
A Communication Framework for Fault-tolerant
Parallel Execution

Nagarajan Kanna1?, Jaspal Subhlok1, Edgar Gabriel1, Eshwar Rohit1, and
David Anderson2

1 Department of Computer Science, University of Houston
2 UC Berkeley Space Sciences Laboratory

Abstract. PC grids represent massive computation capacity at a low
cost, but are challenging to employ for parallel computing because of
variable and unpredictable performance and availability. A communi-
cating parallel program must employ checkpoint-restart and/or process
redundancy to make continuous forward progress in such an unreliable
environment. A communication model based on one-sided Put/Get calls,
pioneered by the Linda system, is a good match as processes can exe-
cute their communication operations independently and asynchronously.
However, Linda and its many variants are not designed for communicat-
ing processes that are replicated or independently restarted from check-
points. The key problem is that a single logical operation that impacts
the global program state may be executed by different instances of the
same process at different times leading to semantic inconsistency. This
paper presents the design, execution model, implementation, and valida-
tion of a communication layer for robust execution on volatile nodes. The
research leads to a practical way to employ idle PCs for latency tolerant
parallel computing applications.

1 Introduction

In recent years ordinary desktops and PCs have been employed successfully for
large scale scientific computing, most commonly using Condor [1] or BOINC [2]
as middleware. The Condor scheduler enables ordinary desktops to be employed
for compute intensive applications. It is deployed at over 850 known sites with
at least 125,000 hosts around the world. The BOINC middleware uses volun-
teered public PCs for scientific applications when idle. It has been remarkably
successful, managing over half a million nodes and over 30 scientific research

? This material is based upon the work supported by the National Science Foundation’s
Computer Systems Research program under Award No. CNS-0834750 and CNS-
0834807. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

0 Appears in Proceedings of LCPC 2009



projects since its release in 2004. However, the target applications for BOINC
and CONDOR are generally limited to master-slave or bag-of-tasks parallelism.

Idle desktops represent a potentially immense but volatile resource, i.e.,
they are heterogeneous and their availability to guest scientific applications can
change suddenly and frequently based on the desktop owner’s actions. Execution
of communicating parallel applications on volatile nodes is extremely challenging
because process failures and slowdowns are frequent and the failure or slowdown
of a single process impacts the entire application. Hence, a mechanism for fault
tolerance is practically a requirement. If a checkpoint-restart approach is used,
the checkpoints must be taken independently and asynchronously, because of
the potential overhead of global synchronization. For this approach, the commu-
nication framework must be able to respond to communication requests during
recovery, which are duplicate requests corresponding to a communication opera-
tion that was executed in a past state of program execution. Similar functionality
is required when redundancy is employed for fault tolerance, an approach that
becomes more attractive in high failure scenarios [3]. With redundancy, multiple
physical processes in different states co-exist for a single logical process, and the
communication framework must be able to respond to redundant communication
requests from process replicas.

Implementation of MPI style message passing, the dominant paradigm for
parallel programming today, is problematic in such scenarios because of the
synchronous nature of message transfers. Put/Get style asynchronous commu-
nication pioneered by Linda [4] is potentially a good fit for communication on
volatile nodes as it provides an abstract global shared space that processes can
use for information exchange without a temporal or spatial coupling. However
redundant processes or asynchronous recovery from checkpoints is not supported
in existing systems that provide an abstract global shared space.

This paper introduces the Volpex dataspace API for anonymous Put/Get
style communication among processes. The API and its execution model can
support common message passing and shared memory programming styles. The
key additional requirement is correct and efficient support for multiple physical
Put/Get requests corresponding to a single logical Put/Get request. All requests
corresponding to a unique logical request are satisfied in the same manner with
identical data objects. This allows support of checkpointed or redundant exe-
cution with the final results guaranteed to be identical to (one of the possible)
results with normal execution. Management of checkpointing and redundancy is
orthogonal to this process; the communication infrastructure does not need to
be informed whether, and to what extent, redundancy or checkpoint-restarts are
being employed.

