
ar
X

iv
:1

00
6.

43
42

v1
 [

cs
.D

C
]

 2
2

Ju
n

20
10

Formal Derivation of Concurrent Garbage Collectors

Dusko Pavlovic1 , Peter Pepper2, and Douglas R. Smith1

1 Kestrel Institute, Palo Alto, California
{dusko,smith}@kestrel.edu

2 Technische Universität Berlin and Fraunhofer FIRST, Berlin
pepper@cs.tu-berlin.de

Abstract. Concurrent garbage collectors are notoriously difficult to implement correctly. Previous
approaches to the issue of producing correct collectors have mainly been based on posit-and-prove
verification or on the application of domain-specific templates and transformations. We show how
to derive the upper reaches of a family of concurrent garbage collectors by refinement from a formal
specification, emphasizing the application of domain-independent design theories and transforma-
tions. A key contribution is an extension to the classical lattice-theoretic fixpoint theorems to
account for the dynamics of concurrent mutation and collection.

1 Introduction

Concurrent collectors are extremely complex and error-prone. Since such collectors now form
part of of the trusted computing base of a large portion of the world’s mission-critical software
infrastructure, such unreliability is unacceptable [31]. Therefore it is a worthwhile if not manda-
tory endeavor to provide means by which the quality of such software can be improved – without
doing harm to the productivity of the programmers.

The latter aspect still is a major obstacle in verification-oriented systems. Interactive theorem
provers may need thousands of lines of proof scripts or hundreds of lemmas in order to cope
with serious collectors (see e.g. [20, 25, 9]). But also fully automated verifiers exhibit problems.
As can be seen e.g. in [13] even the verification of a simplified collector necessitates such a large
amount of complex properties that the specification may easily become faulty itself.

These considerations show a first mandatory prerequisite for the development of correct software
of realistic size and complexity: not only the software but also its correctness proof need to be
modularized. However, such a modularization is not enough. Even when it has been successfully
verified that all requested properties are fulfilled by the software, it remains open, whether
these properties taken together do indeed specify the intended behavior. This is an external
judgment that lies outside of any verification system. Evidently, such judgments are easier and
more trustworthy, when the properties are few, simple and easy to grasp.

Finally there is a third aspect which needs to be addressed by a development methodology.
Garbage collectors – like most software products – come in a plethora of possible variations,
each addressing specific quality or efficiency goals. When each of these variations is verified
separately, a tremendous duplication of work is generated. On the other hand it is extremely
difficult to analyze for a slightly modified algorithm, which properties and proofs can remain
unchanged, which are superfluous and which need to be added or redone.

We propose here a development method, which addresses the aforementioned issues and which
has already been successfully applied to complex problems, for example real-world-size planning

http://arxiv.org/abs/1006.4342v1

2

and scheduling tasks [5, 27]. The method bases on the concept of specification refinement. Two
major aspects of this concept are illustrated in Figures 1 and 2.

1.1 Sequential vs. Concurrent Garbage Collection

The very first garbage collectors, which essentially go back to McCarthy’s original design [19],
were stop-the-world collectors. That is, the Mutator was completely laid to sleep, while the Col-
lector did its recycling. This approach leads to potentially very long pauses, which are nowadays
considered to be unacceptable.

The idea of having the Collector run concurrently with the Mutator goes back to the seminal
papers of Dijkstra et al. [8] and Steele [28] (which were followed by many other papers trying to
improve the algorithm or its verification). The Doligez-Leroy-Gonthier algorithm (short: DLG)
that was developed for the Concurrent CAML Light system [9, 10], is considered an important
milestone, since it not only takes many practical complications of real-world collectors into
account, but also generalizes from a single Mutator to many Mutators.

The transition to concurrent garbage collection necessitates a trade-off between the precision of
the Collector and the degree of concurrency it provides [31]: the higher the degree of concurrency,
the more garbage nodes will be overlooked. However, this is no major concern in practice, since
the escaped garbage nodes will be found in the next collection cycle.

1.2 Abstract and Concrete Problems

Figure 1 describes the way in which we come from abstract problems to concrete solutions.
(1) Suppose we have an abstract problem description, that is, a collection of types, operations
and properties that together describe a certain problem. (2) For this abstract problem we then
develop an abstract solution, that is, an abstract implementation that fulfills all the requested
properties. (3) When we now have a concrete problem that is an instance of our abstract problem
(since it meets all its properties), then we can (4) automatically derive a concrete solution by
instantiating the abstract solution correspondingly. Ideally the abstract problem/solution pairs
can even be found in a library like the one of the Specware system [16].

Abstract
problem

Abstract
solution

lattices / cpos

Concrete
problem

Concrete
solution

graphs & sets

a
bs
tr
a
ct

Φrefine

Φrefine Φrefine

Φrefine

Fig. 1. Abstract and concrete problems and their solutions

For example, in the subsequent sections of this paper we will consider the abstract problem
of finding fixed points in lattices or cpos and several solutions for this problem. Then we will

3

show that garbage collection is an instance of this abstract problem by considering the concrete
graphs and sets as instances of the more abstract lattices. This way our abstract solutions carry
over to concrete solutions for the garbage collection problem.

Technically all our problem and solution descriptions are algebraic and coalgebraic specifications
(as will be defined more precisely later), which are usually underspecified and thus possess many
models. “Solutions” are treated as borderline cases of such specifications, which are directly
translatable into code of some given programming language. (This concept has nowadays been
popularized as “automatic code generation from models”.) The formal connections between the
various specifications are given by certain kinds of refinement morphisms, and the derivation
of the concrete solution from the other parts is formally a pushout construction from category
theory3.

Figure 1 also illustrates another aspect of our methodological way of proceeding. When we are
confronted with a concrete problem, we try to extract from it a more abstract problem that
represents the core of the given task. Even though this looks like additional effort at first sight,
it is usually a worthwhile endeavor. First of all, we obtain the desired modularization of the
derivation and verification. Secondly, the concentration on the kernel of the problem usually
simplifies the finding of the (abstract) solutions. And last but not least we can often come up
with variations on the theme that would have been buried under the bulk of details otherwise.
As is pointed out in Figure 1 the introduction of the details of the concrete problem can be done
almost automatically and thus does not really cause additional work.

This principle of working with an abstract view of the concrete problem can also be found
in other approaches, for example in [20, 13]. But there the principle is more implicitly used
(in statements such as Correctness means that each of these procedures faithfully represent the
abstract state [13]), whereas we make the abstraction/concretization into an explicitly available
development tool, based on a rigorous notion of morphisms.

1.3 Development by Refinement

Figure 2 illustrates the second essential aspect of our method. We do not work with a single
problem/solution pair and their concrete instances. Rather we construct a whole “family tree”
(which actually may be a dag) of more and more refined problems, each giving rise to more and
more refined solutions. On the problem side “refined” essentially means that we have additional
properties, on the solution side “refined” essentially means that we have better algorithms, e.g.
more efficient, more robust, more concurrent etc.

This way of proceeding has the primary advantage that it allows us to reuse verification and
development efforts. Suppose that at some point in the tree we want to design a new variation.
This is reflected in a new refinement child of the current specification, to which certain properties
are added. In the accordingly modified new solution we need only prove those properties that
have been added; everything else is inherited.

3 A morphism Φ from specification S to specification T is given by a type-consistent mapping of the type,
function, and predicate symbols of S to derived types, functions, and predicates in T . The mapping is a
specification morphism if the axioms of S translate to theorems of T . A pushout construction is used to
compose specifications. More detail on the category of specifications may be found in [26, 16, 22]

4
m
o
re

co
n
st
ra
in
ts

Fixpoint
Problem

Micro-step
Problem

Macro-step
Problem

Workset
Problem

Fixpoint
Algorithm

Micro-step
Algorithm

Macro-step
Algorithm

Workset
Algorithm

be
tt
er

a
lg
o
ri
th
m
s

Φr

Φr

ΦrΦr

Φr

Φr

ΦrΦr

Fig. 2. Refinement of problems (and solutions)

More details about the method sketched above can be found in [26]. The remainder of this paper
will make things more precise by presenting concrete examples.

In an earlier paper [22] we have presented one exemplary development of a garbage collector
from an initial non-executable specification to an executable implementation. But – as was
critically noted in [31] – we did “not explore an algorithm space”. Such an exploration is the
main purpose of the present paper. This is a similar goal as that of Vechev et al. [31]: they
start from a generic algorithm, which is parameterized by an underspecified function, such
that different instantiations of this function lead to different collection algorithms. A primary
concern of [31] is the possibility to combine various “design dimensions” in a very flexible way.
By contrast to their approach we study the family tree of specifications and implementations
that can be systematically derived using formal refinements. (The interchangeability of some of
these refinements actually makes the family tree into a family dag.) So our focus is on the method
of refinement and its potential tool support and not on garbage collection as such. Moreover,
whereas both our earlier paper [22] and the work of Vechev et al. [31] mostly concentrate on one
phase of garbage collection – namely the marking phase – the present paper addresses the whole
task of garbage collection. In addition, we do not only consider mark-and-sweep collectors but
also copying collectors. Last but not least, we base the whole treatment of garbage collection on
very fundamental mathematical principles, namely lattices and fixed points.

1.4 Data Reification

The final efficiency of most practical garbage collection algorithms depends on the use of clever
data representations. Standard techniques range from the classical stacks or queues to bit maps,
overlayed pointers, so-called dirty bits, color toggling and so forth.

In our approach all these designs fall under the paradigm of data reification morphisms. This
means that we can work throughout our developments with high-level abstract data structures
such as graphs and sets in order to specify and verify the algorithmic aspects in the clearest
possible way. It will be only at the end of the derivation that the high-level data structures are

5

implemented by concrete data structures, which are chosen based on their efficiency in the given
context. This step is widely automatic in systems like Specware [16], including many low-level
optimizations. Since this is very technical and can be done almost automatically by advanced
systems, we will only touch this part very briefly and sketchy here.

1.5 Summary of Results

We present a methodology that allows us to derive a wide variety of garbage collection algorithms
in a systematic way. This approach not only modularizes the resulting programs but also the
derivation process itself such that the verification is split into small and easy-to-comprehend
pieces, allowing considerable reuse of proofs. In more detail, we present the following results:

– We start by presenting a “dynamic” generalization of the well-known fixed-point results of
lattice theory.

– This basis is presented as a general specification that covers a whole range of implementa-
tions. We call this the “micro-step” approach.

– These fixpoint-based specifications can be refined further to more and more detailed designs,
which correspond to the major algorithms found in today’s literature.

