural
patterns, in this section we give the formal semantics of composition operators
in terms of Coloured Petri nets [11].

First, it is worth emphasising that, as we saw in Section 3, our composition
operators are connectors [18] that encapsulate control. Moreover, these operators
themselves can be composed to yield composite operators that also encapsulate
control. This is illustrated in Fig.4 for one thread of control for the sequencer
composition operator.

For brevity, we will refer to composition operators simply as connectors.

control flow

Fig. 4. Control encapsulation

4.1 Connector Template Nets

We will define our connectors as a special kind of Coloured Petri net [11], which
we call a Connector Template net (CT-net). A connector in our model is of
arbitrary arity and parametricity, and therefore cannot be defined directly using
Coloured Petri nets. A Petri net3 is a set of places (with tokens) and transitions
connected by arcs with expressions; and a Coloured Petri net is a Petri net in
which the tokens can be of different types (colours).

Definition 1. A Connector Template net (CT-net) is a tuple (N, Ar, Σ, P, T,
A, C, G, E, I, In, Out, CP), where:

(i) N is the unique name of the CT-net.
(ii) Ar is an expression (containing at least one variable) defining the arity

of the connector.
(iii) Σ is the colour set defining the types used in the CT-net, P , T , A are

disjoint sets of places, transitions and arcs, where P and T are basic sets,
whereas A is of type P × T ∪ T × P .

3 We assume familiarity with Petri nets.

(Behavioural) Design Patterns as Composition Operators 237

(iv) C is a function defining the types for each place in P , G defines guard ex-
pressions for transitions in T , E is a function defining the arc expressions
in A, and I defines the initial marking for each place in P .

(v) In and Out are distinguished input and output places of the CT-net, s.t.
{In, Out} ⊂ P ∧•In = ∅ ∧Out• = ∅, where •n and n• denotes the preset
and the postset of n, i.e. the set of nodes in P ∪T such that there is an arc
from a node in the set to n, or from n to some node in the set respectively.

(vi) CP is the distinguished set of composition places of the CT-net, s.t.
CP ⊂ P ∧ #CP = Ar ∧ ∀cp ∈ CP, #•cp = #cp•, i.e. the cardinality
of composition places equals the arity Ar of the connector, and the num-
ber of input transitions to each composition place equals the number of
output transitions of the same place.

For simplicity, we have defined the arc set A in a CT-net as pairs of nodes (places
or transitions), in part (iii) of Definition 1. This introduces the limitation that
between each pair of nodes we can define at most one arc, whereas in Coloured
Petri nets multiple arcs are allowed.

However, this limitation poses no problems since multiple arcs for a pair of
nodes can always be merged into a single arc [11].

Graphically, a CT-net can be depicted as in Fig.5. It has a set of distinguished
places: an input place In, an output place Out, and a set of composition places
CP1, . . . , CPn, connected to transitions (boxes) in a Coloured Petri net (the
dotted box). Each composition place CPi represents a connector or a component,
and has precisely one incoming ini and one outgoing arc outi.

A CT-net encapsulates control that flows in through its input place, its in-
ternal Coloured Petri net, its composition places, back through the internal
Coloured Petri net, and finally out through its output place. Control encapsu-
lation in a CT-net in Fig.5 is therefore the same as that defined in Fig.4 for a
(composite) connector, for each thread of control.

Concretely we will only use CT-nets with fixed arities defined in a toolkit
called CPN Tools [3] for Coloured Petri nets. In these concrete CT-nets, places
(and hence tokens) are of type N×CID, where N is the type of natural numbers,
and CID is the cartesian product of two integer types. CID is a case identifier
that distinguishes between different (initial) threads corresponding to requests

. . .
in1 out1 outnin

n1

n

.

In

CPCP

Out

Fig. 5. A CT-net

238 K.-K. Lau et al.

(j,c)
(j,c) (j,c)

(j,c)
(j,c) (j,c) (j,c) (j,c)

(j,c)

(j+1,c)

(a) (Binary) Pipe/Sequencer (b) (Binary) Cobegin

(j+1,c)

(j,c)

In Out In Out

T11 T12 T13 T21 T22

CP CPCP12 21 22
CP11

Fig. 6. Basic composition operators

by different “users” of a connector, and N is used to identify different sub-threads
(see the discussion on the Cobegin connector below).

Now we show how connectors in our component model can be defined as
CT-nets. We distinguish between basic and composite connectors.

