
ar
X

iv
:0

90
5.

19
93

v1
 [

cs
.D

S
]

13
 M

ay
 2

00
9

Fast algorithms for min independent dominating set

N. Bourgeois B. Escoffier V. Th. Paschos

LAMSADE, CNRS FRE 3234 and Université Paris-Dauphine, France

{bourgeois,escoffier,paschos}@lamsade.dauphine.fr

June 15, 2021

Abstract

We first devise a branching algorithm that computes a minimum independent dominat-
ing set on any graph with running time O∗(20.424n) and polynomial space. This improves
the O∗(20.441|V |) result by (S. Gaspers and M. Liedloff, A branch-and-reduce algorithm for
finding a minimum independent dominating set in graphs, Proc. WG’06). We then show
that, for every r > 3, it is possible to compute an r− ((r − 1)/r) log2 r-approximate solution
for min independent dominating set within time O∗(2n log

2
r/r).

1 Introduction

An independent set in a graph G(V,E) is a vertex subset S ⊆ V such that for any (vi, vj) ∈
S × S, (vi, vj) /∈ E. An independent dominating set is an independent set that is maximal for
inclusion. min independent dominating set is known to be NP-hard [2]. Consequently, it is
extremely unlikely that a polynomial algorithm could ever be designed solving it to optimality.
Unfortunately, this problem is also very badly approximable since no polynomial algorithm can
approximately solve it within ratio |V |1−ǫ, for any ǫ > 0, unless P = NP [4].

Except polynomial approximation, another way to cope with intractability of min indepen-

dent dominating set (as well as of any other NP-hard problem) is by designing algorithms
able to solve it to optimality with worst-case exponential running time as low as possible. Since
min independent dominating set can be trivially solved in O(2|V |p(|V |)) by simply enumer-
ating all the subsets of V , the stake of such a research issue is to solve it within O(2c|V |p(|V |)),
where c is a constant lower than 1 and p is some polynomial. Since in comparison with the
slightest improvement of c, p is non relevant, we use from now on notation O∗(2c|V |) to measure
the complexity of an algorithm, this notation meaning that multiplicative polynomial factors
are ignored.

For min independent dominating set, trivial O∗(2|V |) bound has been initially broken
by [5] down to O∗(3|V |/3) using a result by [6], namely that the number of maximal (for inclusion)
independent sets in a graph is at most 3|V |/3. Then, obviously, it is possible to compute a
minimum independent dominating set in O∗(3|V |/3) = O∗(20.529|V |) using polynomial space. This
result has been dominated by [3] where using a branch & reduce technique an algorithm optimally
solving min independent dominating set with running time O∗(20.441|V |) is proposed.

In this paper, we first devise a branching algorithm that can find a minimum independent
dominating set on any graph with running time O∗(20.424|V |) and polynomial space. We then
show that, for every r > 3, it is possible to compute an r-approximate solution for min inde-

pendent dominating set within time O∗(2|V | log
2
r/r). Finally, we improve this ratio down to

r − ((r − 1)/r) log2 r and prove that it can be achieved always in time O∗(2|V | log
2
r/r).

1

http://arxiv.org/abs/0905.1993v1

In what follows, given a graph G(V,E) and a vertex v ∈ V , the neighborhood N(v) of v
is the set of vertices that are adjacent to v, and N [v] = N(v) ∪ {v} will be called the closed
neighborhood of v. For the degree of v, we use the notation d(v) = |N(v)|. For any subset
H ⊂ V , we denote by G[H] the subgraph of G induced by H. For v ∈ H, for some subset H, we
denote by d′H(v) the degree of v in G[H] or, if it is clear by the context, we denote it by d′(v).
For convenience, we set N [H] = {N [v] : v ∈ H}. We use δ and ∆ to denote the minimum and
maximum degree of G, respectively. For simplicity, we set n = |V | and m = |E|; T (n) stands
for the maximum running time an algorithm requires to solve min independent dominating

set in a graph containing at most n vertices.
We conclude this introduction by a remark that has to be taken into account when operating

sequentially several branchings, in order to get a sound bound on the complexity. Let us call a
branching “single” if given a vertex v, one has to decide what vertex in N [v] dominates v. A
“multiple” branching is a decision tree, nodes of which correspond to simple branchings.