Even though we cannot present all the algorithms in full detail, we can at least show “in princi-
ple”, how a whole variety of important and practical algorithms come out from our refinement
process. These include above all the (DLG) algorithm of Doligez, Leroy and Gonthier [9] –
which sometimes is considered the culmination of concurrent collector development [1] – and its
descendants.

2 Notes on Garbage Collection

Even though our approach starts from very abstract and high-level mathematical concepts –
viz. lattices and fixed points (Section 3) – and takes several refinement steps (Section 4) before
it ends with some special aspects of garbage collection (Section 5), it is helpful to motivate our
main design decisions by having the concrete application of garbage collection in mind. Actually,
we perceive three major stages of refinements:

1. We start from a “purely mathematical problem”, namely lattices (actually cpos) and fixed
points. On this level we derive the core properties that mark off the solution space.

2. Then we proceed to “abstract garbage collection”; that is, we model the problem by graphs
and sets. This intermediate stage can on the one hand be easily shown to be an instance of
the lattice-based abstraction; but on the other hand it already refers to important aspects
of the concrete garbage collection problem. Hence, all algorithmically relevant aspects can
be dealt with on this level.

3. The final step introduces the various specialized data structures, write barriers and the like
that go to make a realistic garbage collector. (This final step will only be roughly sketched
in this paper.)

6

component Mutator

graph :Graph(Node ,Arc)
addArc: . . .
delArc: . . .
addNew : . . .

. . .

component Mutator

graph :Graph(Node ,Arc)
addArc: . . .
delArc: . . .
addNew : . . .

. . .

component Mutator

graph :Graph(Node ,Arc)
addArc: . . .
delArc: . . .
addNew : . . .

. . .

component Collector

graph :Graph(Node ,Arc)
active :Set(Node)
supply : Set(Node)

. . .

component Store

graph :Graph(Node,Arc)
active:Graph(Node,Arc)
nodes :Set(Node)
active: Set(Node)
supply :Set(Node)
live:Set(Node)
dead : Set(Node)

addArc: . . .
delArc: . . .
addNew : . . .

live = active ⊎ supply
nodes = live ⊎ dead

. . .

// the Mutator’s view
// universe of all nodes
// reachable by Mutator
// freelist
// active + supply
// garbage

Morphism: graph 7→ active

Fig. 3. The system architecture

2.1 Architecture and Basic Terminology

Before we delve into the formal derivation we want to clarify the basic setting and the terminology
that we use here. This is best done at the intermediate level of abstraction, where the garbage
collection problem is formulated in terms of graphs and sets.

We modularize the problem by way of three kinds of components (using a UML-inspired rep-
resentation; see Figure 3). The Mutators represent the activities of all programs that use the
heap. These activities base on primitive operations that are provided by the component Store ,
which represents the memory management system (as part of the runtime system or operating
system). Finally the task of the garbage collection is performed by a component Collector .

The Mutator operates on a graph , which is a data structure of type Graph . It can essentially
perform three primitive operations:4

– addArc(a, b): add a new arc between two nodes a and b.
– delArc(a, b): delete the arc between a and b. This may have the effect that b and other nodes

reachable from b become unreachable (“garbage”).

4 This considerably simplifies the memory model used in the famous DLG algorithm [9, 10], where the Mutator
has eight operations. However, the essence of these operations is captured by our three operations above. (We
will come back to this issue in Section 5.)

7

– addNew (a): allocate a new node b (from the freelist) and attach it by an arc from a. This
reflects the fact that in reality alloc operations return a pointer, which is stored in some field
(variable, register, heap cell) of the Mutator. Hence, the new node is immediately linked to
the Mutator’s graph.

The Store provides the low-level interface to the actual memory-access operations.5 But on this
abstract level its specification also provides the basic terminology that is needed for talking
about garbage collection. In particular we use the following sets:

– active are those nodes that constitute the Mutator’s graph.
– supply are the nodes in the freelist. (They become active through the operation addNew .)
– live is a shorthand for the union of the active and supply nodes.
– dead are the garbage nodes that are neither reachable from the Mutator nor in the freelist.

(Nodes may become dead through the operation delArc.)

Note that the specifications in Figure 3 use A = B ⊎ C as a shorthand notation for the two
properties A = B ∪ C and B ∩ C = ∅. They also use overloading of operation names. For ex-
ample active is used both for the subgraph that constitutes the Mutator’s view and for the set
of nodes in this subgraph. Such overloaded symbols must always be distinguishable from their
context.

Note also that we frequently refer to the “set” Arcs of the arcs of a graph and also to the “set”
sucs(a) of all successors of a node a; but these are actually multisets, since two nodes may be
connected by several arcs. (Technically, the cell has several slots that all point to the same cell.)

2.2 Fundamental Properties of the Mutator

The Mutator’s operations addArc, delArc, addNew have an invariant property that is decisive
for the working of any kind of garbage collector: being garbage is a stable property [1].

Proposition 1 (Antitonicity of Mutator). A Mutator can never “escape” the realm given
by its graph and the freelist; that is, it can never reclaim dead garbage nodes. In other words,
the realm of live nodes (graph + freelist) monotonically decreases.

2.3 The Fundamental Specification of Garbage Collection

Surprisingly often papers on garbage collection refer to an intuitive understanding of what the
Collector shall achieve. But in a formal treatment we cannot rely on intuition; rather we have
to be absolutely precise about the goal that we want to achieve.

Consider the architecture sketched in Figure 3. The Mutator continuously performs its basic
operations addArc, delArc and addNew , which – from the Mutators viewpoint – are all considered

5 This reflects the situation of many modern systems, ranging from functional languages like ML or Haskell to
object-oriented languages like C# or Java. In languages like C or C++ the situation is more intricate.

8

to be total functions; i.e. they return a defined value on all inputs. This is trivially so for addArc
and delArc, since their arguments are existing in the mutators graph. The problematic operation
is addNew , since this operation needs an element from the freelist. However, the freelist may be
empty (i.e. supply = ∅). In this situation there are two possibilities:

– | active| = MemorySize . That is, the Mutator has used all available memory in its graph.
Then nothing can be done!

– | active| < MemorySize . When supply = ∅, this means that dead 6= ∅. This is the situation
in which we want to recycle dead garbage cells into the freelist. And this is the Collector’s
reason for existence!

Based on this reasoning, we obtain two basic principles for the Mutator/Collector paradigm.

Assumption 1 (Boundedness of Mutator’s graph) |Mutator .graph | < MemorySize

Under this global assumption the Collector has to ensure that the operation addNew is a total
function (which may at most be delayed). This can be cast into a temporal-logic formula:

Goal 2 (Specification of Collector) ✷♦ supply 6= ∅ (provided assumption 1 holds)

This is a liveness property stating that “at any point in time the freelist (may be empty but) will
eventually be nonempty.” When this condition is violated, that is, supply = ∅, then it follows
by the global Assumption 1 that dead 6= ∅. Hence the Collector has to find at least some dead
nodes, which it can then transfer to the freelist.This can be cast into an operation recycle with
the initial specification given in Figure 4.

spec Collector

recycle :Graph(Node,Arc)→ Set(Node)
∅ ⊂ recycle(G) ⊆ dead if dead 6= ∅
∅ = recycle(G) if dead = ∅

Fig. 4. The Collector’s task

Hence we should design the system’s working such that the following property holds (using an
ad-hoc notation for transitions).

Goal 3 (Required actions of Collector) ✷♦
(
supply −→ supply ⊎ recycle(G)

)

When Goal 3 is met, then the original Goal 2 is also guaranteed to hold. In other words, the
collector has to periodically call recycle and add the found subset of the garbage nodes to the
freelist.

Note that the above operation can happen at any point in time; we need not wait until the freelist
is indeed empty. (This observation leaves considerable freedom for optimized implementations
which are all correct.)

9

2.4 How to Find Dead Nodes

Unfortunately, the specification of recycle in Figure 4 is not easily implementable since the
dead nodes are not directly recognizable. Since the dead nodes are computed by taking the
complement of the live nodes (i.e. live = ∁dead = nodesbackslashlive), the idea comes to mind
to work with the complement of recycle . This leads to the simple calculation

∅ ⊂ recycle(G) ⊆ dead
⇔ ∁∅ ⊃ ∁ recycle(G) ⊇ ∁dead
⇔ nodes ⊃ ∁ recycle(G) ⊇ live
⇔ nodes ⊃ trace(G) ⊇ live

where we introduce a new function trace(G) such that recycle(G) = ∁ trace(G).

This leads to the refined version of the Collector’s specification in Figure 5.

spec Collector

recycle :Graph(Node,Arc)→ Set(Node)
trace :Graph(Node,Arc)→ Set(Node)

recycle(G) = ∁ trace(G)
live ⊆ trace(G) ⊂ nodes if dead 6= ∅
trace(G) = nodes if dead = ∅

Fig. 5. The Collector’s task (first refinement)

Note that this specification, which will form the starting point for our more detailed derivation,
is formally derived from the fundamental requirements for garbage collection as expressed in
Assumption 1 and Goal 2 above!

2.5 An Intuitive Example and a Subtle Bug

We demonstrate the working of a typical garbage collection algorithm by a simple example.
Figure 6 illustrates the situation at the beginning of the Collector by showing a little fragment
of the store; solid nodes are reachable from the root A, dashed circles represent dead garbage
nodes (the arcs of which are not drawn here for the sake of readability). We use the metaphor
of “planes” to illustrate both mark-and-sweep and copying collectors. In the former, “lifting”
a node to the upper plane means marking, in the latter it means copying. The picture already
hints at a later generalization, where the store is partitioned into “regions”.

Figure 7 shows an intermediate snapshot of the algorithm. Some nodes and arcs are already lifted
(i.e. marked or copied), others are still not considered. The gray nodes are in the “hot zone” –
the so-called “workset” –, which means that they are marked/copied, but not all outgoing arcs
have been handled yet.

Figure 8 shows the next snapshot. Now all direct successors of A have been treated. Therefore
A is taken out of the workset – which we represent by the color black.

10

A B

C D

E

Fig. 6. At the start of the Collector

A B

C

D

E

Fig. 7. A snapshot

A B

C

D

E

Fig. 8. The next snapshot

11

Note that we have the invariant property (which will play a major role in the sequel) that all
downward arrows start in the workset. This corresponds to one of the two main invariants in
the original paper of Dijkstra et al. [8].

A subtle problem: Now let us assume that in this moment the Mutator intervenes by adding an
arc A → E and then deleting the arc D → E . This leads to the situation depicted in Figure 9.
Since A is no longer in the workset, its connection to E will not be detected. Hence, E is hidden
from the Collector [31] and therefore will be treated as a dead garbage node – which is a severe
bug!