This dataspace communication API is a component of the Volpex frame-
work (Parallel Execution on Volatile nodes) that attempts to achieve seamless
forward application progress in the presence of routine failures by employing
redundancy and checkpointing. The primary goal is to transform ordinary PCs
into virtual clusters to run a variety of parallel codes. However, the methods
developed in the paper are potentially applicable to other scenarios also, such as

2



employing unused process cores to run replicas to improve reliability. The paper
presents the design, execution model, implementation, and preliminary results
for the Volpex dataspace API. The communication framework is being integrated
with BOINC framework for volunteer computing and target applications include
Replica Exchange Molecular Dynamics and MapReduce.

2 Related work

Idle desktops are widely used for parallel and distributed computing. The Berke-
ley Open Infrastructure for Network Computing (BOINC) [2] is a middleware
system widely used for volunteer computing where people donate the use of their
computers to help scientific research. Condor [1] is a workload management sys-
tem that can effectively harness wasted CPU power from otherwise idle desktop
workstations. Other systems that build desktop computing grids include En-
tropia [5], iShare [6], and OurGrid [7]. Mechanisms applied for fault tolerance
in PC grids, such as redundancy in BOINC and checkpointing in Condor [8] are
important for long running sequential and bag-of-task codes, but are generally
not sufficient for communicating parallel programs.

Linda [4] has been an active research topic for over two decades. It represents
a model of coordination and communication among parallel processes based on
logically global associative memory, called a tuplespace, in which processes store
and retrieve tuples. There are a number of variants of Linda available, such as
TSpaces [9], JavaSpaces [10], and SALSA [11], a Linda adaptation for molecular
dynamics applications.

There has been considerable work in fault tolerance in Linda, but it has
largely focused on making the Linda tuplespace itself resilient to failure. A
replication based fault tolerant implementation of Linda tuplespace is discussed
in [12]. FT-Linda [13] provides a stable tuple space that persists across failures
and atomic tuple space transactions that allow development of some types of
fault tolerant applications. PLinda [14] provides transactional mechanisms to
achieve atomic operations and process-private logging that processes can uti-
lize for checkpoint-restart mechanisms. We have employed some of the ideas, in
particular, atomic operations. However, none of these (and other) frameworks
provide transparent processing of arbitrary replicated communication requests.
This paper reports on development of this functionality, which can be employed
to support replicated processes or to service communication requests of processes
restarted from local checkpoints.

Several implementations of the MPI specification have focused on deploy-
ing fault-tolerance mechanisms. The projects either rely on extending the MPI
specification to define the state of MPI objects in case of process failures, e.g.
the FT-MPI [15] library. Alternatively they use replication techniques, e.g., in
MPI/FT library [16] or integrate some form of checkpoint-restart mechanism in
order to provide transparent fault-tolerance to MPI applications. MPICH-V [17],
a representative of the last category mentioned, is based on uncoordinated check-
pointing and pessimistic message logging. The library stores all communications

3



of the system on reliable media through the usage of a channel memory. Volpex
MPI [18], developed as part of our work, uses a similar approach but employs
sender based logging and supports replicated processes.

3 Dataspace programming model

The programming model we have developed consists of independent processes
communicating through an abstract dataspace. An important consideration was
that the execution model allow seamless execution with multiple and varying
number of instances of each process. The design of the dataspace was driven
by simplicity and ease of implementation with redundancy. We first present the
current dataspace API syntax and semantics. Subsequently, we justify the design
decisions made and make a case for some changes in the future.

3.1 Dataspace API

The core API for the Volpex dataspace communication library consists of calls
to add, read and remove data objects to/from an abstract global dataspace, with
each object identified by a unique tag which is an index into the dataspace. The
concept of a dataspace is similar to that of a tuplespace in Linda. The main
communication calls are as follows:

Volpex put(tag, data)
A Volpex put call writes the data object data into the abstract dataspace iden-
tified with tag. Any existing data object with the same tag is overwritten.

Volpex read(tag)
A Volpex read call returns the data object that matches the tag in the dataspace.

Volpex get(tag)
A Volpex get call returns the data object that matches the tag in the dataspace,
and then removes that data object from the dataspace.