Branch & reduce-based algorithms have been used for decades, and a classical analysis of
their running times leading to worst case complexity upper bounds is now well-known. Let T (n)
be an upper bound on the running time of the algorithm for an instance of size at most n. If we
now that computing a solution on an instance of size n amounts to computation of a solution
on a sequence of p instances of respective sizes n− k1, . . . , n − kp, we can write:

T (n) 6
∑

i6p

T (n− ki) + q(n) (1)

for some polynomial q. The running time T (n) is bounded by O∗(cn), where c is the largest
positive real root of: 1 =

∑

i6p x
−ki . This root is often called the contribution of the branching

to overall complexity factor, or the complexity factor of the branching. Note that in the remain-
der of the article, for simplicity, we will omit to precise the additive polynomial term q(n) in
recurrence relations as 1

Now, it is possible that there is not only a single recurrence as in (1), but several ones,
depending on the instance. For example, either T (n) 6 2T (n − 2) or T (n) 6 7T (n − 7).
Fortunately, as far as single branchings are concerned, the analysis is very simple: the running
time is never greater than what is needed to solve an instance where at every step we make a
branching that has the highest possible complexity factor, i.e., the greatest solution of (1).

On the other hand, multi-branching analysis may encounter some problems. Indeed, this rule
is not true any more when we make multiple branchings. Multiple branching is based upon a very
simple idea: instead of choosing between some branchings, we choose between some sequences
of branching, such as: “if one adds a to the solution, then one knows that b has degree 3 in the
remaining graph and one can make a very good branching on it . . . ”. The efficiency of such a
sequence can be measured with inequalities very close to (1). If for instance, the first branching
allows us to consider two graphs with, say, 2 fewer vertices, and we know that one of these
graphs is good enough to allow us to consider three graphs with 7 fewer vertices, we can state
the following recurrence: T (n) 6 T (n− 2) + 3T (n− 2− 7).

The problem arises when we have several choices for one of these “elementary” branchings.
Unfortunately, we cannot simply try the one with the higher complexity factor, because it is
possible that a locally smaller factor leads to a globally higher one, see for example Figure 1. Al-
though branching (a) has a higher complexity factor than branching (b) (1.443 instead of 1.415),
the branching (c)+(a) is better than (c)+(b) (1.659 and 1.696, respectively).

In what follows, if a branching is never used in a combination with another one, we simply
give the inequality with the highest factor. Otherwise, we give all the relevant inequalities.

2

−3
−3 −3

(b)

−2 −2

(a)

(b)

−1 −1

−1 −1

−3 −3
−4

−4
−4

(c)+ (c)+(a)

−1 −1

(c)

Figure 1: A multiple branching that can be misleading when dealing with the evaluation of the
highest complexity factor.

2 General recurrence

Following an idea by [3], we partition the graph into “marked” and “free” vertices. Marked
vertices are those that have already been disqualified from belonging to optimum, but are not
dominated yet. In other terms, we generalize the problem at hand in the following way: given
a subset W ⊆ V (W is the set of free vertices), find the minimum independent set in W that
dominates V . Notice that, without further hypothesis on W , this problem may have no solution
(for instance, when V \W contains a vertex and its whole neighborhood); in this case we consider
opt(G,W) = ∞.

In what follows we say that two vertices v and u are equivalent if N [u] = N [v]. In this case,
we can remove from the graph one of them, a marked one if any, otherwise at random.

Lemma 1. Let δ be the minimum degree of G(V,E), and r be the maximum number of marked
vertices in N [v], for any v such that d(v) = δ. Then:

T (n) 6 (δ + 1− r)T (n− δ − 1)

Furthermore, when branching on some neighbor of v, we can mark all other neighbors that have
already been examined.