A B

C

D

E

Fig. 9. A subtle error

Any formal method for deriving garbage collection algorithms must ensure that this bug cannot
happen! Note that this situation violates the invariant about the downward arrows. And our
formal treatment will show that keeping this invariant intact is actually the clue to the derivation
of correct garbage collectors.

There are three reasonable ways to cope with this problem (using suitable write barriers):

– When performing addArc(A,E), record E . (This is the approach of Dijkstra et al. [8].)
– When performing addArc(A,E), record A. (This is the approach taken by Steele [28].)
– When performing delArc(D ,E), record E . (This is the approach taken by Yuasa [32].)

Vechev et al. [31] speak of “installation-protected” in the first two cases and of “deletion-
protected” in the last case.

Note also that this bug may appear in an even subtler way during the handling of a node in
the workset. Consider the node C in Figure 8 and suppose that it has lifted the first two of its
three arcs. At this moment the Mutator redirects the first pointer field to, say, E . But a naive
Collector will nevertheless take node C out of the workset (color it black) when its final arc has
been treated. – The same bug again!

At this point we will leave the concrete considerations about garbage collectors and pass on to
the more abstract viewpoint of fixed points and lattices (or cpos). In the terminology of Figure 1
we follow the upward arrow, that is, we generalize a concrete problem into a more abstract one.
Once this is done, we can derive a whole variety of solutions in a strictly top-down fashion.

12

3 Mathematical Foundation: Fixed Points

In garbage collection one can roughly distinguish two classes of collectors (see Section 1.1):

– Stop-the-world collectors: these are the classical non-concurrent collectors, where the muta-
tors need to be stopped, while the collector works.

– Concurrent collectors: these are the collectors that allow the mutators to keep working
concurrently with the collector (except for very short pauses).

As we will demonstrate in a moment, the traditional stop-the-world collectors correspond on the
abstract level to classical fixed-point theory. For the concurrent collectors we need to generalize
this classical fixed-point theory to a variant that we baptized “dynamic fixed points”.

We briefly review the classical theory before we present our generalization.

3.1 Classical Fixed Points (Stop-the-world Collectors)

The best known treatments of the classical fixpoint problem in complete lattices are those
of Tarski [29] and Kleene [17]. Before we quote these we present some relevant terminology
(assuming that the reader is already familiar with the very basic notions of partial order, join,
meet etc.)

– For a set s = {x0, x1, x2, . . .} of type Set(A) and a function f :A → A we use the overloaded
function f : Set(A) → Set(A) by writing f (s) as a shorthand for {f (x0), f (x1), f (x2), . . .}. (In
functional-programing notation this would be written with the apply-to-all operator as f ∗ s .)

– A function f :A → A is monotone, if x ≤ y ⇒ f (x) ≤ f (y) holds.
– The function f is continuous, if f (⊔{x0, x1, x2, . . .}) = ⊔{ f (x0), f (x1), f (x2), . . .} holds. This

could be shortly written as f ◦ ⊔ = ⊔ ◦ f (by using the overloaded versions of the symbol f).
– The function f is inflationary in x , if x ≤ f (x) holds. Then x is called a post-fixed point of

f . (Analogously for pre-fixed points.)
– The element x is called a fixed point of f , if x = f (x) holds; x is the least fixed point, if x ≤ y

for any other fixed point y of f .
– The element x is called a fixed point of f relative to r , if x = f (x) ∧ r ≤ x holds.

– By f̂(x) = least u . u = f (u) ∧ x ≤ u we denote the reflexive-transitive closure of f (when
it exists); i.e. the function that yields the least fixed point of f relative to x .

Lemma 4 (Properties of the closure f̂). The closure f̂(x) has a number of properties that
we will utilize frequently:

– x ≤ f̂(x) (inflationary);

– f̂(f̂(x)) = f̂(x) (idempotent);

– f (f̂(x)) = f̂(x) (fixpoint);

– f̂(f (x)) = f̂(x) if x ≤ f (x)

13

Proof. The first three properties follow directly from the definition of f̂ . The last one can be

seen as follows: Denote u = f̂(x) and v = f̂(f (x)). Then we have by monotonicity

x ≤ f (x) ⊢ f̂(x) ≤ f̂(f (x)) ⊢ u ≤ v .

On the other hand we have

x ≤ u ⊢ f (x) ≤ f (u) = u.

Since v is the least value with v = f (v) ∧ f (x) ≤ v , we have v ≤ u. (End of proof)

Theorem 1 (Tarski). Let L be a complete lattice and f : L → L a monotone function on L.
Then f has a complete lattice of fixed points. In particular the least fixed point is the meet of all
its pre-fixed points and the greatest fixed point is the join of all its post-fixed points.

Theorem 2 (Kleene). For a continuous function f the least fixed point x is obtained as the
least upper bound of the Kleene chain:

x = ⊔{⊥, f (⊥), f 2(⊥), f 3(⊥), . . .}

where ⊥ is the bottom element of the lattice.

In the meanwhile it has been shown that the essence of these theorems also holds in the simpler
structure of complete partial orders (cpos)6.

More recently Cai and Paige [6] published a number of generalizations that are streamlined
towards practical algorithmic implementations of fixpoint computations. We paraphrase their
main result here, since we are going to utilize it as a “blueprint” for our subsequent development.

Theorem 3 (Cai-Paige). Let A be a cpo and f :A → A be a monotone function that is infla-
tionary in r. Let moreover {s0, s1, s2, . . . , sn } be an arbitrary sequence obeying the conditions

r = s0
si < si+1 ≤ f (si) for i < n

sn = f (sn)

Then sn is the least fixed point of f relative to r . Conversely, when the least fixed point is finitely
computable, then the sequence will lead to such an sn .

Theorem 3 provides a natural abstraction from workset-based iterative algorithms, which main-
tain a workset of change items. At each iteration, a change item is selected and used to generate
the next element of the iteration sequence. The incremental changes tend to be small and local-
ized, hence this is called the micro-step approach and the Kleene chain the macro-step approach
[23]. All practical collectors use a workset that records nodes that await marking.

6 A cpo is a partial order in which every directed subset has a supremum

14

To illustrate these basic results, we derive the overall structure of a stop-the-world collector.
The essence of it is the iterative algorithm for finding garbage nodes to recycle.

Letting roots denote the roots of the active graph together with the head of the supply list, we
have

live = f̂(roots)

where
f(R) = {b | b ∈ G.sucs(a) & a ∈ R};

in words, the active nodes are the closure of the roots under the successor function in the current
graph G.

To derive an algorithm for computing the dead nodes, we calculate as follows:

dead
= ∁ live definition

= ∁ f̂(roots) definition

= ǧ(roots) using the law ∁ ĥ(R) = ǐ(R) where i(x) = ∁h(∁ x)

where ǧ(R) is the greatest fixpoint of the monotone function

g(x) = nodes \ (roots ∪ {b | b ∈ sucs(a) & a ∈ nodes \ x}).

This allows us to produce a correct, but naive iterative algorithm to compute dead nodes which
is based on Theorem 2.

Program 1 Raw Fixpoint Iteration Program

1 W ← h.nodes;
2 while W 6= g(W) do W ← g(W)
3 return W

Following Cai and Paige [6], we can construct an efficient fixpoint iteration algorithm using a
workset defined by

WS = X \ g(X).

Although this workset definition is created by instantiating a problem-independent scheme, it
has an intuitive meaning: the workset is the set of nodes whose parents have been “marked” as
live, but who themselves have not yet been marked. The workset expression can be simplified
as follows

X \ g(X)

= { Definition }

X \ (nodes \ (roots ∪ {b | b ∈ sucs(a) & a ∈ nodes \X}))

15

= { Using the law A \ (B ∪ C) = (A \B) \ C }

X \ ((nodes \ roots) \ {b | b ∈ sucs(a) & a ∈ nodes \X})

= { Using the law A \ (B \ C) = (A \ B)
⋃

(A ∩ C) }

(X \ (nodes \ roots))
⋃

({b | b ∈ sucs(a) & a ∈ nodes \X} ∩X)

= { Using the law {x|P (x)} ∩Q = {x|P (x) ∧ x ∈ Q} }

(X \ (nodes \ roots))
⋃

{b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \X}

= { Again using the law A \ (B \ C) = (A \ B)
⋃

(A ∩ C) (on first term) }

(X \ nodes) ∪ (X ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \X}

= { Simplifying }

{} ∪ (X ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \X}

= { Simplifying}

(X ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \X}.

The greatest fixpoint expression can be computed by the workset-based Program 2, which is
based on Theorem 3.

Program 2 Workset-based Fixpoint Iteration Program

1 W ← nodes;
2 while ∃z ∈ ((W ∩ roots)

⋃
{b | b ∈ sucs(a) & b ∈W & a ∈ nodes \W }})

3 W ←W − z

4 return W

To improve the performance of this algorithm, we apply the Finite Differencing transformation
[21], according to which we incrementally maintain the invariant

WS = (W ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ W & a ∈ nodes \W}.

There are two places in the code that might disrupt the invariant, in lines 1 and 3. We maintain
the invariant in line 1 with respect the initialization W = nodes as follows:

Assume: W = nodes
Simplify: WS = (W ∩ roots)

⋃
{b | b ∈ sucs(a) & b ∈ W & a ∈ nodes \W}

(WS = (roots ∩ nodes)
⋃

{b | b ∈ sucs(a) & b ∈ nodes & a ∈ nodes \ nodes}

16

= roots
⋃

{b | b ∈ sucs(a) & b ∈ nodes & a ∈ {}}
= roots

⋃
{}

= roots.

and incremental code (wrt the change W ′ = W − z):

Assume: WS = (W ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ W & a ∈ nodes \W}
& W ′ = W − z

Simplify: WS′ = (W ′ ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ W ′ & a ∈ nodes \W ′}

W ′ ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ W ′ & a ∈ nodes \W ′}

= { Using assumption W ′ = W − z }

((W − z) ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ (W − z) & a ∈ nodes \ (W − z)}

= { Simplifying }

((W ∩ roots)− z)
⋃

({b | b ∈ sucs(a) & b ∈ W & a ∈ nodes \ (W − z)} − z)

= { Pulling out common subtraction of z }

(W ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ W & a ∈ nodes \ (W − z)} − z

= { distribute element membership }

(W ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ W & (a ∈ (nodes \W) ∨ a = z)} − z

= { distribute set-former over disjunction }

(W ∩ roots)⋃
({b | b ∈ sucs(a) & b ∈ W & a ∈ (nodes \W)}⋃
{b | b ∈ sucs(a) & b ∈ W & a = z)}) − z

= { fold definition of WS, and simplify}

WS
⋃

{b | b ∈ sucs(z) & b ∈ W})− z.