Volpex read and Volpex get calls are identical except that Volpex get also
clears the matched data object from the dataspace. Both Volpex read and Volpex get
are blocking calls: if there is no matching data object in the dataspace, the calls
block until a matching data object is added to the dataspace. A Volpex put call
only blocks until the operation is completed. Additional calls are available in
the API to retrieve the process Id and the the number of processes, and to ini-
tialize and terminate communication with the dataspace server. The full API is
outlined in Table 1.

3.2 API design considerations

The set of calls in the dataspace API is minimal but is sufficient to simulate basic
message passing and shared memory style communication. A data object can

4



Table 1. Volpex dataspace communication API

int volpex put (const char* tag, int tagSize, const void* data, int dataSize)
int volpex get (const char* tag, int tagSize, void* data, int dataSize)
int volpex read (const char* tag, int tagSize, void* data, int dataSize)
int volpex getProcId (void)
int volpex getNumProc(void)
int volpex init(int argc, char* argv[])
void volpex finalize(void)

tag Identifies each data object in the dataspace
tagSize Number of bytes of tag
data Pointer to data object being read/written
dataSize Number of bytes of data
volpex put() Writes data object with the tag value
volpex read() Retrieves data object matching tag
volpex get() Retrieves & deletes data object matching tag
volpex getProcId() Returns process Id of the current process
volpex getNumProc() Returns total number of application processes
volpex init() Initialize and connect with dataspace server
volpex finalize() Releases all resources and terminates

be read multiple times until it is removed, and data objects can be overwritten,
allowing shared memory style programming. Read and get operations block when
no object with a matching tag exists and the get operation clears a data object.
These can be used to provide various flavors of synchronization, e.g., barriers,
blocking receives, and shared queues for dynamic distribution of work.

The dataspace API is different from Linda in some ways.

1. Single tag: The parameters for dataspace API calls are a data object and a
tag. Data matching is based on a designated tag and associative matching
across multiple tuples is not supported. This decision was made for simplicity
and efficiency of implementation, without, in our experience, significantly
affecting programmability. Our implementation does provide a set of helper
functions to generate a unique tag from a set of tuples.

2. Blocking read calls: The read and get calls in the dataspace API are blocking.
It is well understood that support for blocking calls is essential to support
coordination across processes. Non-blocking calls, where a get or read returns
with no action if no matching object exist, make programming easier in some
contexts. An example is a master-worker scenario where a worker checks
multiple queues for tasks to execute. Additional non-blocking read/get calls
can be supported with redundancy, and are being considered as an extension
of this work.

3. Single assignment puts: Some languages allow a data object to be written
only once and not overwritten. This has some desirable properties from soft-
ware design and implementation perspectives. However, re-assigning to the

5



same tag is essential to easily simulate unstructured shared memory pro-
grams. Hence, a multiple assignment model was selected.

4. Process creation: There is no support for process creation analogous to Linda
eval call as process creation and management is done externally.

4 Execution model

The basic semantics of the communication operations are straightforward as
listed in the discussion of the API above. However, managing redundant com-
munication requests is a significant challenge. The key problem is that a logical
call (with side effects) may be executed repeatedly or executed at a time when
the state of the dataspace is not consistent with normal execution. For example,
what action should be taken if a late running process replica issues a get or read
for which the logically matching data object is not available in the dataspace
anymore, either because they were removed by another get or overwritten by
another put ?

The guiding principle for the execution model is that the execution results
with redundant communication calls must be consistent with normal execution.
We will refer to execution with replicated/redundant communication calls, due
to process redundancy or process checkpoint-restarts, simply as redundant exe-
cution, for brevity. If the parallel application is deterministic, then normal and
redundant executions should give the same results. If the parallel application is
non-deterministic, then redundant execution will return one possible result of a
normal execution without replication. The major components of the execution
model are the following:

1. Atomicity rule: The basic put/read/get operations are atomic and executed
in some global serial order.

2. Single put rule: When multiple replicas of a process issue a Volpex put, the
first writer accomplishes a successful operation. Subsequent corresponding
Volpex put operations are ignored.