4.2 Basic Composition Operators

Basic connectors in our model are connectors for sequencing, branching and (fi-
nite) looping. Fig.6 shows the CT-nets for the Pipe connector (for sequencing)
and the Cobegin connector (for branching)4. The Pipe connector receives re-
quests and passes them to the components sequentially. The pipe also enables
passing results from one component to the next. The CT-net for Pipe is the
same as that for the Sequencer connector. The Sequencer is the same as the
Pipe except it does not pass results. The Cobegin connector splits each incoming
thread into 2 sub-threads (sharing the same CID), that execute concurrently
the connected components.

In terms of CT-nets, every basic connector has the following property:

Property 1. The control flow of each connector guarantees that each token in
the input place will eventually flow to the output place of the connector. In the
output place there can only appear the tokens that have previously appeared in
the input place, and for each token in the input place there will be exactly one
token in the output place.

This property simply states that incoming control threads do not vanish during
connector execution, and only these threads return as a result of the connector
execution. This property can be trivially proved for the basic connectors, and it
must be preserved during connector composition.

4.3 Composite Composition Operators

Connectors can be composed via their input, output and composition places:
a composition replaces a composition place by its matching input and output
places, and re-directing its in-arc to the input place and its out-arc from the
output place respectively. This is illustrated in Fig.7, where the two CT-nets are
4 For simplicity, we only consider binary connectors.

(Behavioural) Design Patterns as Composition Operators 239

2n21

2n2n2121 outin in

. . .

.

out

in1m
1m 1m

1mout
1m

. . .
2n21

2n2n2121 outin in

.

out

. . .
11outin

11

11 in

.

out

. . .
11outin

11

11

.

CP CP

CP

CP CP

OutIn

CP

OutIn

CP

OutIn

Fig. 7. Composing connectors

composed by matching the composition place CP1m in the first CT-net with the
input and output places of the second CT-net. The in-arc in1m of CP1m is re-
directed to the input place, whilst the out-arc out1m is re-directed from the out-
put place, of the second CT-net. The resulting composite connector has the input
and output places of the first CT-net; the composition places CP11, . . . , CP1(m−1)

of the first CT-net and CP21, . . . , CP2n of the second CT-net. (The input and
output places in the second CT-net become dummy places in the composite CT-
net.) An example of CT-net composition can be seen in Fig.11, where the Pipe
and Cobegin CT-nets from Fig.6 are composed.

Clearly composition of CT-nets is hierarchical. The resulting composite con-
nector is thus self-similar to its sub-connectors, i.e. it has the same structure
as each of the latter. This self-similarity is significant because it means that
the composition of connectors is strictly hierarchical; it is also algebraic because
a composite connector also encapsulates control, just like its sub-connectors.
Indeed, composite connectors have the following property:

Property 2. Property 1 holds for composite connectors that are composed from
primitive operators when no places are shared during composition.

Thus composite connectors can be used in further composition, just like the basic
connectors. This is because their control flow is similar to that of the latter and
it guarantees that the only control threads returned are the ones that are given
as input to the connector.

For self-similarity, the proviso of no shared places during composition must be
observed. However, this can be overcome by the use of dummy places that serve
as ‘memory’ places that retain copies of tokens and thus simulate non-sharing
of places.

240 K.-K. Lau et al.

5 Behavioural Patterns

We have seen that our connectors encapsulate control, and can be composed
into composite connectors. In this section we will show that because they

In Out

.

Fig. 8. A component

encapsulate control and are generic in terms of arity
and parametricity, they can be used to define design
patterns [5], more precisely, behavioural patterns. We
will show that even a basic connector can be used to
define a pattern; whilst a composite connector can be
used to define a more complicated pattern.

Specifically, a connector can only define the control
flow in a pattern; it cannot specify the participants and
their roles in the pattern. The participants are of course
components, so we need to consider how components are defined and how they
are composed by connectors. A component is defined as a net with distinguished
Input and Output places (Fig.8) connected to transitions (boxes) in a Coloured
Petri net (dotted box). Such a net is the same as a CT-net (Fig.5) except that
it has no composition places. Clearly, like a CT-net, a component net can be
composed with a CT-net via the latter’s composition places.

To use a CT-net to define a pattern, we need to add constraints that spec-
ify the components that participate in the pattern, and their roles, to ensure
conformance with the semantics of the pattern. In addition we could also have
constraints on the CT-net itself (as we will see later). Thus a pattern is a pair
(CT-net, constraints), where constraints specify the participating components
and their roles, and possibly also some restrictions on the CT-net. In other words,
just as a (concrete) CT-net is an instance of a template (specified by its arity),
a pattern is an instance of a CT-net (specified by its constraints).