The resulting code is shown in Program 3.

Programs 2 and 3 represent the abstract structure of most marking algorithms. Our point is that
its derivation, and further steps toward implementation, are carried out by generic, problem-
independent transformations, supported by domain-specific simplifications, as above.

Further progress toward a detailed implementation requires a variety of other transformations,
such as finite differencing, simplification, and datatype refinements. For example, the finite set

17

Program 3 Optimized Fixpoint Iteration Program

invariant WS = (W ∩ roots)
⋃
{b | b ∈ h.sucs(a) & b ∈ W & a ∈ h.nodes \W } 1

W := h.nodes ||WS := roots; 2
while ∃z ∈ WS do 3

W := W − z ||WS := WS
⋃
{b | b ∈ h.sucs(z) & b ∈ W })− z 4

output W. 5

W may be implemented by a characteristic function, which in turn is refined to a bit array, or
concurrent data structures for local buffers or work-stealing queues.

As our final preparatory step within the realm of the classical fixed-point concepts we mention
a central property that is the core of the correctness proof for implementations. If we compute
the sequence s0, s1, s2, . . . , by a loop, then a Hoare-style verification would need the following
invariant.

Corollary 1 (Invariance of closure). The elements of the set { s0 < s1 < s2 < . . . < sn } all
have the same closure:

f̂(si) = f̂(r)

Proof. This invariance follows directly from monotonicity and the properties of f̂ stated in

Lemma 4: f̂(si) ≤ f̂(si+1) ≤ f̂(f (si)) = f̂(si). (End of proof)

3.2 Fixed Points in Dynamic Settings (Concurrent Collectors)

The classical fixed-point considerations work with a fixed monotone function f . In the garbage
collection application this is justified as long as the graph, on which the collector works, remains
fixed during the collector’s activities. But as soon as the mutator keeps working in parallel with
the collector, the graph keeps changing, while the collector is active. This can be modeled by
considering a sequence of graphs G0, G1, G2, . . . and by making the function f dependent on
these graphs: f (G0)(. . .), f (G1)(. . .), f (G2)(. . .), . . . , where f :Graph → Set(Node) → Set(Node)
and

f(G)(S) = S
⋃

{b | a ∈ S & b ∈ G.sucs(a)}.

Intuitively, f extends a given set of nodes with the set of their successors in the graph. To ease
readability we omit the explicit reference to the graphs and simply write f0, f1, f2,

The foundation Using this notational liberty the specification of the underlying foundation
is stated in Figure 10: the fi are monotone 1 and inflationary in r 2 . Moreover the closure-

forming operator f̂ is defined by 3 .

The initial problem formulation Based on this foundation we can now formulate our
goal. Recall the specification of the garbage collection task given by Collector in Figure 5:

18

spec Foundation

extend Cpo(A)
f0, f1, f2, . . . :A → A
̂ :A → A → A → A
r :A

x ≤ y ⇒ fi(x) ≤ fi(y) 1

r ≤ fi(r) 2

f̂(x) = least s: x ≤ s ∧ s = f (s) 3

// A is a cpo (alternatively: lattice)
// sequence of functions

// f̂ is reflexive-transitive closure of f
// “root”

// all fi are monotone
// all fi are inflationary in r

// closure (computes least fixed point)

Fig. 10. Initial Specification

live ⊆ trace(G) ⊂ nodes . This translates into our dynamic setting as liven ⊆ s ⊂ nodes . We add
as a working hypothesis that the set live0 serves as an upper bound that we will need to guarantee
in our dynamic algorithm: liven ⊆ s ⊆ live0 ⊂ nodes .

The set live0 is sometimes called the “snapshot-at-the-beginning” [1]. Since in our abstract

setting liven corresponds to the closure f̂n(r) and live0 corresponds to the closure f̂0(r), we
immediately obtain the abstract formulation 5 of our problem statement (Figure 11).

spec Fixpoint-Problem

extend Foundation

r ≤ x ⇒ fi+1(f̂i(x)) ≤ f̂i(x) 4

thm ∃n, s: f̂n(r) ≤ s ≤ f̂0(r) 5

thm r ≤ x ⇒ f̂0(x) ≥ f̂1(x) ≥ f̂2(x) ≥ . . . 6

// garbage can only grow

// liven ≤ s ≤ live0

// Lemma 5

Fig. 11. Initial Specification

Axiom 4 is the abstract counterpart of the fundamental Proposition 1 in Section 2.2: the set
of live nodes is monotonically decreasing over time, or, dually, garbage increases monotonically.
For proof-technical reasons we have to conditionalize this property to any set x containing the
roots r .)

Note that the existential formula 5 is trivially provable by setting n = 0 and s = f̂0(r). Actually
the property 6 (see Lemma 5 below) shows that such an s exists for any n. However, our actual
task will be to come up with a constructive algorithm that yields such an n and s .7

For the specification FixpointProblem we can prove the property 6 (i.e. Lemma 5) that will
be needed later on. This monotonic decreasing of the closure is in accordance with our intuitive

7 It may be interesting to compare property 5 to the classical non-concurrent situation expressed in Lemma 1.
Instantiated to the final value s = sn Lemma 1 states s = f̂(r). This equality can be formally rewritten into

the two inequalities f̂(r) ≤ s ≤ f̂(r). This is weakened in property 5 by setting on the left f̂ =̂ f̂n and on

the right f̂ =̂ f̂0. Similar kinds of weakenings are also found in Hoare- or Dijkstra-style program developments,
when deriving invariants from given pre- or post-conditions.

19

perception of the Mutator’s activities. The operation delArc may lead to fewer live. And the
operations addArc and addNew do not change the set of live nodes (since the freelist is part of
the live nodes).

Lemma 5 (Antitonicity of closure). The closures are monotonically decreasing:

For r ≤ x we have f̂0(x) ≥ f̂1(x) ≥ f̂2(x) ≥ . . . 6

Proof : We use a more general formulation of this lemma: For monotone g and h we have the
property

∀x : g(ĥ(x)) ≤ ĥ(x) ⇒ ĝ(x) ≤ ĥ(x)

We show by induction that ∀i : g i(x) ≤ ĥ(x). Initially we have g0(x) = x ≤ ĥ(x) due to the
general reflexivity property 3 of the closure. The induction step uses the induction hypothesis
and then the premise: g i+1(x) = g(g i (x)) ≤ g(ĥ(x)) ≤ ĥ(x).

By instantiating fi+1 for g and fi for h we immediately obtain f̂i+1(x) ≤ f̂i(x) by using the
axiom 4 , when r ≤ x . (End of proof)

3.3 The Microstep Refinement

In order to get closer to constructive solutions we perform our first essential refinement. Gener-
alizing the idea of Cai and Paige (see Theorem 3) we add further properties to our specification,
resulting in the new specification of Figure 12. Note that we now use some member sn of the
sequence s0, s1, s2, . . . as a witness for the existentially quantified s .

spec Micro-Step

extend FixpointProblem
s0, s1, s2, . . . :A

s0 = r 7

si < si+1 ≤ fi(si) ∨ si = fi(si) 8

thm ∃n: f̂n(r) ≤ sn ≤ f̂0(r) 9

thm f̂0(s0) ≥ f̂1(s1) ≥ . . . ≥ f̂n(sn) 10

// sequence of approximations

// start with “root”
// computation step

// to be shown below

// Lemma 6 below

Fig. 12. The “micro-step approach”

Proof of property 9 : In a finite lattice the si cannot grow forever. Therefore there must be a
fixpoint sn = fn(sn) due to axiom 8 . Then the left half of the proof of 9 follows trivially from
monotonicity:

∀i : r ≤ si
⊢ r ≤ sn = fn(sn)

⊢ f̂n(r) ≤ f̂n(fn(sn)) = f̂n(sn) = sn

// axiom 7 and 8

// sn is fixpoint

// properties of f̂n Lemma 4

20

The right half sn ≤ f̂0(r) is a direct consequence of the following Lemma 6. (End of proof)

Lemma 6 (Decreasing Closures). As a variation of Lemma 5 we can show property 10 : the
closures are decreasing, even when applied to the increasing si :

∀i : f̂i+1(si+1) ≤ f̂i(si)

Proof : On the basis of Lemma 5 (property 6 in Figure 11) the proof follows directly from
axiom 8 by monotonicity:

si+1 ≤ fi(si)

⊢ f̂i+1(si+1) ≤ f̂i+1(fi(si)) ≤ f̂i(fi (si)) = f̂i(si)

// axiom 8

// monotonicity of f̂i+1; 6

Note that 6 is applicable here, since – due to 8 – r ≤ fi (si) holds. (End of proof)

Lemma 6 may be depicted as follows:

s0
s1

s2
f̂2(s2) f̂1(s1) f̂0(s0)

As can be seen here, the approximations s0, s1, s2, . . . keep growing, while at the same time

their closures f̂0(s0), f̂1(s1), f̂2(s2), . . . keep shrinking.

Remark : This situation can also be rephrased as follows: We have a function F (fi , si) that is
applied to the elements of two sequences. This function is antitone in the first argument and
monotone in the second argument; we have to show that – under the constraints given in our
specification – the function still is monotonically increasing.

This essentially concludes the derivation that can reasonably be done on this highly abstract
mathematical level of fixed points and lattices. However, in the literature one can find a variant
of collectors, the development of which is best prepared on this level of abstraction as well.

3.4 A Side Track: Snapshot Algorithms

Consider again the specification Microstep in Figure 12, where the goal is described in axiom 9

as ∃n: f̂n(r) ≤ sn ≤ f̂0(r). Evidently computing the value sn = f̂0(r) is an admissible solution.

8 This approach, which has been used by Yuasa [32] and was refined later by Azatchi et al. [1],
is also referred to as snapshot-at-the-beginning.

8 Remember that the closure computes the live nodes; axiom 9 therefore means liven ⊆ sn ⊆ live0, which can
be solved by sn = live0. In other words, we compute the nodes that were live, when the Collector started.

21

In order to follow this development path we refine the specification Microstep in Figure 12 to
the specification Snapshot in Figure 13 by requiring the additional constraint 11 that needs to
be respected by later implementations. Note that the new axiom 11 is the classical invariant
that is also used in non-concurrent garbage collectors.

spec Snapshot

extend MicroStep

∀ i : f̂0(si) = f̂0(r) 11 // classical invariant livei = live0

Fig. 13. The “snapshot approach”

How can this kind of computation be achieved in practice? This is demonstrated by Azatchi et
al. [1] based on a technique that has been developed by some of the authors for a concurrent
reference-counting collector [18]. Starting from the fictitious idea of making a virtual snapshot
by cloning the complete original heap, it is then shown that this copying can be done lazily such
that only those nodes are actually copied that are critical.