3. Identical get rule: The first replica issuing a Volpex get or a Volpex read re-
ceives the value stored at the time in the dataspace. Subsequently, replicas
of the corresponding Volpex get or Volpex read receive the same value, inde-
pendent of the time they are executed.

The execution model can be illustrated as follows. The process instances
that execute the first instance of a logical communication call create a lead-
ing front of execution representing normal execution without redundancy. The
execution model ensures that a) the trailing replica communication calls have
no side-effects (single put rule), hence they cannot cause incorrect execution of
leading replicas by corrupting the dataspace and b) trailing replica communica-
tion calls are guaranteed to receive the same data objects for read and get calls
as the corresponding first communication calls (identical get rule). All process
instances execute identically as the effect of communication calls on the pro-
cesses is identical irrespective of their execution time and application state at

6



that time. Execution proceeds seamlessly in case of process failures, so long as
at least one instance of each process exists or is re-created from a checkpoint.
The fundamental result that we have developed informally is as follows:
Lemma 1: Consider a program with multiple sequential processes communicating
exclusively with Volpex dataspace API. Assume that the communication imple-
mentation follows the atomicity, single put, and identical get rules. Then any
result produced by redundant execution is identical to one of the possible results
of normal execution.

As discussed earlier, redundancy may be caused by explicit replicated pro-
cesses or independent checkpoint-restarts of processes. An implicit assumption
is that the program does not cause external side effects, e.g., as a result of file
or network I/O. It is also assumed that there is no non-repeatable program be-
havior, e.g., due to bugs or use of a random number generator. No redundancy
or checkpoint-restart scheme can work without these conditions. However, non
deterministic programs are allowed; results with redundancy are one of the pos-
sible results of non deterministic execution. A formal proof is omitted for brevity
but is straightforward.

5 Implementation

We first present the basic dataspace server design and then discuss major design
and implementation issues and choices.

5.1 Dataspace server design

The implementation of the Volpex dataspace API must conform to the execu-
tion semantics discussed in Section 3. The atomicity rule is satisfied by a single
threaded server that processes one client request at a time. In order to satisfy the
single put and identical get rules of the execution model, additional machinery is
needed. Each logical communication call (put, get, or read) is uniquely identified
by the pair: (process id, request number), where request number is the current
count in the sequence of requests from a process. When a communication call
is issued by a process, the process id and request number are appended to the
message sent to the dataspace server to service the request. For replicated calls
corresponding to the same logical call, the (process id, request number) pairs are
identical. This allows the identification of a new call and subsequent replicated
calls.

The server implementation maintains the current request number for each
process, which is the highest request number served for that process so far. The
server also maintains two logically different pools of storage as shown in Figure 1.

– Dataspace table: This storage consists of the logically “current” data objects
indexed with tags.

– Read log buffer: This storage consists of data objects recently delivered from
the dataspace server to processes in response to get and read calls. Each
object is uniquely identified by (process id, request number).

7



When a communication API call is executed in a process, a message is sent
to the dataspace server consisting of the type and parameters of the call and
(process id, request number) information. A request handler at the server services
the call as follows:

– Put: If the request number of the call is greater than the current request
number for the process (a new put), the data objected indexed with the tag
is added to the dataspace table. If the request number of the call is less than
or equal to the current request number (a replica put for which the data
object must already exist on the server), no action is taken.

– Get or Read: If the request number of the call is greater than the current
request number for the process (a new get), then i) the data object match-
ing the tag is returned from the dataspace storage, and ii) a copy of the
data object is placed in the read log buffer indexed with (process id, re-
quest number). Additionally if the call is a get, the data object is deleted
from the dataspace table (but retained in the read log buffer).
If the request number of the call is less than or equal to the current request
number (a replica get for which the data object must exist in the read log),
the data object matching (process id, request number) is returned from the
read log buffer.

The design of the dataspace server is illustrated in Figure 1.