Proof. We can always suppose that δ > 1, since (not marked) isolated vertices must be added
to the solution. Let v be a vertex such that d(v) = δ. Our solution has to dominate v, so at least
one vertex of N [v] must belong to, and this vertex must be a free one. Furthermore, if some
vertex u belongs to optimum, its neighbors do not so and, consequently, they are dominated.
Hence, we get the following recurrence:

opt(G) = 1 + min
u∈W∩N [v]

{opt(G[V \N [u]])} (2)

By hypothesis, d(u) > δ, so we get the inequality claimed.
Remark that the order we use to examine neighbors ui, i = 1, . . . , δ of v is important, since

the sequence of choices is not “v;u1;u2; . . . ;uδ” but “v; v̄u1; v̄ū1u2; . . . ; v̄ū1 . . . ¯uδ−1uδ” where for

3

a vertex u, ū means “not u” and we assume that ui’s are ordered in increasing degree order.
Figure 2 illustrates the proof of the lemma.

v

u

u

u1

2

3

(u)(v) (u) (u)1 2 3

Figure 2: The four branches v; v̄u1; v̄ū1u2; v̄ū1ū2u3.

Note that complexity of branching is decreasing with δ, for δ > 2. So, a straightforward
idea is to perform a fine analysis on graphs of low minimum degree. Formally, the algorithm we
propose works as follows:

• if there exists a marked vertex of degree 3 or less, or a vertex which is adjacent to only
one free vertex, make a branching according to what is described in Section 3;

• otherwise, pick a vertex of minimum degree, and branch as described in Section 4.

In our analysis of the running time, we adopt a measure and conquer approach. More precisely,
we do not count in the measure the marked vertices of degree at most 2 (they receive weight 0),
and we count with a weight w = 0.2 the marked vertices of degree 3. The other vertices receive
weight 1. We get recurrences on the time T (p) required to solve instances of weight p, where
the weight of an instance is total weight of the vertices in the graph. Since initially p = n we
get the running time as a function of n. This is valid since when the total weight is p = 0, there
are only marked vertices in the graph and we can solve the problem (there is no solution). Note
that this way of measuring progress is introduced in order to simplify the branching analysis
(we could obtain a similar result without measure and conquer but with a deeper analysis).

3 Branching on marked vertices or vertices which are adjacent

to only one free vertex

As a preliminary remark note that if there is an edge between two adjacent marked vertices, we
can remove this edge. This removal does not increase our complexity measure p.

We branch as follows: either there is a marked vertex of degree at most 2 (Lemma 2), or a
(free) vertex which is adjacent to only one free vertex (Lemma 3) or a marked vertex of degree 3
(Lemma 4). If there are no such vertices, then go to Section 4.

Lemma 2. Assume some vertex of degree at most 2 is marked. Then either the algorithm
ends (there is no solution), or we can remove at least one vertex without branching, or T (p) 6

4

T (p − 2) + T (p − 4); this branching contributes to the overall complexity with a factor λ 6

1.2721 = 20.348.

Proof. If there is a marked vertex v of degree 0, then then opt(G) = ∞.
If v has degree 1 we add its neighbor u to the solution and we reduce the current instance’s

weight by 1 without branching.
Suppose now that v is marked and adjacent to u1, u2 (which are free). Then:

opt(G) = 1 + min {opt (G \N [u1]) , opt (G \N [u2])}

If both u1 and u2 are adjacent to at least 2 free vertices, then T (p) 6 2T (p − 3), that is better
than the result claimed. If some ui is adjacent only to marked vertices, we must add it to
the optimum, decreasing p by 1 without branching. Otherwise, u1 is adjacent to only one free
vertex t1 and u2 is adjacent to at least one free vertex t2. One of the following situations occurs:

• If u1 and u2 are adjacent: if u2 is adjacent to two other free vertices t2 and t3, then if we
take u1 we reduce p by 2, if we take u2 we reduce it by 4. If u2 is adjacent to only one
vertex t2, then taking u1 is interesting only if we take t1. Hence, either we take u1 (and
t1) and p reduces by 3, or we take u2 and p reduces by 3.

• Otherwise, if t1 = t2, the only possibility to have both u1 and v dominated is to add u1 to
the solution; thus we reduce the current instance without branching.

• Finally, if N [u1]∩N [u2] = {v}, we branch on v; when we add u2 to the solution, we must
add t1 too, in order to dominate u1; this leads to T (p) 6 T (p− 2) + T (p − 4).

Now, we suppose that the graph does not contain any marked vertex of degree at most 2.