5.1 Constraints

The Coloured Petri net in a component net (Fig.8) represents the behaviour
of the methods5 in the computation units of the component. Therefore, in a
pattern, the constraints on the participating components and their roles are
expressed in terms of the names and types of the methods and their parameters
in these units. We denote these constraints by C.

Constraints on the CT-net in a pattern are constraints on the composition
places in the CT-net that are instantiated by the components composed by the
CT-net. These can express restrictions on, or adaptations of, the control flow
in the CT-net, e.g. adding guards or conditional branching, and can alter the
control flow in and out of a composition place. We will denote these constraints
by D.

Thus a pattern is (CT-net, (C, D)). C has to specify the roles of the partici-
pants as well as the relationships between the participants. We will define C as
a pair of pre- and post-conditions p and q, i.e. C = (p, q):

5 These methods have pre- and post-conditions.

(Behavioural) Design Patterns as Composition Operators 241

(i) The pre-condition p specifies type conditions on the names and parameters
of methods in the computation units of the participating components, as
well as the relationships between these names and parameters.

(ii) The post-condition q specifies the expected behaviour of the pattern P , in
terms of the expected behaviour of each participating component.

A pattern P = (CT-net, (C, D)) can only be applied as a composition operator
to a set of components if the components collectively satisfy the pre-condition
p in C. Satisfaction is checked by matching p with the pre-conditions of the
methods in the computation units of the participating components. For valid
components, the pattern P acts a composition operator with an adaptation by
D of the control flow of CT-net.

We have defined a constraint language for patterns. For C constraints, our
language has similarities with OCL [26], a constraint language for objects in
UML; however, unlike OCL, our language can also be used to define D con-
straints. For lack of space, we do not give full details of our constraint language,
and will only give and explain some of the constraints that we will use.

To implement a pattern P = (CT-net, (C, D)), we need to combine the
semantics of CT-nets and the semantics of our constraint language. The D con-
straints in our constraint language can be implemented in a straightforward
manner, since they define control structures which can be easily implemented in
a programming language. In contrast, ‘implementing’ C constraints amounts to
automatic specification matching and verification. This requires theorem prov-
ing and is undecidable in general. So in our implementation (see Section 6) C
constraints are annotations that require manual checking.

5.2 Basic Composition Operators

Even a basic connector can be used to define a pattern. Consider the Sequencer
connector. Its CT-net is shown in Fig.6(a), and Fig.9(a) shows the control flow
it encapsulates. By defining suitable constraints we can use the Sequencer to
define the Chain of Responsibility (CoR) pattern.

According to its description in [5], the intent of CoR is to “avoid coupling the
sender of a request to its receiver by giving more than one object a chance to
handle the request; chain the receiving objects and pass the request along the
chain until an object handles it”. So to define the CoR using Sequencer, we need
to allow two different control flows, depending on whether control exits after the

(a) Sequencer (b) Chain of responsibility

Fig. 9. Chain of responsibility

242 K.-K. Lau et al.

first or the second component successfully handles the request. This is shown
in Fig.9(b).

We define CoR = (CT-net for Sequencer, C, D), where C and D are defined
as follows.

For simplicity, we continue to use binary connectors. Therefore, the CoR pat-
tern, applied to two components C1 and C2, requires that the second component
C2 can be used instead of the first one C1. For that reason we define the notion
of behavioural conformance between the two components [20]. Specifically, for
each method in C1, C2 must provide a method with the same i/o parameters, a
weaker pre-condition and a stronger post-condition. Thus the pre-condition for
CoR, in our constraint language, is:

C1.methods->forAll(m1:Method | C2.methods->exists(m2:Method |

(m2.input = m1.input and m2.output = m1.output and

m1.Pre implies m2.Pre and m2.Post implies m1.Post))

The post-condition of the CoR ensures that whenever a method m in a component
is invoked, the post-condition of m is satisfied.