Request 
Handler

Dataspace:
Hash table
(Tag,Data)

Index on Tag

List of read data 
for process KRead/Get 

Buffer
per

Process

2Process K
Replica 1

Process K
Replica 2

1. PUT(Tag1, Data1)

3. READ(Tag1)

4

8 56. PUT(Tag1, Data1)
Ignored

7. READ(Tag1)
From Buffer

Fig. 1. Volpex dataspace server design

5.2 Optimistic logging

The design presented in section 5.1 is based on pessimistic logging. Each time
a data object is delivered as a result of a get or a read call, the data object is
copied to the log. Future replicas of that call are returned objects from the log.

8



An optimistic approach to logging minimizes copying by taking advantage of
the fact that a copy to the log is only necessary if the location with the corre-
sponding tag is overwritten. Hence the following procedure is followed. When an
object is delivered from the dataspace in response to a read, the corresponding
object is only flagged as having been read. The same action is taken on a get,
except that the object is flagged as logically removed (but not actually removed).
When the object is overwritten with a put, only then the data object is copied
to the log before being overwritten. The replica read and get calls are directed
appropriately to the main dataspace or the log space.

Optimistic logging can lead to significant saving in memory and copying
overhead. In particular, if a tag is never overwritten, not an uncommon scenario
in our experience, no logging is necessary at all. If a data object is read by
multiple processes, the memory saving can be proportional to the number of
processes. However, the logic for directing a read or get request correctly is
somewhat more complex with optimistic logging. Our current implementation is
based on pessimistic logging, and we are developing an optimistic logging based
implementation.

5.3 Log buffer management

An important consideration in the design of a dataspace server is how long
should an object be retained in the read log buffer? In theory a replica or check-
point restarted process can be arbitrarily out of date with the current state of
execution, and hence clearing any old object from the log buffer can cause a
communication operation to fail. In practice, a very old copy is unlikely to be a
factor in application progress and robustness. The current dataspace server has
a circular read log buffer whose size is specified as a parameter during initial-
ization. When the buffer is full, the oldest entry is deleted. One scheme that is
being implemented relies on the use of disk storage for older entries, prior to
deletion. Since the dataspace server implicitly tracks the status of all process
replicas, there is room for more sophisticated implementations. For instance, a
read buffer log entry could be retained until a fixed number of replicas have
accessed the object. In the case of usage of checkpointing, log entries can be
deleted once a process checkpoint generation ensures that older log entries will
not be needed even in the case of a process failure.

5.4 Distributed and multithreaded implementations

The current dataspace server is a single-threaded server which multiplexes be-
tween various requests from the clients. The design allows a distributed im-
plementation by partitioning the abstract global address space whereby each
process or thread has exclusive access to a part of the tag address space. The
design for a multithreaded implementation, where threads can service arbitrary
requests but ensure consistency, has been developed based on similar Linda im-
plementations. As long as concurrent threads are working on independent tags,

9



the only requirement is atomic access to data structures in some cases, such as
lists in the log buffers.

5.5 Implementation framework

Our communication library is built on C/C++ using TCP Sockets. The data
provided by the processes is stored in-memory. The tag and data objects are
stored in the form of a hash table indexed with tags. The read log buffer is im-
plemented as a combination of hash table and lists. All data transfers are realized
as one-way communication initiated by the client processes. The clients establish
a connection with the dataspace server using TCP-Sockets before performing any
operations. This connection is retained until all the operations on the dataspace
are completed. If the connection is interrupted, processes try to reestablish the
connection with the server in exponentially increasing time intervals.

5.6 Integration with BOINC

The BOINC middleware is widely used for distributed scientific computing. with
a bag of tasks programming model. BOINC runs well on volatile nodes, because
it offers a combination of application-level checkpointing and redundancy to
handle failure and computation errors. However, the BOINC platform does not
support communicating parallel programs.

This project has leveraged BOINC for management of task distribution and
redundancy on volatile nodes, while applying the Volpex dataspace API for
inter-task communication. When an application is compiled, it is linked with the
BOINC and Volpex libraries. The BOINC redundancy mechanism is employed
to create the desired degree of process replication. However, we currently use
BOINC to provide some services while complete integration with BOINC is
ongoing.

6 Usage and results

The Volpex dataspace communication library has been implemented and de-
ployed. Experimentation and validation was done on compute clusters as well
as ordinary desktops that constitute a “Campus BOINC” installation at Uni-
versity of Houston. Results are presented for clients on a compute cluster for
repeatability of experiments.