We only sketch this idea here abstractly in our framework: We introduce a structure clone i
and an operator ∇ such that (Gi∇clone i) ≃ G0; i.e. x /∈ clone i ⇒ Gi .sucs(x) = G0 .sucs(x) and
x ∈ clone i ⇒ clone i .sucs(x) = G0 .sucs(x). The computation of the sequence s0, s1, s2, . . . is
then done based on (Gi∇clone i) such that we effectively always apply f0.

It remains to determine the structure clone i . There are solutions of varying granularity, but the
most reasonable choice appears to be the following: Whenever the Mutator executes one of the
operations addArc(a, b), delArc(a, b) or addNew (a), it puts the old a including all its outgoing
arcs into clone. (This amounts to making a copy of the heap cell.) In practice, the efficiency of
this approach is considerably improved by observing that the cloning need only be done during
a very short phase of the collection cycle. The most complex aspect of this approach is the
computation of the pointers into the heap that come from the local fields (stack, registers) of
the Mutator; it has to be ensured that during this phase no simultaneously changed pointers get
lost. In [1, 18] this is performed by a technique called “snooping”: essentially all pointers that
are changed during this phase are treated as roots. (We will come back to this in Section 5.)

For the technical details of this approach we refer to [1]. Suffice it to say that almost all of
our subsequent refinements – which we start from the specification MicroStep – could also
descend from Snapshot . Technically, we could combine Snapshot with our various refinements
of MicroStep by forming a pushout.

Remark : By showing that such an effectively working implementation exists, we have implicitly
shown that the specification Snapshot is consistent with the specification MicroStep; that is, the
refinement is admissible.

22

4 Garbage Collection in Dynamic Graphs

We now take specific properties of garbage collection into account – but still on the “semi-
abstract” level of sets and graphs.

First we note that our specification of garbage collection using sets and set inclusion is a trivial
instance of the lattice-oriented specification in the previous section. Therefore all results carry
over to the concrete problem. The morphism is essentially defined by the following correspon-
dences:

Φ =

[A 7→ Set(Node)
≤ 7→ ⊆
fi (s) 7→ f (Gi)(s) = s ∪Gi .sucs(s) = s ∪

⋃
a∈s Gi .sucs(a)

r 7→ G0 .roots

]

– The basis now is a sequence of graphs G0, G1, G2, . . . which are due to the activities of the
Mutator.

– The function f (Gi)(s) = s ∪
⋃

a∈s Gi .sucs(a) adds to the set s all its direct successors. (We
will retain the shorthand notation fi = f (Gi) in the following.)

spec Foundation

spec FixpointProblem

spec MicroStep spec Snapshot

spec Reachability spec Reachability

spec Workset spec Workset

spec Dirtyset spec Dirtyset

Φ4

Φ5

Φ1

Φ2

Φ3

Fig. 14. Roadmap of refinements

Figure 14 illustrates the road map through our essential refinements. The upper half shows the
refinements that have been performed in the previous Section 3 on the abstract mathematical

23

level of lattices and fixed points. The lower half shows the refinements on the semi-abstract level
of graphs and sets that will be presented in this section. Finally, the right side of the diagram
points out that all further developments could also be combined (by way of pushouts) with the
sidetrack of the snapshot approach of Section 3.4.

Lemma 7 (Morphism abstract → concrete). Under the above morphism Φ all axioms
of the abstract specifications Foundation, FixpointProblem and MicroStep hold for the more
concrete specifications of graphs and sets (see Figure 14).

Proof : We show the three morphism properties Φ1, Φ2, Φ3 in turn.

Φ1: The proof is trivial, since the monotonicity axiom 1 is a direct consequence of the definition
of Φ(fi). Axiom 3 is just a definition.

Φ2: To foster intuition, we first consider the special case x = r : the morphism translates:

4
Φ
7→ f (Gi+1)

(
f̂(Gi)(r)

)
⊆ f̂(Gi)(r)

⇔(
live i ∪

⋃
a∈livei

Gi+1 .sucs(a)
)
⊆ live i

⇔
∀a ∈ live i :Gi+1 .sucs(a) ⊆ livei

// f̂(Gi)(r) = livei, def. of Φ(fi)

// (A1 ∪ ... ∪An) ⊆ B ⇔ ∀i : Ai ⊆ B

In order to prove this last property, i.e. ∀a ∈ live i :Gi+1 .sucs(a) ⊆ livei , we must consider all
nodes a ∈ live i and all (sequences of) actions that the Mutator can use to effect the transition
Gi ❀ Gi+1. We distinguish the two possibilities for a ∈ livei :

(1) a ∈ Gi .freelist : Then there are two subcases (which base on the reasonable constraint that
nodes in the freelist and newly created nodes do not have “wild” outgoing pointers):

(1a) a ∈ Gi+1 .freelist , then Gi+1 .sucs(a) ⊆ Gi+1 .freelist ⊆ Gi .freelist ⊆ livei
(1b) a ∈ Gi+1 .active (caused by addNew), then Gi+1 .sucs(a) = ∅ ; now (2) applies

(2) a ∈ Gi .active: Then there are three subcases for b ∈ Gi+1 .sucs(a):

(2a) (a → b) ∈ Gi .arcs ⊢ b ∈ Gi .active ⊆ livei
(2b) (a → b) created by addArc(a, b) ⊢ b ∈ Gi .active ⊆ live i
(2c) (a → b) created by addNew (a) ⊢ b ∈ Gi .freelist ⊆ livei

If we start this line of reasoning not from the roots r but from a superset x ⊇ r , then we

need to consider supersets l̂i ⊇ livei (where the hat shall indicate that these sets are closed

under reachability) and prove ∀a ∈ l̂i :Gi+1 .sucs(a) ⊆ l̂i . Evidently the reasoning in (1) and (2)
applies here as well. But now there is a third case:

(3) a ∈ Gi .dead . In this case there is no operation of the Mutator that could change the suc-
cessors of a (since all operations require a ∈ active). Hence Gi+1 .sucs(a) = Gi .sucs(a). Due

to the closure property we have a ∈ l̂i ⇒ Gi .sucs(a) ⊆ l̂i . The above equality then entails also

Gi+1 .sucs(a) ⊆ l̂i .

24

Φ3: The morphism Φ translates the axioms 7 and 8 into

si ⊆ si ∪
⋃

a∈si
Gi .sucs(a)

This is trivially fulfilled such that the constraint on the choice of si+1 is well-defined.

(End of proof)

When considering the last specification Micro-Step in Figure 12 then we have basically shown
that any sequence s0, s1, s2, . . . that fulfills the constraints 7 and 8 solves our task. But we
have not yet given a constructive algorithm for building such a sequence. In the next refinement
steps Φ4 and Φ5 we will proceed further towards such a constructive implementation (actually
to a whole collection of implementation variants) by adding more and more constraints to our
specification. Each of these refinements constitutes a design decision that narrows down the set
of remaining implementations.

4.1 Worksets (“Wavefront”)

As a first step towards more constructive descriptions we return to the standard idea of “work-
sets” (sometimes also referred to as “wavefront”), which has already been illustrated Program
2, and in the examples in Section 2.5. This refinement is given in Figure 15.

spec Workset

extend MicroStep
b0, b1, b2, . . . :A
w0, w1, w2, . . . :A

si = (bi ⊎ wi)

f̂i(si) = bi ∪ f̂i(wi) 12

thm wn = ∅ ⇒ f̂n(sn) = bn 13

// completely treated (“black”)
// partially treated (“workset” or “gray”)

// partitioning into black and gray

// additional constraint

// termination condition

Fig. 15. The workset approach

The partitioning si = (bi ⊎ wi) arises naturally from the definition of the workset, as in Program

2. But the additional axiom 12 is a major constraint! It essentially states that the closure f̂i(si)
of the current approximation si shall be primarily dependent on the closure of the workset
wi . This reduces the design space of the remaining implementations considerably – but from a
practical viewpoint this is no problem, since we only exclude inefficient solutions.

The theorem 13 stated in the specification provides a termination condition for the later imple-
mentations that is far more efficient than our original termination criterion fn(sn) = sn .

An important observation: It is easily seen that the subtle error situation illustrated in Figure 9 in
Section 2.5 violates the axiom 12 . Therefore any further refinement of the specification Workset
cannot exhibit this error. In other words: If we derive all our implementations as offsprings of
the specification Workset in Figure 15, then we are certain that the bug cannot occur!

25

A major problem: Unfortunately, just introducing sufficient constraints for excluding error sit-
uations is not enough. Consider the situation of Figure 9 in Section 2.5. We have to ensure
that the Mutator cannot perform the two operations addArc(A,E) and delArc(D ,E) without
somehow keeping the axiom 12 intact. This necessitates for the first time that the Mutator
cooperates with the Collector, thus introducing constraints for the Mutator. (Even though these
constraints may be hidden in the component Store , they do have an implicit influence on the
Mutator’s working.)

As has already been pointed out in Section 2.5, there are three principal possibilities to resolve
this problem:

– One can stop the Mutator until the Collector has finished (Section 3.1).
– One can put A or E into the workset, when addArc(A,E) is executed.
– One can put E into the workset, when delArc(D ,E) is executed.

Each of these “solutions” keeps the axiom 12 intact, but they have problems. Stopping the
Mutator is unacceptable, since this destroys the very idea of having Mutator and Collector work
concurrently. In both of the other cases the Mutator adds elements to the workset, while the
Collector is taking them out of the workset. Naive implementations of this specification would
not guarantee termination.

In the following we will present a number of refinements for solving this problem. These refine-
ments are the high-level formal counterparts of solutions that can be found in the literature and
in realistic production systems for the JVM and .Net.