C1.methods(invoke).Pre implies C1.methods(invoke).Post or

C2.methods(invoke).Pre implies C2.methods(invoke).Post

We need a D constraint that specifies that control reaches the next composition
place iff the pre-condition of the component in the current composition place
with the given input parameters is satisfied. This is defined as:

if(eval(cp(currentIdx).methods(target).Pre,input.value)) then

return cp(currentIdx).methods(target).output.value

endif

5.3 Composite Composition Operators

A composite connector can also be used to define a pattern. Consider the com-
position of the Pipe and Cobegin connectors (defined in Fig.6). The resulting
composite connector is shown in Fig 10. It passes results from P to S1 and
S2. By defining suitable constraints, we can use this composite connector to
define the Observer pattern. According to its description in [5], the intent of the

P S1 S2

Cobegin

Pipe

Fig. 10. ‘Observer’

(Behavioural) Design Patterns as Composition Operators 243

(j,c)
(j,c)

(j,c)
(j,c) (j,c)

(j,c)

(j,c)(j,c)

(j,c) (j+1,c)

(j+1,c)

(j,c)

In Out

T11 T12 T13

CP
11

T21 T22

CPCP21 22

Fig. 11. CT-net for Observer

Observer pattern is to “define a one-to-many dependency between objects so
that when one object changes state, all its dependants are notified and updated
automatically”. Therefore the composite connector in Fig.10 acts as an Observer,
with a publisher P and two subscribers S1 and S2.6

So we define Observer = (CT-net for Pipe + CT-net for Cobegin, C, D).
The composition of the CT-nets for Pipe and Cobegin is shown in Fig.11. This

is the CT-net for Observer.
The Observer composed from binary Pipe and binary Cobegin has three com-

position places; it is therefore ternary.
In addition, C constraint is defined as follows.
The pre-condition of the (ternary) Observer (applied to components C1, C2,

C3) requires that some of the methods from the publisher component C1 can be
matched by the methods of both the subscribers C2 and C3. This means that
the output of C1 can be consumed as the input of C2 and C3. Therefore the
pre-condition for Observer is:

let M, M1: Set(Method)

M1 = C1.methods(all)->select(m:Method |

m.Post implies (length(m.output) > 0))

M = M1->select(m1:Method | C2.methods->exists(m2:Method |

m2.input includes m1.output) and

C3.methods->exists(m3:Method |

m3.input includes m1.output))

M->size()>0

The post-condition of Observer ensures that the output of the publisher C1 will
actually be used as (part of) the input to both the subscribers C2 and C3. We
describe the part of the post-condition that applies to C2 (a similar one applies
to C3). This post-condition is defined as:

6 Of course it would be better if P was an active component.

244 K.-K. Lau et al.

let pos:Integer

pos=C2.methods(invoke).input->indexOf(C1.methods(invoke).output)

C2.methods(invoke).input(pos .. (pos +

length(C1.methods(invoke).output))).value

= C1.methods(invoke).output.value

The D constraint for Observer is simply empty because the control flow defined
by the composite composition connector already satisfies the pattern.

5.4 Composing Behavioural Patterns

Defining behavioural patterns as connectors offers the immediate benefit of being
able to compose patterns in the same manner that we compose any connectors.
However, constraints must be composed correctly. For two patterns P1 = (CT-
net1, C1, D1) and P2 = (CT-net2, C2, D2), the resulting composite pattern
has C1 ∧ C2 (with renaming) as its C constraints, and has D1 and D2 as its D
constraints on CT-net1 and CT-net2 respectively. This kind of compositionality
is a result of encapsulation in our model.

For example, we can compose the Observer and CoR patterns into a composite
(Fig.12). This composition connector connects a chain of publishers (P1 and P2)
in a CoR to a set of subscribers (S1 and S2). This composite pattern extends the
Observer to multiple publishers. The subscribers are however only interested in
the first result, produced by (any of) the publishers. For instance, this pattern
may apply to a scenario in which news subscribers wish to receive the first
available news bulletin on a particular topic, published by any (of a set of) news
agencies they subscribe to.

S1 S2P1 P2

CoR

Observer

Fig. 12. ‘CoR-Observer’

We have defined the composite pattern CoR-Observer with four composi-
tion places. The first two, C1 and C2, correspond to the publishers which are
constrained by the CoR, whilst the last two, C3 and C4, correspond to the sub-
scribers. Consequently the pre-condition of CoR-Observer must require C1 and
C2 to act as publishers in a chain of responsibility. We only need to describe the
requirements for C1 w.r.t. the Observer’s requirements. This is because in CoR
C2 offers more than C1 and requires less than C1. The pre-condition is:

let M, M1: Set(Method)

M1 = C1.methods(all) -> select(m1:Method |

m1.Post implies (length(m1.output) > 0))

(Behavioural) Design Patterns as Composition Operators 245

M = M1 -> select(m1:Method | C3.methods->exists(m3:Method |

m3.input includes m1.output) and

C4.methods->exists(m4:Method |

m4.input includes m1.output))

M->size()>0 and

C1.methods->forAll(m1:Method |

C2.methods->exists(m2:Method | m2.input = m1.input and

m2.output = m1.output and

m1.Pre implies m2.Pre and m2.Post implies m1.Post))

The above conditions specify that the methods of C1 must provide some output
and this must be acceptable by the C3, C4 components (a requirement for the
Observer pattern). It also means that C2 can be used instead of C1.