The dataspace framework has been employed to develop a variety of bench-
marks and codes, listed as follows:

1. Latency and bandwidth microbenchmarks.
2. Sieve of Erastothenes (SoE), a well known algorithm for finding prime num-

bers. The dataspace API was used to broadcast a new prime number to all
processes in the parallel implementation.

10



3. Parallel Sorting by Regular Sampling (PSRS), a well known sorting algo-
rithm. The dataspace API was used for all-to-all communication in the al-
gorithm.

4. Replica Exchange for Molecular Dynamics (REMD), a real world application
used in protein folding research [19]. Each node runs a piece of molecular
simulation at a different temperature using the AMBER program [20]. At
certain time steps, temperature data is exchanged between neighboring nodes
based on the Metropolis criterion, in case a given parameter is less than or
equal to zero. In our implementation of this code, the dataspace API is used
to i) store process-temperature mapping, ii) synchronization of the processes
at the end of each step, iii) identification and retrieval of energy values from
neighboring processes, and iv) swapping of temperatures between processes
when needed.

5. MapReduce, a framework for distributed computing from Google. Dataspace
is used as the intermediary for data exchange between the processors exe-
cuting the Map and Reduce phases.

In all cases, fault tolerance was achieved by replicating the computation pro-
cesses on independent nodes. A full discussion of code development and perfor-
mance analysis is beyond the scope of this paper, but we discuss sample results
from latency/bandwidth benchmarks and SoE code. The codes were executed
on the “Atlantis” cluster which has Itanium2 1.3GHz dual core nodes with 4GB
of memory running RHEL (5.1). The dataspace server was running on AMD
Athlon 2.4GHz dual core with 2GB of memory running Fedora Core 5. The
server and client nodes were on different subnets that are part of a 100Mbps
LAN on UH campus.

6.1 Benchmarking of API calls

In the first set of experiments, we recorded the time taken to execute the dif-
ferent API calls by the client with varying message sizes and varying degree of
replication.

The effective bandwidth delivered by the server in response to put operations
is presented in Figure 2(a). Note that the bandwidth presented is the aggregate
bandwidth delivered by the server in response to all clients in case of replication.

We observe that the general bandwidth trend is typical of this 100Mbps
LAN environment. The effective bandwidth increases with the size of the data
object but flattens out around 12MBytes/sec (or 96Mbps), which is just below
the network capacity of 100Mbps. Hence, the system overhead is not significant.
The figure also shows the effective bandwidth with 2 and 4 replicated processes.
A slight reduction in delivered bandwidth is visible for midrange of message
sizes. It is instructive to recall how replicated put operations work. The first
put actually transfers the data object over the network, and replica put calls
are returned without any data transfer. Thus, the total network traffic does
not increase significantly with replication. Hence, it is not surprising that the
effective bandwidth delivered by the server is not significantly affected. The

11



(a) PUTs (b) GETs

Fig. 2. Aggregate Bandwidth for PUT and GET operations with and without replicas

slight reduction is attributed to the overhead of processing of put calls from
other replicas.

The results for the delivered bandwidth for get operations are presented in
Figure 2(b). We omit the results for read operation as they are virtually identical
to those for the get operation.

Without replication, the performance of get operations is very similar to the
performance of put operations and the same discussion applies. However, the
behavior with replicas is very different for get operations. It is instructive to recall
that replicated get operations are handled very differently from put operations.
Each replicated get call leads to the entire data object being transferred from
the server to a client replica. Hence, for a degree of replication of k the network
traffic for get calls increases by a degree of k while it remains unchanged for
put operations. Figure 2(b) shows that the aggregate bandwidth delivered by
the server increases significantly with replication except for very high message
sizes where the bandwidth is (probably) limited by the network capacity. The
server is able to register a higher bandwidth as 2 and 4 replicas imply that the
aggregate rate at which the data is being demanded by the clients increases by
a factor of 2 and 4, respectively.