Lemma 3. If there exists v ∈ V such that N(v)∩W = {u}, then T (p) 6 2T (p− (2+ 2w)), and
the complexity factor induced is λ 6 1.3349 = 20.417.

Proof. Let u be the only free neighbor of v. If d(u) = 1, we can add v to the solution
and discard u without branching. Otherwise, if u or v is adjacent to at least two vertices of
weight 1, removing N [u] (or N [v]) reduces p by at least 3 vertices. Taking either v or u gives
T (p) 6 T (p− 2) + T (p − 3). The only remaining situation occurs when all the other neighbors
of both u and v are marked and of degree 3. If there is only one such vertex, then u and v are
equivalent and we don’t need to branch. Otherwise, when taking u or v these marked vertices
of degree 3 either are removed or become of degree 2, hence T (p) 6 2T (p − (2 + 2w)).

Lemma 4. Assume some vertex v of degree 3 is marked. Then in the worst case T (p) 6

2T (p− (3 + w)) + T (p− (5 + w)), and the complexity factor induced is λ 6 1.3409 = 20.424.

Proof. Let {u1, u2, u3} the three neighbors of v. One of the following situations occur:

1. If each ui is adjacent to at least 3 free vertices, then, by taking either u1, u2 or u3 we get
three branches of weight at most p− (4 + w).

2. If say u1 is adjacent to two free vertices, then we branch on u1: if we take u1 we reduce p
by at least 3 + w. Otherwise, we do not take u1. In this case u1 is marked and we can
remove the edges between u1 and the marked vertices. Hence, u1 and v are marked and
have degree at most 2. Then, p reduces by 1 + w. But a further branching on a marked
vertex of degree at most 2 (see Lemma 2) allows either to reduce p by 1, or creates two
branches of weight at most 1 + w + 2 = 3 + w or 1 + w + 4 = 5 + w. In the worst case,
T (p) 6 2T (p− (3 + w)) + T (p− (5 + w)).

5

4 Branching on vertices of minimum degree

Now, we suppose that the graph does not contain any marked vertex of degree at most 3, and
that every vertex is adjacent to at least two free vertices. Then, we branch on the vertex of
minimum degree. If this minimum degree is at least 6, then the branching given in Section 2 gives
a sufficiently low running time. We distinguish in the following lemmas the different possible
values of the minimum degree. Let us start with two preliminary remarks.

Remark 1. When branching on a vertex of minimum degree δ, we can always assume that it is
adjacent to at least one vertex of degree at least δ +1. Notice that the degree of a vertex never
increases. Then, the situation where the graph is δ-regular arrives at most once (even in case of
disconnection). Thus, we make only a finite number of “bad” branchings, fact that may increase
the global running time only by a constant factor. In particular, if δ = 5, the branching given
in Section 2 gives T (p) 6 5T (p− 6) + T (p− 7) leading to a complexity factor 1.3384 = 20.421.

Remark 2. Suppose that we branch on a vertex v which has a neighbor u1 adjacent to at
most 3 free neighbors. Let us consider the branch where we take uk not adjacent to u1 (for
2 6 k 6 d(v)). In this branch u1 is marked.

• If NW (u1) ⊆ NW (uk), then we cannot take uk and this branch is useless.

• If there is only one vertex t in NW (u1)\NW (uk): in this branch we have to take t and then
we remove at least d(uk) + 3 vertices (d(uk) + 1 by taking uk, and t and u1 by taking t).

• Otherwise u1 has two other free neighbors t1, t2 which are not in N(uk): in this branch
we create a marked vertex (u1) of degree 2 and hence reduce p by d(uk) + 2. Thanks to
Lemma 2, a further branching on the marked vertex of degree at most 2 created gives two
branches where p reduces by at least d(uk) + 2 + 2 and d(uk) + 2 + 4.

In all, either we have one branch with a reduction of d(uk) + 3, or two branches with d(uk) + 4
and d(uk) + 6 (the latter will always be the worst case).

We are ready now to state the following theorem, that is the main result of the paper.

Theorem 1. min independent dominating set can be solved in O∗(20.424n) = O∗(1.3413n),
using polynomial space.

The proof of Theorem 1 is immediate consequence of putting together Lemmata 5, 6 and 7 below
that deal with the cases of minimum degree 2, 3 and 4, respectively.