The post-condition of CoR-Observer states that when C1 gets invoked its
output is consumed by the subscribers, and similarly for C2.

The D constraint for CoR-Observer is simply the D constraint for the first
two composition places:

let currentIdx : int with 1..2

if(eval(cp(currentIdx).methods(target).Pre,input.value)) then

return cp(currentIdx).methods(target).output.value

endif

6 Implementation and Example

The CT-nets we have been using are defined in CPN Tools. Connectors could
therefore be defined and composed using CPN Tools. However, CPN Tools can-
not handle connectors that are patterns, because of the associated constraints.
Therefore, we need to implement connectors ourselves, in a tool that can imple-
ment CT-nets as well as constraints for connectors that are patterns. In any case,
for connectors (patterns) to be useful, we also need to implement components.
So we have started to implement a tool for our component model. The tool sup-
ports the idealised component life cycle [19] consisting of: (i) design phase, in
which components and connectors are designed, implemented and deposited in a
repository; (ii) deployment phase, in which components and connectors are de-
ployed into a specific application under construction. The tool therefore consists
of a builder for the design phase, and an assembler for the deployment phase.

In the builder, connectors and patterns can be defined and stored in a reposi-
tory, alongside components. Basic connectors are defined first, and then used to
define composite connectors. Design patterns can be defined from basic or com-
posite connectors that have already been defined. By storing all the connectors
in the repository, we can reuse them in the deployment phase for many different
applications. In this way, as reusable connectors that can be retrieved from a
repository, so design patterns become really reusable.

Basic connectors are implemented as Java classes. For composite connectors,
we define a connector composition language which is based on XML, which
allows us to define the structure of a composite connector in terms of smaller

246 K.-K. Lau et al.

(a) Defining the Observer pattern. (b) Building the system using patterns.

Fig. 13. Our prototype tool

connectors. We then implement a Java class that takes such structural definitions
and realises the desired behaviour through object aggregation and composition
of connector objects.

Pattern definition in our repository consists of a connector definition and
its associated constraints. For pre-defined (existing) connectors, the connector
definition is a unique string for every connector. For (new) composite connectors,
the structural definition must be given. The constraints for the connector are
then defined and tied to the connector definition.

D constraints can affect the control flow of our connectors, and therefore
must be executed at runtime. Therefore, in our implementation, D constraints
are transformed into Java code that is used to generate Java classes to realise the
pattern. Indeed, the transformation is possible because D constraints are actually
control flow structures, e.g. if-endif in the D constraints of CoR. The Java code
in this case is the try-catch structure which captures a special exception thrown
by the violation of the pre-condition of a component, before invoking the next
component. This is because methods in a component throw a special type of
exception if their pre-condition is violated. Thus the code of CoR pattern class
has the code of the Sequencer connector class and the try-catch code realising
the D constraint.

Consider the Observer pattern. Fig.13(a) shows its definition using the builder
tool. The XML definition consists of two sections that are identified by <connect-
or> and <constraint> tags for composing two basic connectors and defining
constraints. It is clear that a binary pipe (pipe1) and a binary cobegin (cb2)
are declared. The connector pipe1 thus has two composition places, and the
connector cb2 replaces the second composition place, and is thus composed with
pipe1. The pre-condition of the constraint is also shown in the figure; it is defined
and constructed manually.

Once defined, Observer pattern definition is stored into our repository as can
be seen in Fig.13(b) (bottom right corner). CoR and composite patterns can be
defined in a similar way and stored in the repository.

(Behavioural) Design Patterns as Composition Operators 247

A pattern, like any connector, can be used to compose components that are
valid for the pattern. For example the CoR-Observer composite pattern can be
used to build a news system by composing publisher components which are news
agencies and subscriber components which are news companies that print news
journals. Fig.13(b) shows an example with two news agencies, one national and
one global, and two news companies, one printing newspapers and one printing
magazines. The news agencies form a CoR and publish news whenever it became
available. The news companies simply pick up the news on a topic of interest to
them, from the first news agency that can supply that piece of news.