4.2 “Dirty Nodes”

One can alleviate the stop times for the Mutator by splitting the workset into two sets, one
being the original workset of the Collector, the other assembling the critical nodes from the
Mutator. This is shown in Figure 16. The new axiom 14 is similar to 12 using the partitioning
wi = (gi ⊎ di).

spec Dirtyset

extend Workset
g0, g1, g2, . . . :A
d0, d1, d2, . . . :A

si = (bi ⊎ gi ⊎ di)

f̂i(si) = bi ∪ f̂i(gi) ∪ f̂i(di) 14

thm gn = ∅ ⇒ f̂n(sn) = bn ∪ f̂n(dn) 15

// partially treated by Collector (“gray”)
// introduced by Mutator (“dirty”)

// partitioning into black, gray and dirty

// closure condition

// intermediate termination condition

Fig. 16. Introducing “dirty” nodes

This specification can be implemented by a Collector that successively treats the gray nodes
in gi until this set becomes empty (which can be guaranteed). But – by contrast to the earlier

26

algorithms – this does not yet mean that all live nodes have been found. As the theorem 15 shows
we still have to compute f̂i(di). But this additional calculation tends to be short in practice, and
the Mutator can be stopped during its execution. Consequently, correctness has been retained
and termination has been ensured.

The Mutator now adds “critical” nodes to the “dirty” set di . In order to keep the set di as
small as possible one does not add all potentially critical nodes to it: as follows from axiom 14 ,
black or gray nodes need not be put into di . And since di is a set, nodes need not be put into it
repeatedly. Actually, when the Mutator executes addArc(a, b) with a /∈ si (“a is still before the
wavefront”), then axiom 14 would allows us the choice of putting a into di or not (similarly for
b. Commonly, a is simply added to di .

4.3 Implementing the Step si 7→ si+1

So far all our specifications only impose the constraint 8 (see MicroStep in Figure 12) on their
implementations, that is:

si < si+1 ≤ fi(si) ∨ si = fi(si)

The actual computation of the step si 7→ si+1 has to be implemented by some function step. For
this function we can have different degrees of granularity:

– In a coarse-grained implementation we pick some node x from the gray workset and add all
its non-black successors to the workset. Then we color x black.
This variant is simpler to implement and verify, but it entails a long atomic operation. The
corresponding write barrier slows down the standard working of the Mutators.

– In a fine-grained implementation we treat the individual pointer fields within the current
(gray) node x one-by-one. In our abstract setting this means that we work with the individual
arcs.
This makes the write barrier shorter and thus increases concurrency, but the implementation
and its correctness proof become more intricate.

On our abstract level we treat this design choice by way of two different refinements. This is
depicted in Figure 17 (where the shorthand notation . . .using x with p(x) entails that the
property only has to hold when such an x exists).

A note of caution. If we apply the morphism Φ introduced at the beginning of Section 4 directly,
the strict inclusion si < si+1 of axiom 8 would not be provable. Therefore we must interpret

(b, g) < (b ′, g ′)
Φ
7→ b ⊂ b ′ ∨ (b = b ′ ∧ g ⊂ g ′).

But there are still further implementation decisions to be made. Both CoarseStep and FineStep
specify (at least partly) how the step operation deals with the selected gray node. But this still
leaves one important design decision open: How are the gray nodes selected? In the literature
we find several approaches to this task:

1. Iterated scanning. One may proceed as in the original paper by Dijkstra et al. [8] and re-
peatedly scan the heap, while applying step to all gray nodes that are encountered. This has

27

spec DirtySet

spec CoarseStep

step: Set(Node)× Set(Node)
→ Set(Node)× Set(Node)

step(b, g) = (b ⊕ x ,
(g ∪ sucs(x)) \ (b ⊕ x))
using x with

x ∈ g \ b

spec FineStep

step: Set(Node)× Set(Node)
→ Set(Node)× Set(Node)

step(b, g) = (b, g ⊕ y)
using x , y with

x ∈ g
(x → y) ∈ Arcs
y /∈ (b ∪ g)

step(b, g) = (b ⊕ x , g ⊖ x)
using x with

x ∈ g ∧ sucs(x) ∩ (b ∪ g) = ∅

Φ1 Φ2

Fig. 17. Step functions of different granularities

the advantage of not needing any additional space, but it may lead to many scans over the
whole heap, in the worst case O(N 2) times, and is not considered practical.

2. Alternatively one performs the classical recursive graph traversal, which may equivalently
be realized by an iteration with a workset managed as a stack. This allows all the well-
known variations, ranging from a stack for depth-first traversal to a queue for breadth-first
traversal. In any case the time cost is in the order O(|live|), since only the live nodes need
to be scanned. However, there also is a worst-case need for O(|live|) space – and space is a
scarce resource in the context of garbage collection.

3. One may compromise between the two extremes and approximate the workset by a data
structure of bounded size (called a cache in [9, 10]). When this cache overflows one has to
sacrifice further scan rounds.

4. When there are multiple mutators for efficiency it is necessary to have local worksets working
concurrently.

These design choices are illustrated in Figure 18. (But we refrain from coding all the technical
details.)

It should be emphasized that the refinements Ψ1, Ψ2, Ψ3, Ψ4 of Figure 18 are independent of
the refinements Φ1, Φ2 of Figure 17. This means that we can combine them in any way we like.
The combination of some Φi with some Ψj is formally achieved by a pushout construction as
already mentioned in Section 1.2. In a system like Specware [16] such pushouts are performed
automatically.

It should be noted that axiom 15 in Figure 16 requires at least one scan in order to perform the
cleanup f̂n(dn) of the dirty nodes after the main marking phase is completed.

28

spec DirtySet

spec IteratedScan spec Recursion spec BoundedCache spec LocalWorkSets

Ψ1 Ψ2 Ψ3 Ψ4

Fig. 18. Design choices for finding the gray nodes

The Collector may also compute (parts of) f̂i(di) at any given point in time concurrently with
the Mutators. This may make the finally remaining dirty set dn smaller and thus speed up
the cleanup operation, which shortens the necessary pauses for the Mutators. These interim
computations are harmless as long as the termination of the Collector’s main marking phase
does not depend on the set di becoming empty.

4.4 Heap Partitioning (Generations, Cards, Pages etc.)

The necessary scanning of the “dirty nodes” described in Section 4.3 above motivates a refine-
ment that actually has a whole variety of different applications. In other words, the following
abstract refinement is the parent of a number of further refinements that aim at solving different
kinds of problems.

In the following we briefly sketch, how such alternative refinements fit into our abstract frame-
work. In Sections 6.3 and 6.4 we will discuss some concrete applications of this paradigm, in
particular

– generational garbage collectors;
– dirty cards;
– dirty pages.

We integrate these techniques into our approach by means of superimposing a further structuring
on the graph. This has already been hinted at in Figures 6–9 in Section 2.5, where the planes
are further partitioned into areas.

Definition 1 (Graph partitioning). A partitioning of the graph is given by splitting the set
of nodes into disjoint subsets:

Nodes = N1 ⊎ . . . ⊎ Nk

The subsets Ni are called cards (following the terminology of e.g. [24]).

These cards can be used to optimize the computation of the dirty nodes without compromising
the correctness of the algorithm. To this end we need to introduce the constraint shown in the
specification DirtyCards in Figure 19.

29

spec DirtyCards

extend Dirtyset
type Card = Set(Node)
N1, . . . , Nk :Card
Nodes = N1 ⊎ . . . ⊎ Nk

dirty :Card → Bool
di ⊆

⋃
{Nj : dirty(Nj) } 16

// cards
// cards partition the node set

// “dirty” property of cards
// constraining dirty nodes

Fig. 19. Introducing “dirty” cards

The axiom 16 establishes the constraint that the dirty nodes can only lie on dirty cards. (This
constraint has to be obeyed by the Mutator.)

The axiom 15 in Figure 16 requires the cleanup computation of f̂n(dn) after the main marking
phase has been completed. For this cleanup the new axiom 16 entails a considerable speedup,
since only a subset of the cards Nj need to be scanned.

5 Dynamic Root Sets

In the previous sections we have performed the transition from classical fixed points in static
graphs (relating to stop-the-world collectors) to dynamic fixed points in changing graphs (relat-
ing to concurrent collectors). However, we still utilize the inherent assumption that the Collector
starts from a fixed root set r . Alas, this assumption – which is also contained in the original
papers by Dijkstra, Steele and others [8, 28] – can not be maintained in practice due to the
following reasons (see e.g. [9, 10, 1]):

1. The local data of the Mutator (registers and stack) are indeed local ; that is, the Collector
has no access to them!

2. The synchronization between the Collector and the Mutators requires write barriers. The
corresponding overhead may be tolerable for heap accesses, but it is certainly out of the
question for local stack or register operations.

As a consequence of the first observation the Mutators have to participate actively in the garbage
collection process, at least during the start phase of each collection cycle. And the second
observation rules out certain solutions due to their unacceptable overhead. So the challenge
is to maximize concurrency in the presence of these constraints.

In the following we will show how these issues fit into our overall framework.

5.1 Modeling Local Data

In accordance with our earlier levels of abstraction we devise the following modeling for the
Mutator-local data: all local data of a Mutator (registers and stack) are considered as one large

30

node, which we call the pre-root ρm . The potentially quite large set sucs(ρm) then represents
all pointers out of the local stack and registers into the heap.9

From now on let us assume that there are q Mutators M1, . . . ,Mq with pre-roots ρ1, . . . , ρq .
The global variables are represented by the pre-root ρ0; they are accessible by the Collector.

Definition 2 (Pre-roots; local roots). Each Mutator possesses a pre-root ρm . The successors
of this pre-root are referred to as the Mutator’s local roots: rm = sucs(ρm).

Moreover, the global variables (which are accessible to the Collector) are represented by the
pre-root ρ0 and the corresponding roots by r0 = sucs(ρ0).

The set of all pre-roots is denoted as ρ = {ρ0, ρ1, . . . , ρq}. The set of all roots is defined as
r = sucs(ρ) = r0 ∪

⋃
m∈Mut rm .

The set r introduced in Definition 2 above essentially plays the role of the start value s0 in the
specification MicroStep of Figure 12. Hence, we might rephrase the central property 9 of this
specification (after applying the morphism Φ from Section 4):

∃n: f̂n(r) ⊆ sn ⊆ f̂0(r) where r = sucs(ρ) = sucs(ρ0) ∪
⋃

m∈Mut sucs(ρm).

However, due to the subtle difficulties that are caused by the concurrent activities of Collector
and Mutators we should retreat to a more fundamental rephrasing of our overall task.

5.2 Computation of the Roots

The abstract modeling introduced in Definition 2 at the beginning of this section allows us to
retain all the other modeling aspects of the preceding sections. In particular the concept of
varying graphs G0, G1, G2, . . . and the thus induced functions f0, f1, f2, . . . can be applied to
the computation of the root set r without changes.