Lemma 5. If there exists v ∈ V such that N(v) = {u1, u2}, then in the worst case we get
T (p) 6 T (p − 3) + T (p − 4) + T (p − 6) + T (p − 8) and the complexity factor induced is λ 6

1.3384 = 20.421.

Proof. One of the following situations occur (note that either u1 or u2 has degree at least 3):

1. If d(u2) > 4 and d(u1) > 3 then by taking either v, or u1, or u2, we get three branches of
weight at most p− 3, p− 4 and p− 5.

2. If d(u2) > 4 and d(u1) = 2 then, when we take u2 (u1 having already been discarded),
we must also add the only remaining neighbor t of u1 to the solution. Thus, thanks to
Remark 2 (first and second item), we get T (p) 6 2T (p − 3) + T (p− 7).

6

3. If u1 and u2 have degree 3 and if there are adjacent: let t the third neighbor of u1 (t is not
adjacent to u2 otherwise u1 and u2 are equivalent and we can remove one of them). When
taking v, we can take also t since if we don’t take t it is useless to take v. Hence, we get
three branches, each of weight at most p− 4 (even better on the first branch actually).

4. If d(u1) = 3, then u1 and u2 are not adjacent (either because the case has been dealt
before, or because d(u2) = 2 and u2 would be equivalent to v), then by branching on v,
either we take v (weight at most p− 3) or we take u1 (weight at most p− 4) or we take u2
and we don’t take v and u1. According to Remark 2, this last choice reduces p either by
d(u2) + 3 = 5, or gives birth to two branches of weight at most p− 6 and p− 8.

Lemma 6. If there exists v ∈ V such that N(v) = {u1, u2, u3}, then in the worst case we
get T (p) 6 T (p − 4) + 3T (p − 5) + T (p − 6) + T (p − 8) and the complexity factor induced is
λ 6 1.3413 = 20.424.

Proof. If there exists such a vertex v which is marked, then we only have to consider 3 branches
where p reduces by at least 4: T (p) 6 3T (p − 4). This is the same if one of the neighbors of v
is marked.

Now we consider that neither v nor the ui’s are marked. If 4 6 d(ui), i = 1, 2, 3, by branching
on v we get one branch of weight p−4 and 3 branches of weight at most p−5. Now, we consider
that u1 has degree 3 and u3 has degree at least 4. Note that u1 cannot be adjacent to u2 and
u3 otherwise it is equivalent to v. We consider the three following cases: either there are two
edges in N(v), or 1 or zero.

1. There are two edges in N(v). Then wlog., u3 is adjacent to both u1 and u2 (and u1 is not
adjacent to u2). We get four branches of weight at most p− 4, p− 4, p− (d(u2)+ 2) (since
u1 becomes marked and of degree at most 2) and p − (d(u3) + 1). In the third branch,
thanks to Remark 2, either we remove one more vertex or we get two branches of weight
at most p− (d(u2) + 4) 6 p− 7 and p− (d(u2) + 6) 6 p− 9.

• If d(u3) > 5: in the worst case T (p) 6 2T (p − 4) + T (p− 7) + T (p− 9) + T (p− 6).

• Otherwise d(u3) = 4. Let t be the fourth neighbor of u3. In the branch we take v
we can take t (indeed, if we don’t take t it is useless to take v, taking u3 is always
better). Hence, we get one more vertex deleted when taking v (even more actually)
and get the following recurrence: T (p) 6 T (p− 5) + T (p− 4) + 2T (p− 5).