In design phase we build the four atomic components which we then store into
the repository. For each atomic component, its XML specification is defined and
its computation unit is implemented. We only discuss the NationalNewsAgency
component, as the other components are similar. Below we present the XML
specification of the NationalNewsAgency component:

<AtomicComponent>

<Name>NationalNewsAgency</Name>

<Method>

<name>publishEconomicNews</name>

<InParamName> ...

<InParamType> ...

<OutParamsName> ...

<OutParamType> ...

<Pre>

<let name="hasMoreEconomicNews" type="Boolean"/>

<require>hasMoreEconomicNews==true</require>

</Pre>

<Post>economicNews != null</Post>

</Method>

<!-- Similar for publishSportsNews method--> ...

</AtomicComponent>

The national news agency can publish either economic or sports news. The
pre-condition for the economic news states that there is some economic news
available. If the pre-condition is satisfied then the result will be non-null. The
computation unit of this component is implemented as a Jar file. The implemen-
tation indeed realises the component’s XML specification. We experimented with
JML [12] for annotating our computation units so that designated exceptions are
thrown to signify pre- and post-condition violations.

At run-time, as the component is composed with CoR, we need to check that
before calling publishEconomicNews, its pre-conditions (as specified in the XML
description above) are satisfied. As we explained earlier we currently rely on run-
time exceptions to check that. If the exception is not thrown, the CoR source
code returns with valid output. Otherwise, CoR invokes the next component
in the chain. Similar holds for post-conditions. The implementation of the D
constraints in the source code of the CoR is outlined as follows:

// References of components e.g. C1 & C2

private List<Component> comps = ...

boolean success = false;

248 K.-K. Lau et al.

// Invoke the component in sequence as long as the previous

// invocation fails because of pre-condition is violated

for (i=0; i < comps.size() && success == false; i++) {

try {

Object[] res = comps.get(i).invoke(...);

success = true;

} catch (PreViolatedException pve) { ... }

...

The Java code snippet enables CoR to return control (and data) when an invo-
cation is successful, i.e. PreViolatedException exception is not thrown.

The XML specification and the Java implementation for the observer compo-
nents (the magazine and the newspaper) are defined similarly to the above and
due to lack of space we do not present them here.

When all participating components have been defined, before using them
into a composition with the CoR-Observer, we (manually) check that the pre-
conditions of the CoR-Observer can be satisfied. First, we check that the global
news agency conforms to the national one. Because this condition is satisfied,
the components form a chain of responsibility. Additionally, the local agency can
be used for publishing news to the magazine and newspaper observers because
we map publishEconomicNews and publishSportsNews to getEconomicNews
and getSportsNews respectively. Since the pre-conditions of the CoR-Observer
have been satisfied, its post- conditions ensure that the resulting news of the
agency that are published first, are transferred successfully to both observers.

Based on the CoR-Observer composition connector and on the atomic com-
ponents used, a composite component NewsSystem is created that will have two
methods, observeSportsNews() and observeEconomicNews() as in Fig.13(b).

7 Discussion

The main contribution of this paper is to show how behavioural patterns can be
defined and implemented as explicit entities with their own identities that can
be deposited in a repository, and reused as often as necessary. This is novel, as
far as we are aware, compared to related work in design patterns and software
components.

By defining behavioural patterns as composition operators, we have retained
the original semantics intended for patterns as defined in [5], i.e. as reusable
solutions that can be customised to different circumstances. Our composition
operators for patterns are of generic arities, and can be applied to any compo-
nents that satisfy the constraints. Each application of an operator to a selected
set of components represents a customisation of the solution to the context of
these components.

Furthermore, our approach (and tool) can be used to define arbitrary be-
havioural patterns, and not just the ones that are already known in the lit-
erature [5]. More precisely, we can define behavioural patterns that involve
pre-determined interactions between multiple participating components. Among

(Behavioural) Design Patterns as Composition Operators 249

existing behavioural patterns in [5], besides CoR and Observer, such patterns
also include Visitor, State and Strategy. Hence, we can define more compos-
ite design patterns such as Strategy-Observer and State-Observer (which extend
Observer to multiple publishers but with different publisher selection strategies),
and Strategy-Visitor and State-Visitor (which can extend the Visitor pattern
with many visitees and visitors), etc.