6.2 Sieve of Erastothenes

We study the the SoE program to gain more understanding of performance
aspects of employing dataspace for computing. In SoE, prime numbers are iden-
tified by eliminating the multiples of discovered prime numbers. In the parallel
implementation, a newly identified prime number has to be broadcast to all pro-
cessors for elimination of all its multiples. For broadcast with the dataspace API,
one process executes a put while all other processes issue a read. A communi-
cation optimized version of this program was also developed where a broadcast

12



is done only after a block of prime numbers are discovered. This optimization
reduces the number of messages sent by a factor equal to blocksize. The SoE pro-
gram was executed to discover primes up to 8 billion, without blocking (blocksize
= 1) and with a blocksize of 10. The results are shown in Figure 3.

(a) Scalability (b) Replication

Fig. 3. Performance of Sieve of Eratosthenes (SoE)

We observe from Figure 3(a) that the blocked version of SoE scales well
up to 128 processors, while the version without blocking scales only up to 32
processors. Frequent broadcast of a single number makes the algorithm without
blocking highly latency sensitive, and the dataspace implementation on a LAN
does exhibit higher latency than, say, a dedicated cluster. Figure 3(b) shows per-
formance with replication for fault tolerance. Even though a redundancy of 2 is
generally sufficient, the execution time was measured with the number of replicas
varied from 1 to 5 to gain more insight. Without blocking we see a steady linear
increase in execution time by about 20 seconds with each added level of redun-
dancy, which is about half of the execution time without replication. The per-
formance of the blocked version is not affected by replication. The reason is that
the unblocked SoE is a communication intensive application where the datas-
pace server becomes the bottleneck. The execution time increases as increased
read requests from the replicas overwhelm the dataspace server. While this ex-
periment is designed to stress the dataspace server, it does indicate the need for
distributed and multithreaded implementations for increasing the throughput.

6.3 Failure behavior

We also evaluated the impact of node failures on application performance with
replicas. In all cases, the application execution time was not negatively impacted
with failure of some replicas. In fact failure sometimes led to a slight improvement

13



in performance as it leads to a reduction of communication traffic. Of course,
multiple failures will eventually cause the application to fail. Results are omitted
for brevity but available in [21].

7 Conclusions

This paper introduces the Volpex dataspace API that allows efficient Put/Get
operations on an abstract global shared memory. An innovative communication
model and implementation ensure consistent execution results in the presence
of multiple asynchronous invocations of a single communication call due to the
employment of checkpoint-restart or redundancy for fault tolerance.

The target of this research is the Volpex execution environment that aims to
support efficient execution of communicating parallel programs on volatile idle
desktops. The example codes developed demonstrate that the framework can be
employed for diverse applications. The overhead of the dataspace framework is
low and it delivers the performance and scalability expected on LAN connected
nodes, while enabling significant protection against failures.

While dedicated compute clusters will always be preferable for many latency
sensitive applications, other loosely coupled parallel applications can gain rea-
sonable performance on ordinary desktops. However, the volatility of desktops
is a central problem and the current usage of volatile desktops is limited to em-
barrassingly parallel (or bag of tasks) or master-slave applications. We believe
this work expands the realm of computing on idle desktops to a much larger
class of parallel applications. If a substantial fraction of HPC applications could
be executed on shared desktops, the impact will be significant as the clusters
can be dedicated to latency sensitive applications that they are designed for.
Finally, the dataspace framework is motivated by computing on idle desktops
but it can be applied to clusters and other computing environments to increase
robustness.

References

1. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the
Condor experience. Concurrency - Practice and Experience 17(2-4) (2005) 323–
356

2. Anderson, D.P.: BOINC: A system for public-resource computing and storage. In:
GRID ’04: Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing, Washington, DC, USA, IEEE Computer Society (2004) 4–10

3. Zheng, R., Subhlok, J.: A quantitative comparison of checkpoint with restart and
replication in volatile environments. Technical Report UH-CS-08-06, University of
Houston (June 2008)

4. Carriero, N., Gelernter, D.: The S/Net’s Linda kernel. ACM Trans. Comput. Syst.
4(2) (1986) 110–129

5. Kondo, D., Taufer, M., Brooks, C., Casanova, H., Chien, A.: Characterizing and
evaluating desktop grids: an empirical study. Proceedings. 18th International Par-
allel and Distributed Processing Symposium (April 2004) 26–