2. Otherwise, there is at most one edge in N(v).

(a) If there is a triangle of vertices of degree 3 v, u1, u2, let t1 and t2 be the third neighbors
of u1 and u2. If two vertices among u3, t1 and t2 are equal or adjacent, either two
vertices in the triangle are equivalent (case equal) or one vertex in the triangle v, u1, u2
must belong to the solution, otherwise one of them would not be dominated (case
adjacent); hence, T (p) 6 3T (p − 4). Finally, if t1, t2 and u3 are distinct and non
adjacent, set Γ′ = N(t1)∪N(t2)∪N(t3)\{v, t1, t2, u1, u2, u3}; either we take one vertex
of the triangle, or we have to take t1, t2 and u3: T (p) 6 3T (p − 4) + T (p− 6− |Γ′|).
If |Γ′| > 4, T (p) 6 3T (p − 4) + T (p − 10) leading to λ 6 20.417. If |Γ′| = 3, in this
case u3 has degree 4 and Γ′ ⊂ N(u3). Then, we branch as follows: either we take
u3 and remove 9 vertices, or we take v and remove 4 vertices, or we mark u3 and v.
By removing the edge between them, they have respectively degree 3 and 2. Hence
T (p) 6 T (p− 9) + T (p− 4) + T (p− (2− w)).

7

(b) Otherwise, if the only edge in N(v) is (u2, u3) we get T (p) 6 T (p − 4) + T (p − 4) +
T (p − 5) + T (p − 6), but in the two last branches, thanks to Remark 2, either we
remove one more vertex or we get two branches of weight reduced by 2 and 4. In the
worst case, we get: T (p) 6 2T (p− 4) + T (p− 7) + T (p− 9) + T (p− 8) + T (p− 10).

(c) If there is an edge u1, u2 with d(u2) > 4 (otherwise this is the triangle case) we get
T (p) 6 T (p−4)+T (p−4)+T (p−5)+T (p−6), but in the last branch, again thanks to
Remark 2, we get in the worst case T (p) 6 2T (p−4)+T (p−5)+T (p−8)+T (p−10).

3. Finally, if there is no edge in N(v): if two u2 and u3 have degree at least 4, then we
get T (p) 6 T (p − 4) + T (p − 4) + T (p − 6) + T (p − 6) (indeed in the last two branches
u1 is marked and of degree at most 2). If say u2 has degree 3, then we get T (p) 6

T (p−4)+T (p−4)+T (p−5)+T (p−6), but in the two last branches, thanks to Remark 2,
either we remove one more vertex or we get two branches of weight reduced by 2 and 4.
In the worst case, we get: T (p) 6 2T (p− 4)+T (p− 7)+T (p− 9)+T (p− 8)+T (p− 10).

Lemma 7. If there exists v ∈ V such that N(v) = {u1, u2, u3, u4}, then in the worst case we get
T (p) 6 4T (p − 5) + T (p− 9) with a contribution to the overall complexity factor bounded above
by 1.3394 = 20.422.

Proof. We consider that u4 has degree at least 5. If at least 3 ui’s have degree at least 5, then
T (p) 6 2T (p − 5) + 3T (p− 6). Now, we consider that u1 and u2 have degree 4.

Suppose first that the ui’s of degree 4 are not adjacent. In the branch we take u2, p reduces by
6−w (since u1 is marked and of degree at most 3). Then either u3 has degree at least 5 and then
T (p) 6 2T (p−5)+T (p−(6−w))+2T (p−6), or u3 has degree 4 and in this case, in the branch we
take u3, p reduces by 5+2(1−w): T (p) 6 2T (p−5)+T (p−(6−w))+T (p−(7−2w))+T (p−6).

If u1 and u2 are adjacent. When v, u1 and u2 are marked, they become of degree 2. Then:

• Either u1 and u2 are not adjacent to u3 and we get T (p) 6 3T (p−5)+T (p−7)+T (p−6).

• Or u1 is not adjacent to u3 and u2 is not adjacent to u4 and we get T (p) 6 3T (p − 5) +
T (p− 6) + T (p− 7).

• Otherwise both u1 and u2 are adjacent to u3 and not to u4. If u3 has degree at least 5,
T (p) 6 3T (p − 5) + T (p− 6) + T (p − 7). Otherwise, u4 is not adjacent to any of the ui’s
(if not, one would be equivalent to v). Then, we get 4 branches of weight p − 5 and in
the last branch the ui’s are marked and are of degree at most 2, hence p reduces by 9:
T (p) 6 4T (p− 5) + T (p− 9).

5 Approximation of min independent dominating set by mod-

erately exponential algorithms

As we have mentioned in Section 1, for any ε > 0, min independent dominating set is inap-
proximable within ratio O(n1−ε) unless P = NP. On the other hand, it is easy to see that any
maximal independent set guarantees a ratio at most ∆+1. In this section, we devise algorithms
achieving ratios much better than O(n), i.e., “forbidden” in polynomial time, and with running
times that, although exponential, are better than the running time of exact computation for
min independent dominating set. Our results are based upon the following lemma by [1].