However, for reasons that will become clear in a moment, we need to make one change. Since the
local registers and stacks of the Mutators are not part of the heap, they must not undergo the
mark and sweep or the copying process. In our mathematical modeling we therefore no longer
consider the reflexive-transitive closure f̂ but only the non-reflexive transitive closure, which

we denote as f̃ . As a consequence, the function f should not be inflationary either. Hence, the
morphism Φ at the beginning of Section 4 now sets fi (s) =

⋃
a∈s Gi .sucs(a). Consequently, the

axiom 8 in the specification MicroStep has to be changed to

si < si+1 ≤ si ⊔ fi(si) ∨ fi(si) ≤ si 8

With these changes (for which all previous proofs work unchanged except for minor notational
adaptations) we can now reformulate the garbage collection task slightly differently (see Fig-
ure 20, where the numbers are the same as in the original specifications).

A major difference between this specification MicroStep ′ and the original specification MicroStep
is the omission of the axiom 7 , which determines the start value s0. This start value is no

9 Here it pays that we model pointers more abstractly as a (multi)set of arcs. This is much more concise and
elegant than speaking about “objects” and their “slots” for pointers, as it is usually done in the literature.

31

spec Micro-Step′

f̃(x) = least s: f (x) ≤ s ∧ s = f (s) 3

s0, s1, s2, . . . :A

si < si+1 ≤ si ⊔ fi(si) ∨ fi(si) ≤ si 8

thm ∃n: f̃n(ρ) ≤ sn ≤ f̃0(ρ) 9

// transitive closure

// sequence of approximations

// computation step

// liven ⊆ sn ⊆ live0

Fig. 20. The “micro-step approach”

longer a constant, but now has to be computed from the pre-roots. This computation is slightly
intricate, since the graph is undergoing continuous changes. To be more precise, we have the
following scenario:

– There are q mutators M1, . . . , Mq .
– When Mutator Mi computes its local roots ri from its pre-root ρi , then the graph is in some

stage Gj .
– During the root computation the mutator stops its other activities. And the other muta-

tors cannot access the mutator’s local data. Hence the outgoing arcs from the local data
into the heap remain unchanged throughout the local root computation. Hence we obtain
ri = fi(ρi) = Gj .sucs(ρi).

10

Based on these observations, the set s0 = r that is computed by the mutators essentially is

r = f0(ρ0) ∪ f1(ρ1) . . . ∪ fq(ρq) // too naive

However, this naive approach doesn’t work all the time as we will show in the following.

A problem. Looking at our central correctness property 9 we would wish that the equality
f̃(ρ) = f̂(r) holds. Alas, this is not necessarily the case. To see this, consider the example of
Figure 21 (adapted from [9]).

M1 M2

a ∈ r1

b

M1 M2

a ∈ r1

b

addArc(ρ1, b)

delArc(a, b)

Fig. 21. A potential error

10 Note that this does not mean that the graph remains invariant throughout the computation of the local root
set ri . On the contrary, the other mutators will usually change the graph continuously. But these changes do
not affect the specific set Gj .sucs(ρi).

32

Suppose M1 has computed its (only) local root a, i.e. r1 = {a} (left side of Figure 21). Then
it resumes its normal activities, which happen to load a pointer to b into a local variable or
register; this is modeled as addArc(ρ1, b) on the right side of Figure 21. When the Collector now
starts its recycling activities, we have b /∈ r1, even though b ∈ sucs(ρ1). So the Collector starts
from a wrong root set.

It is easily seen that this can indeed be disastrous: suppose that before the start of the Collector
some Mutator M2 (or M1 itself) deletes the pointer from a to b (right side of Figure 21). Then
b will indeed be considered garbage, even though it is still reachable from M1.

This is the same problem as the one that we had already encountered in Figure 9 of Section 2.5.
However, there is a difference: the problematic pointers now are not caused by heap operations
but by operations on the local variables and registers. For reasons of efficiency we do not want
to slow down these local operations by wrapping them into read or write barriers.11 This would
be particularly unpleasant, since the protection is only needed during an extremely short phase
(namely the root marking), while the overhead would be hindering permanently.

In [9] further problems are illustrated that could occur, when the Mutator is e.g. interrupted
between the addArc(ρ1, b) and the delArc(a, b) operation for such a long time that the Collector
performs a whole collection cycle.

Towards a solution. We enforce the invariant

f̃i(ρ) ⊆ f̂i(si).

Then when the computation terminates with the fixpoint sn = fn(sn), the fixpoint properties
immediately entail

f̃n(ρ) ⊆ sn .

This can be rephrased as

liven ⊆ sn .

which is the main correctness criterion for the collector (as was stated in property 9 of Fig-
ure 12).

When looking at the critical situation of Figure 21, we can see that there are three perceivable
solutions for establishing this requirement:

1. We can stop all other activities of the mutators during the local-root computation.
This is very safe, but it clearly has the disadvantage of causing long pauses. In [9] it is shown
how this solution can be achieved using three handshakes that ensure that the Collector and
all Mutators are in sync.

2. We could request that the operation addArc(ρ1, b) puts b into the set si .
This is a correct solution, but it has the disadvantage that we need a read barrier for loading
heap pointers into local variables or registers. Even though this read barrier will be a single
if-test during most of the time, it does add overhead.

11 In some systems there is not even enough information to distinguish pointers from other values such that an
abundance of operations would have to be engulfed into this protective overhead of barriers.

33

3. We could request that the operation delArc(a, b) puts b into the set si .
This is a correct solution, which needs a write barrier on heap operations. This is not so
bad, since this write barrier already exists for handling the other problems encountered in
the previous sections. Still, there are disadvantages: marking nodes at the very moment of
their deletion will create floating garbage in the majority of cases. Moreover, the operation
delArc(a, b) has to touch the node a, since it changes one of its slots; but the marking
additionally has to touch another node, namely b. This adds to the overhead.

We should mention that a fourth kind of solution is possible in the “snapshot-at-the-beginning”
approaches (see Section 3.4). This is demonstrated in the so-called “sliding-views” approach of
[1].

4. The operation delArc(a, b) produces a clone of the node a.
The advantage here is that less floating garbage is generated and that only the object a needs
to be touched by the write barrier. But one has the overhead of the storing and managing
the snapshot.

6 Real-world Considerations

It is well known that realistic garbage collectors – in particular concurrent or parallel ones
– exhibit a huge amount of technical details that are ultimately responsible for the size and
complexity of the verification efforts. The pertinent issues cover a wide range of questions such
as:

– What are the exact read and write barriers?
– How do we treat the references in the global variables, the stacks and the registers?
– Where do we put the marker bits (in mark-and-sweep collectors) or the forward pointers (in

copying collectors)?

Evidently we do not have the space here to address these questions in detail. But we should at
least indicate the path towards their solution within our method. Therefore we list here some of
the technical features contained in realistic product-level collectors and show how they fit into
our framework.

6.1 The Mutators’ Capabilities

In Section 2.1 we have limited the Mutators’ behavior to the three operations addArc, delArc
and addNew . By contrast, Doligez et al. [9, 10] use eight operations, some of which are modified
in other approaches [11]. We may group their operations as follows:

– move, load : local data transfers (stack, registers) and read access to heap cells;
– reserve, create: obtain space from freelist; create cell in that space;
– fill, update: write into a new/existing cell;

34

– cooperate, mark : synchronize with Collector; mark local roots.

This design breaks the usual allocate operation into the three separate operations reserve, create,
fill. Moreover it treats fill differently from update, since a new object is guaranteed to be still un-
known to other Mutators and therefore can be handled with less synchronization overhead. (But
in the approach of [11] this distinction is abolished.) This diversity and granularity is important
for concrete discussions about issues such as Mutator-local mini heaps and other implementation
details. But for our modeling approach and its refinement and correctness considerations our
three basic operations cover the essential aspects. Technically speaking, the eight operations of
Doligez et al. can be obtained by refining our low-level models even further.

Moreover, Doligez et al. [9, 10] and many of their successor papers use a notation like heap[x,i]
to refer to the i-th slot in the object x in the heap. Our model achieves the same effect with a
more mathematical attitude by considering individual arcs (a → b). In other words, (a → b1),
. . . , (a → bk) model the slots of the object a. Our notation allows a more flexible treatment of
the question of whether objects are uniform or can have varying numbers of successor slots.

6.2 Availability of a Runtime System

Section 2.1 introduces an architecture with a component Store that represents the memory
management used in modern runtime systems such as .Net or JVM, based on old ideas from the
realm of functional languages such as ML or Haskell. Such a component provides only indirect
access to the heap such that it is relatively easy to integrate read or write barriers, handshakes
and other organizational means. The vast majority of the newer papers therefore target these
kinds of architectures.

In “uncooperative languages” such as C or C++ things are more intricate and it is not surprising
that only a few papers address their demands, e.g. [3]. The difficulties caused by such uncooper-
ative languages are overcome by using the capabilities of the underlying operating system such
as the page table to introduce concepts like dirty pages. Moreover, one has to deal with lots of
floating garbage, since – due to the lack of typing information – many non-pointer values have
to be treated conservatively as if they were pointers. Last but not least there are also more intri-
cate synchronization issues between the Collector and the Mutators. Benchmarks indicate that
the overhead in such uncooperative languages is considerably higher than that in cooperative
languages.

6.3 Generational Collectors

In Section 4.4 we have shown that we can superimpose the graph with an additional structuring
such that the set of nodes is partitioned into subsets: Nodes = N1 ⊎ . . . ⊎ Nk . Such a partitioning
is fully compatible with our correctness considerations and the pertinent refinements:

Generational garbage collectors partition the nodes according to their “age”, where the age
usually reflects the number of collection cycles that the node has survived.

Whereas in traditional garbage collectors the nodes are physically moved to another area, this
is no longer possible in concurrent collectors due to the large overhead that the pointer tracking

35

and synchronization would require. Therefore one usually only defines the generations logically.
A non-moving solution for concurrent collectors is presented by Domani et al. [12] basing on
earlier work of Demers et al. [7].

Printezis and Detlefs [24] describe a concurrent generational collector that has been implemented
as part of the SUN Research JVM. The different generations often use different collectors. For
the young generation, where nodes tend to die fast, copying collectors are the technique of choice,
whereas in older generations a mark-and-sweep approach works better [24].

The most critical issue in generational collectors is the treatment of old-to-young references,
since the whole point of generations is NOT to touch the elder generations in most collection
cycles. To cope with these references (that are caused by the Mutators’ activities) one usually
employs the dirty-cards or dirty-pages techniques that we discuss in the section.

6.4 “Dirty Areas” (Cards, Pages, . . .)

As has been pointed out in Section 4.4 the disturbances caused by the Mutators can be en-
capsulated into a concept of “dirty areas”, which allows a compromise between accuracy and
efficiency.