Behavioural patterns with arbitrary interactions, e.g. Iterator, Mediator and
Memento, however, cannot be pre-defined as connectors (and deposited in a
repository) in design phase. In our component model, such patterns are purely
deployment phase artefacts. They have to be defined ad hoc from our basic
connectors like Sequencer, Selector, etc., anew for each application. Also in our
component model, structural patterns also belong to this category because they
can define arbitrary behaviour e.g. Facade and Adapter. Note that, this could
involve using stateful versions of our connectors and adapters.

Behavioural patterns that involve only one participant or define no interaction
between participants, e.g. Template Method and Interpreter, do not require any
composition, and as such they cannot be defined as connectors.

Our approach currently requires manual checking of C constraints. Therefore,
patterns need to be used and checked manually. This is a hindrance. However, the
effort needed for creating a pattern is a one-off effort, and so it should still pay
dividends because of it reusability. Moreover, in future we intend to enhance our
C constraints with semantic annotations on component interfaces, and thereby
automate constraint checking by implementing a suitable parser and evaluator.
We will also study design patterns in a wider scope in order to seek new pattern
connectors, thus extending our catalogue of connectors as patterns.

Modelling component-based systems using Petri nets has led to various ex-
tensions to Petri nets for different kinds of components. For example, service
nets [6] are used to describe the behaviour of a web service. Compared to CT-
nets, a service net also has input and output places, but not composition places.
Composition operators for service nets are not nets themselves, but just rules for
obtaining the service net of a composite service from the service nets of the sub-
services. In [9] component templates are defined as an extension of Petri nets for
describing the behaviour of components. However, no composition operators are
defined. Rather, composition occurs via embedding. In [31] Template Coloured
Petri nets (TP-nets) are defined for specifying the behaviour of components.
Components are processes in a message passing environment such as MPI [22].
However, composition of TP-nets is defined according to a pre-defined script and
not according to composition operators.

Coloured Petri nets have been used for modelling patterns of control for work-
flow systems [28]. This work is very similar to ours in that our CT-nets define
patterns of control for component-based systems. However, they do not define
composition for patterns. Compositionality of patterns is claimed, but this is
actually an ad hoc combination, where places and transitions are arbitrarily
connected and/or merged.

250 K.-K. Lau et al.

8 Conclusion

In this paper, we have presented an approach to behavioural patterns that we
believe can achieve reuse at the levels of patterns as well as code. This is an
advance on the state-of-the-art as far as we are aware.

Our implementation is at a preliminary stage, but initial results have provided
proof of concept. This has encouraged us to continue to expand our catalogue of
connectors and patterns in the builder, with a view to tackling large scale appli-
cations in due course. Such applications will allow us to validate our approach,
and provide a more convincing case for its practicability and scalability.

We have not investigated connectors for dynamic or run-time composition.
Currently our component model defines composition in design and deployment
phases, but not dynamic composition at run-time. Composition is static mainly
because we insist on defining composition operators. Such operators are harder
to define for run-time phase, and so far we have not investigated them.

Another future direction that we would like to pursue is to investigate the
definition and use of patterns in specific domains. In this context, we will develop
our approach in the European industrial project CESAR [2]. In particular, we
will use it to provide design patterns for efficient composition of components into
embedded systems in the avionics domain.

References

1. Bosch, J.: Specifying frameworks and design patterns as architectural fragments.
In: TOOLS 1998, p. 268. IEEE Computer Society, Los Alamitos (1998)

2. CESAR project, http://www.cesarproject.eu/
3. Denmark CPN Group, University of Aarhus. CPN tools - computer tool for

Coloured Petri Nets, http://wiki.daimi.au.dk/cpntools/cpntools.wiki
4. DeMichiel, L., Keith, M.: Enterprise JavaBeans 3.0. Sun Microsystems (2006)
5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of

Reusable Object-Oriented Design. Addison-Wesley, Reading (1995)
6. Hamadi, R., Benatallah, B.: A Petri net-based model for web service composition.

In: Proc. 14th Australasian Database Conf., pp. 191–200 (2003)
7. Hammouda, I., Koskimies, K.: An approach for structural pattern composition.

In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp. 252–265.
Springer, Heidelberg (2007)

8. Heineman, G.T., Councill, W.T. (eds.): Component-Based Software Engineering:
Putting the Pieces Together. Addison-Wesley, Reading (2001)

9. Janneck, J.W., Naedele, M.: Modeling hierarchical and recursive structures using
parametric Petri nets. In: Proc. Adv. Simulation Tech. Conf., pp. 445–452 (1999)

10. Järvinen, H.-M., et al.: Object-oriented specification of reactive systems. In: Proc.
ICSE 1990, pp. 63–71. IEEE Computer Society Press, Los Alamitos (1990)

11. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, 2nd edn., vol. I. Springer, Heidelberg (1996)

12. The Java Modeling Language, http://www.cs.iastate.edu/~leavens/JML.html
13. Lau, K.-K., et al.: Composite connectors for composing software components.