Lemma 8. ([1]) For any k > 3, it is possible to compute any independent dominating set (i.e.,
maximal independent set) of size at most n/k with running time O∗(kn/k). This bound is tight.

8

Proposition 1. For any r > 3, it is possible to compute an r-approximation of min indepen-

dent dominating set with running time O∗(2n log
2
r/r).

Proof. We run the branching algorithm leading to Lemma 8. If it finds some minimum indepen-
dent dominating set, our algorithm returns it; otherwise, opt(G) > n/r, where opt(G) denotes
the size of a minimum independent dominating set, and the algorithm returns some arbitrary in-
dependent dominating set. In the first case, the algorithm needs time O∗(rn/r) = O∗(2n log

2
r/r)

and computes an optimal solution; in the second case, any maximal independent set is an r-
approximation and such a set is computed in polynomial time.

The following proposition further improves the result of Proposition 1.

Proposition 2. For any r > 3, it is possible to compute an approximation of min independent

dominating set with running time O∗(2n log
2
r/r) and approximation ratio r−((r − 1)/r) log2 r.

Proof. As previously, we first compute every independent dominating set of size n/r or less.
If such sets exist, we return one of those with minimum size. Otherwise, we partition V into
l = r/ log2 r subsets V1, . . . , Vl, of size n log2 r/r, and we initialize S with some independent
dominating set. Then, for j 6 l, we run the following procedure:

• for any H ⊂ Vj : if H is an independent set, compute an independent dominating set SH

in G[V \N [H]]; if |S| > |H ∪ SH |, set S = H ∪ SH ;

• return S.

Obviously, S is an independent dominating set. The algorithm has examined l × 2n/l subsets,
that concludes the running time claimed.

Fix some optimal solution S∗ for min independent dominating set. Since S∗ is maximally
independent, ∪i6lN(Vi ∩ S∗) = V \ S∗ and we get (I.S. stands for independent set):

|S|

opt(G)
6 min

j6l
min

H I.S. of Vj

{

n− |N(H)|

opt(G)

}

6 min
j6l

{

n− |N (Vj ∩ S∗)|

opt(G)

}

6
n− n−opt(G)

l

opt(G)

6
log2 r

r
+ r − log2 r

that completes the proof of the proposition.

Ratio 2 3 4 5 10 20 50

Proposition 1 1.4423n 1.4143n 1.3798n 1.2590n 1.1616n 1.0814n

Proposition 2 1.4403n 1.3870n 1.3419n 1.3077n 1.2130n 1.1398n 1.0749n

Table 1: Tradeoffs between running times and ratios derived by Propositions 1 and 2.

Tradeoffs between running times and ratios for some values of the ratios are displayed, for
both propositions in Table 1. Recall that the exact algorithm given above runs in O∗(1.3416n).

References

[1] J. M. Byskov. Enumerating maximal independent sets with applications to graph colouring.
Oper. Res. Lett., 32(6):547–556, 2004.

[2] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of
NP-completeness. W. H. Freeman, San Francisco, 1979.

9

[3] S. Gaspers and M. Liedloff. A branch-and-reduce algorithm for finding a minimum inde-
pendent dominating set in graphs. In F. V. Fomin, editor, Proc. International Workshop on
Graph Theoretical Concepts in Computer Science, WG’06, volume 4271 of Lecture Notes in
Computer Science, pages 78–89. Springer-Verlag, 2006.

[4] M. M. Halldórsson. Approximating the minimum maximal independence number. Inform.
Process. Lett., 46:169–172, 1993.

[5] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maximal inde-
pendent sets. Inform. Process. Lett., 27:119–123, 1988.

[6] J. W. Moon and L. Moser. On cliques in graphs. Israel J. of Mathematics, 3:23–28, 1965.

10

	Introduction
	General recurrence
	Branching on marked vertices or vertices which are adjacent to only one free vertex
	Branching on vertices of minimum degree
	Approximation of min independent dominating set by moderately exponential algorithms