– Cards are often used to speed up the scanning by constraining it to memory areas that
actually may need scanning. This is done by using a dirty bit for each card, on which a
mutator has performed some update: when the dirty bit is set, the card needs to be scanned.
Cards and dirty bits are used (possibly under a different name) in connection with genera-
tional garbage collectors [24] but also to cope with problems caused by multiple mutators.
They can be based on very efficient write barriers. For example, the SUN ResearchVM [24]
uses the two-instruction write barrier proposed in [30].

– Pages taken from the virtual-page mechanism of the underlying OS together with dirty bits
can be used for uncooperative languages like C and C++, where no runtime system exists
that nicely separates the application programs from the memory management [3]. However,
as is reported in [14], the use of cards is more efficient than the use of page-protection-based
barriers.

6.5 Privacy of Local Data; Local Heaps

One of the primary goals of many concurrent-collector designs is to keep the stop times of the
mutators to a minimum (in practice within an order of magnitude of 2ms; see e.g. [1]). Here the
greatest barrier is the global synchronization, when the mutators derive the local roots from their
pre-roots (local registers and stack). The longest time that a thread waits for garbage collection
is the time for it to mark the objects directly reachable from its stack [11].

Based on the observation that the major percentage of heap dynamics comes from short-lived
and small objects, the global synchronization can be made less frequent by providing every
mutator with its own local “mini heap” [9, 13]. Then the mutator only needs to interact with
the global heap in order to acquire a new mini heap, when the old one is full, or in order to store
large objects. Otherwise it uses a very simple allocation scheme in its local heap, e.g. using a

36

so-called “bumper-pointer” technique [13]. This design, which is used e.g. in the IBM JVM, also
has the advantage of being cache-friendly [2, 4, 15].

6.6 Detailed Memory Management

There is a plethora of little details to be considered in real-world garbage collectors, of which
the following list gives but a small selection.

– Object size. The original garbage collectors by McCarthy [19] or Dijkstra [8] are based on the
assumption of fixed-size heap cells. But in reality these cells come in all sizes and internal
layouts. There all kinds of solutions for this problems such as using freelists of different sizes,
splitting large objects into smaller pieces, using Mutator-local heaps for small objects and
so forth. The size information is either stored with the object or inferred from the object’s
class. And so forth.

– Coalescing. The sweeping phase should try to combine consecutive free junks into one large
free junk in order to alleviate the fragmentation problem. This is easy in non-concurrent
collectors, but is more complex in concurrent collectors, since now the Collector and the
Mutators compete for the same resource, namely for the removal of cells from the freelist
[24].

– Marker and pointer management. All the algorithms use various kinds of markers – for
example the colors black, gray, white or the dirty bits – and various pointers – for example the
forward pointers in copying collectors or the clone pointers in the “sliding-views” approaches.
A typical technique for handling such problems is e.g. described in [13], where the vtable
pointer, which is the first word of every object, is overwritten for the forward pointer needed
in the copying collector. These pointers can be distinguished, since they point into disjoint
(and known) storage areas.

– Sets, markers and bitmaps. Many markers actually represent the membership of the node in
a certain set. This can either be implemented by a marker bit in each object or by a global
set representation using a bitmap.

– Coping with “no-information”. Most garbage collection approaches nowadays address the
JVM or DotNet, where all memory accesses of application programs are indirect, since they
are handled by a memory manager. Therefore all the garbage collection activity can be
bundled in the runtime system. Old systems based on C or C++ do not exhibit this luxury.
There one may at best use work-arounds such as employing the virtual-paging mechanism
of the underlying OS by making pages “dirty”, whenever they are written to [3]. Another
problem here is that many integer values have to treated as if they were pointers, this way
producing a lot of floating garbage.

7 Conclusion

We have shown how the main design concepts in contemporary concurrent collectors can be
derived from a common formal specification. The algorithmic basis of the concurrent collectors
required the development of some novel generalizations of classical fixpoint iteration theory. We
hope to find a wide variety of applications for the generalized theory, as there has been for the

37

classical theory. This is of interest since the reuse of abstract design knowledge across application
domains is a key factor in the economics of formal derivation technology. Alternative refinements
from the basic algorithm lead to a family tree of concurrent collectors, with shared ancestors
corresponding to shared design knowledge. While our presentation style has been pedagogical,
the next step is to develop the derivation tree in a formal derivation system, such as Specware.

Acknowledgment. We are grateful to Erez Petrank and Chris Hawblitzel, with whom one of
us (pp) enjoyed intensive discussions at Microsoft Research. Their profound knowledge on the
challenges of practical real-world garbage collectors motivated us to push our original high-level
and abstract treatment further towards concrete and detailed technical aspects – although we
realize that we may still be on a very abstract level in the eyes of true practitioners.

References

1. Hezi Azatchi, Yossi Levanoni, Harez Paz, and Erez Petrank. An on-the-fly mark and sweep garabage collector
based on sliding views. In OOPSLA’03, Anaheim CA, 2003.

2. Katherine Barabash, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Victor Leikehman, Yoav Ossia, Avi
Owshanko, and Erez Petrank. A parallel, incremental mostly concurrent garbage collector for servers. ACM
Transactions on Programming Languages, 27(6):1097–1146, Nov 2005.

3. Hans Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbage collection. SIGPLAN Notices,
26(6):157–164, 1991.

4. Sam Borman. Sensible sanitation – understanding the ibm java garbage collector, part i: Object allocation.
In IBM developer works, August 2002.

5. Mark H. Burstein and Douglas R. Smith. ITAS: A portable interactive transportation scheduling tool using
a search engine generated from formal specifications. In Proceedings of AIPS-96, Edinburgh, UK, May 1996.

6. Jiazhen Cai and Robert Paige. Program Derivation by Fixed Point Computation. Science of Computer
Programming, 11(3):197–261, April 1989.

7. Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm, Daniel G. Bobrow, and Scott Shenker. Combining gen-
erational and conservative garbage collection: Framework and implementations. POPL’90. ACM SIGPLAN
Notices, pages 261–269, January 1990.

8. Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. On-the-fly garbage
collection: An exercise in cooperation. Comm. ACM, 21(11):965–975, November 1978.

9. Damien Dolingez and Georges Gonthier. Portable, unobtrusive garbage collection for multiprocessor systems.
In POPL’94, Portland Oregon, ACM SIGPLAN Notices, pages 70–83. ACM Press, January 1994.

10. Damien Dolingez and Xavier Leroy. A concurrent generational garbage collector for a mulit-threaded im-
plementation of ml. In POPL’93, New York, NY, ACM SIGPLAN Notices, pages 113–123. ACM Press,
1993.

11. Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Eliot E. Salant, Katherine Barabash, Itai Lahan, Yossi
Levanoni, Erez Petrank, and Igor Yanorer. Implementing an on-the-fly garbage collector for java. In ISMM
’00: Proceedings of the 2nd international symposium on Memory management, pages 155–166, New York, NY,
USA, 2000. ACM.

12. Tamar Domani, Elliot K. Kolodner, and Erez Petrank. A generational on-the-fly garbage collector for java.
In PLDI’00, 2000.

13. Chris Hawblitzel and Erez Petrank. Automated verification of practical garbage collectors. In POPL’09,
Savannah, Georgia, pages 113–123, October 2009.

14. A. L. Hosking and J. Eliot B. Moss. Protection traps and alternatives for memory management of an object-
oriented language. In Barbara Liskov, editor, Proc. 14th Symposium on Operatig System Principles, New
York, pages 106–119. ACM Press, Decemeber 1993.

15. Haim Kermany and Erez Petrank. The compressor: Concurrent, incremental and parallel compaction. In
PLDI’06, Ottawa, pages 354–363. ACM Press, 2006.

16. Kestrel Institute, 3260 Hillview Ave., Palo Alto, CA 94304 USA. Specware System and documentation, 2003.
http://www.specware.org/.

17. Stephen Kleene. Introduction to Metamathematics. American Mathematical Society Press, 1956.

38

18. Yossi Levanoni and Erez Petrank. An on-the-fly reference counting garbage collector for java. oopsla 2001.
ACM SIGPLAN Notices, 36(10):367–380, 2001.

19. John MacCarthy. Recursive functions of symbolic expressions and their computation by machine. Comm.
ACM, 3(4):184–195, 1960.

20. Andrew McCreight, Zhong Shao, Chunxiao Lin, and Long Li. A general framework for certifying garbage
collectors and their mutators. In PLDI’07, San Diego, 2007.

21. Robert Paige and Shaye Koenig. Finite differencing of computable expressions. ACM Transactions on
Programming Languages, 4(3):402–454, July 1982.

22. Dusko Pavlovic, Peter Pepper, and Doug Smith. Colimits for concurrent collectors. In N. Dershovitz, editor,
Verification: Theory and practice, essays dedicated to Zohar Manna, volume 2772 of Lecture Notes in Computer
Science, pages 568–597. Springer Verlag, 2003.

23. Peter Pepper and Petra Hofstedt. Funktionale Programmierung. Springer Verlag, 2006.
24. Tony Printezis and David Detlefs. A generational mostly-concurrent garbage collector. Technical Report

SMLI TR-2000-88, SUN Microsystems, June 2000.
25. David M. Russinoff. A mechanically verified incremental garbage collectors. Formal Aspects of Computing,

6:359–390, 1994.
26. Douglas R. Smith. Designware: Software development by refinement. In M. Hoffman, D. Pavlovic, and

P. Rosolini, editors, Proceedings of the Eighth International Conference on Category Theory and Computer
Science, pages 355–370, 1999.

27. Douglas R. Smith, Eduardo A. Parra, and Stephen J. Westfold. Synthesis of planning and scheduling software.
In A. Tate, editor, Advanced Planning Technology, pages 226–234. AAAI Press, Menlo Park, 1996.

28. G. L. Steele. Multiprocessing compactifying garbage collection. Comm. ACM, 18(9):495–508, Sep. 1975.
29. Alfred Tarski. A lattice-theoretical fixpoint theorem and its applicatons. Pacific J. Math., 5(2):285–309, 1955.
30. Hölzle U. A fast write barrier for generationl garbage collectors. In OOPSLA’93 Workshop on Memory

Management and Garbage Collection, Washington DC, 1993.
31. Martin T. Vechev, Eran Yahav, and David F. Bacon. Correctness-preserving derivation of concurrent garbage

collection algorithms. In PLDI 06, Ottawa, Canada. ACM Press, 2006.
32. T. Yuasa. Real-time garbage collection on general-purpose machines. Journal of Systems and Software,

11(3):181–198, March 1990.