In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp. 18–33.
Springer, Heidelberg (2007)

http://www.cesarproject.eu/
http://wiki.daimi.au.dk/cpntools/cpntools.wiki
http://www.cs.iastate.edu/~leavens/JML.html

(Behavioural) Design Patterns as Composition Operators 251

14. Lau, K.-K., Ntalamagkas, I.: A compositional approach to active and passive com-
ponents. In: Proc. 34th EUROMICRO SEAA, pp. 76–83. IEEE, Los Alamitos
(2008)

15. Lau, K.-K., Ornaghi, M., Wang, Z.: A software component model and its prelimi-
nary formalisation. In: Proc. 4th FMCO, pp. 1–21. Springer, Heidelberg (2006)

16. Lau, K.-K., Ornaghi, M.: Control encapsulation: a calculus for exogenous compo-
sition. In: Lewis, G.A., Poernomo, I., Hofmeister, C. (eds.) CBSE 2009. LNCS,
vol. 5582, pp. 121–139. Springer, Heidelberg (2009)

17. Lau, K.-K., Taweel, F.: Data encapsulation in software components. In: Proc. 10th
CBSE, pp. 1–16. Springer, Heidelberg (2007)

18. Lau, K.-K., Velasco Elizondo, P., Wang, Z.: Exogenous connectors for software
components. In: Proc. 8th CBSE, pp. 90–106. Springer, Heidelberg (2005)

19. Lau, K.-K., Wang, Z.: Software component models. IEEE Trans. Software
Engineering 33(10), 709–724 (2007)

20. Medvidovic, N., Rosenblum, D.S., Taylor, R.N.: A type theory for software archi-
tectures. Tech. Report UCI-ICS-98-14, University of California, Irvine (1998)

21. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for
software architecture description languages. IEEE TSE 26(1), 70–93 (2000)

22. Message Passing Interface (MPI) Forum, http://www.mpi-forum.org/
23. Meyer, B., Arnout, K.: Componentization: The visitor example. IEEE Com-

puter 39(7), 23–30 (2006)
24. Mikkonen, T.: Formalizing design patterns. In: Proc. ICSE 1998, pp. 115–124.

IEEE Computer Society, USA (1998)
25. OMG. UML 2.0 Infrastructure Final Adopted Spec. (2003)
26. OMG. Object Constraint Language, OCL (2006)
27. Riehle, D.: Composite design patterns. In: Proc. OOPSLA 1997, USA, pp. 218–228.

ACM, New York (1997)
28. Russell, N., et al.: Workflow control-flow patterns: A revised view. BPM Center

Report BPM-06-31 (2006)
29. Sun Microsystems. JavaBeans Specification (1997),

http://java.sun.com/products/javabeans/docs/spec.html

30. Szyperski, C.: Universe of composition. Software Development (2002)
31. Tsiatsoulis, Z., Cotronis, J.Y.: Testing and debugging message passing programs in

synergy with their specifications. Fundamenta Informatica 41(3), 341–366 (2000)
32. Velasco Elizondo, P., Lau, K.-K.: A catalogue of component connectors to support

development with reuse. Journal of Systems and Software (2010)
33. Vlissides, J.: Composite design patterns (They Aren’t What You Think). C++

report (1998)
34. Wydaeghe, B., Vanderperren, W.: Visual component composition using composi-

tion patterns. In: Proc. TOOLS 2001, pp. 120–129. IEEE Computer Society, Los
Alamitos (2001)

35. Yacoub, S.M., Ammar, H.H.: UML support for designing software systems as a
composition of design patterns. In: Gogolla, M., Kobryn, C. (eds.) UML 2001.
LNCS, vol. 2185, p. 149. Springer, Heidelberg (2001)

http://www.mpi-forum.org/
http://java.sun.com/products/javabeans/docs/spec.html

	(Behavioural) Design Patterns as Composition Operators
	Introduction
	Related Work
	Our Approach
	Composition Operators
	Connector Template Nets
	Basic Composition Operators
	Composite Composition Operators

	Behavioural Patterns
	Constraints
	Basic Composition Operators
	Composite Composition Operators
	Composing Behavioural Patterns

	Implementation and Example
	Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