14



6. Ren, X., Eigenmann, R.: iShare - Open internet sharing built on peer-to-peer and
web. In: European Grid Conference, Amsterdam, Netherlands (Feb 2005)

7. Cirne, W., Brasileiro, F., Andrade, N., Costa, L., Andrade, A., Novaes, R., Mow-
bray, M.: Labs of the world, unite!!! Journal of Grid Computing 4(3) (2006)
225–246

8. Litzkow, M., Tannenbaum, T., Basney, J., Livny, M.: Checkpoint and migration
of UNIX processes in the Condor distributed processing system. Technical Report
UW-CS-TR-1346, University of Wisconsin - Madison Computer Sciences Depart-
ment (April 1997)

9. : http://www.almaden.ibm.com/cs/tspaces/
10. Noble, M.S., Zlateva, S.: Scientific computation with javaspaces. In: HPCN Eu-

rope 2001: Proceedings of the 9th International Conference on High-Performance
Computing and Networking, London, UK, Springer-Verlag (2001) 657–666

11. Zhang, L., Parashar, M., Gallicchio, E., Levy, R.M.: Salsa: Scalable asynchronous
replica exchange for parallel molecular dynamics applications. In: ICPP ’06: Pro-
ceedings of the 2006 International Conference on Parallel Processing, Washington,
DC, USA, IEEE Computer Society (2006) 127–134

12. Xu, A., Liskov, B.: A design for a fault-tolerant, distributed implementation of
Linda. In: Proc. Nineteenth International Symposium on Fault-Tolerant Comput-
ing (FTCS-19), Chicago, IL (June 1989)

13. Bakken, D.E., Schlichting, R.D.: Supporting fault-tolerant parallel programming
in Linda. IEEE Transactions on Parallel and Distributed Systems 6(3) (1995)
287–302

14. Jeong, K., Shasha, D.: PLinda 2.0: A transactional/checkpointing approach to fault
tolerant Linda. In: Proceedings of the 13th Symposium on Reliable Distributed
Systems, Dana Point, CA, USA (1994) 96–105

15. Fagg, G.E., Gabriel, E., Chen, Z., Angskun, T., Bosilca, G., Pjesivac-Grbovic, J.,
Dongarra, J.J.: Process fault-tolerance: Semantics, design and applications f or high
performance computing. International Journal of High Performance Computing
Applica tions 19 (2005) 465–477

16. Batchu, R., Neelamegam, J.P., Cui, Z., Beddhu, M., Skjellum, A., Dandass, Y.:
MPI/FT: Architecture and taxonomies for fault-tolerant, message-passing middle-
ware for performance-portable parallel computing. In: In Proceedings of the 1st
IEEE International Symposium of Cluster Computing and the Grid. (2001) 26–33

17. Bouteiller, A., Cappello, F., Herault, T., Krawezik, G., Lemarinie r, P., Magniette,
F.: MPICH-V2: A fault tolerant MPI for volatile nodes based on pessimistic sender
based message logging. In: SC ’03: Proceedings of the 2003 ACM/IEEE conference
on Supercomputing, Washington, DC, USA, IEEE Computer Society (2003) 25

18. LeBlanc, T., Anand, R., Gabriel, E., Subhlok, J.: VolpexMPI: an MPI Library
for Execution of Parallel Applications on Volatile Nodes. In: Proc. The 16th
EuroPVM/MPI 2009 Conference, Espoo, Finland (2009) 124–133 To Appear in
Lecture Notes in Computer Science, volume 5759.

19. Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein
folding. Chemical Physics Letters 314 (1999) 141–151

20. Case, D., Pearlman, D., Caldwell, J.W., Cheatham, T., Ross, W., Simmerling, C.,
Darden, T., Merz, K., Stanton, R., Cheng, A.: Amber 6 Manual. (1999)

21. Kanna, N.: Inter-task communication on volatile nodes. Master’s thesis, University
of Houston (December 2009)

15


