
Fastpath Speculative Parallelization?

Michael F. Spear2, Kirk Kelsey1, Tongxin Bai1, Luke Dalessandro1,
Michael L. Scott1, Chen Ding1, and Peng Wu3

1 University of Rochester
{kelsey,bai,luked,scott,cding}@cs.rochester.edu

2 Lehigh University
spear@cse.lehigh.edu

3 IBM T. J. Watson Research Center
pengwu@us.ibm.com

Abstract. We describe Fastpath, a system for speculative paralleliza-
tion of sequential programs on conventional multicore processors. Our
system distinguishes between the lead thread, which executes at almost-
native speed, and speculative threads, which execute somewhat slower.
This allows us to achieve nontrivial speedup, even on two-core machines.
We present a mathematical model of potential speedup, parameterized
by application characteristics and implementation constants. We also
present preliminary results gleaned from two different Fastpath imple-
mentations, each derived from an implementation of software transac-
tional memory.

1 Introduction

As just about everyone knows by now, constraints on heat dissipation and avail-
able instruction-level parallelism dictate that mainstream processors will have
multiple cores for the foreseeable future, and maximum performance will require
that programs exhibit thread-level parallelism. Building such parallelism into
new programs is difficult enough; retrofitting it into the vast repository of legacy
code is a truly daunting task, particularly given that most programs are old
enough that no available programmer understands them very well.

There exists a huge literature—and significant commercial tools—devoted to
the automatic parallelization of legacy code. Developed largely for high perfor-
mance scientific computing, parallelizing compilers work very well for programs
with very regular data parallelism. Unfortunately, many programs don’t fit the
mold. Some simply cannot be parallelized without fundamental algorithmic re-
structuring. Others offer the tantalizing prospect of latent parallelism that is
typically available at run time, but difficult (or impossible) to predict at compile
time, because either (1) the program is too complex for current technology to
analyze, or (2) the sections of code that we would like to run in parallel are
usually, but not always, independent, due either to statistical properties of the
program itself or to input dependences. These we target here.
? At the University of Rochester, this work was supported by NSF grants CNS-

0615139, CCF-0702505, CSR-0720796, and CNS-0834566; by equipment support
from Sun and IBM; and by financial support from IBM, Intel, and Microsoft.

mls
LCPC '09



2

Speculative parallelization aims to exploit dynamic thread-level parallelism.
Blocks of code that are likely, though not certain, to be mutually independent
are statically identified—in our case by the programmer, though in principle
it could be by the compiler. Then, at run time, the language implementation
runs the blocks concurrently, monitoring their executions for conflicts, and in
the event of conflict preserves the execution that would have come first in a
sequential execution, undoing the others.

Our system, Fastpath, works entirely in software within a single address
space, making it suitable for existing multicore processors and for programs
with potentially parallizable blocks on the order of a single function call in size.
Drawing inspiration from hardware implementations of thread-level speculation,
we distinguish between a lead thread, which has minimal overhead and is guar-
anteed to complete (in the absence of fatal program bugs), and one or more spec-
ulative threads, which have higher overhead and complete only after they have
been shown not to conflict with earlier threads. This implementation strategy
allows us to execute lead-thread code at essentially native speed. It also allows
us to obtain nontrivial speedup (on the order of 25%) for important classes of
programs on even a dual-core processor.

In Section 2 we present a mathematical model of potential speedup in Fast-
path, parameterized by instrumentation overheads and program characteristics.
Focusing on loop-based parallelization (our system could also make use of fu-
tures [1]), we consider both steady-state pipelined execution and the optimal
partitioning of work across threads that start executing concurrently. Section 3
describes two implementations of our system. Both employ techniques originally
developed for transactional memory. They differ in the types of instrumentation
inserted in the program; one has larger per-block overhead, the other larger per-
instruction overhead. Preliminary results appear in Section 4. Related work is
described in Section 5. We conclude in Section 6 with current status and plans.

2 Mathematical Model

2.1 Steady State Model

The intuition for our model appears in Figure 1. We assume that loop iterations
(or other speculative blocks) are approximately equal in size, mutually inde-
pendent at run time (and thus concurrently executable), and significantly more
numerous than worker threads. We assume the following parameters.

– w is the amount of work (sequential execution time) required by each loop
iteration.

– p is the number of worker threads.
– rf is the time required per unit of work when running in fast (lead thread)

mode. This is likely to be a factor slightly larger than 1.
– rs is the time required per unit of work when running in slow (speculative)

mode. This will be larger than 1, but probably less than 8.



3

Fig. 1. Speculative pipelining. Each thread repeatedly executes part of a loop iteration
in slow mode (dashed line), transitions to fast mode when signaled by its predecessor
(dotted line), and completes its iteration in fast mode (solid line). The time spent in
speculative mode (between the vertical gray lines) should be equal, in steady state, to
the time required for transition and fast-path execution in the other threads.

– rc is the time required per unit of work to convert from slow mode to fast
mode. It covers validation of speculative reads (if this requires linear time)
and write-back of speculative writes. It needs to be significantly less than 1,
or speculative execution will be counterproductive.

– cc is the constant cost component of the slow-to-fast transition.

Parameters rf , rs, rc, and cc are influenced by the choice of run-time system.
Parameters w, rf , and rs are influenced by the choice of workload.

We introduce an unknown factor d that represents the fraction of w accom-
plished by each thread in slow mode, steady state. Using this factor, we can
express the time t devoted to a single iteration in a single thread as

t = rsdw + [rcdw + cc + rf (1− d)w]

The part of the formula in square brackets lies on the critical path of the ap-
plication. Assuming p is sufficiently small, the leading part of the formula is
overlapped with critical path execution in other threads. So

rsdw = (p− 1)[rcdw + cc + rf (1− d)w]

We can solve this equation for d, yielding

d =
(p− 1)(cc + rfw)

w(rs − (p− 1)(rc − rf ))

For a value of d, driven by the choice of p, we calculate speedup (work/time) as

s = (wp)/(rsdw + rcdw + cc + rf (1− d)w)

As we increase p, threads spend more and more of their time in slow mode.
In the limit, fast mode execution disappears entirely: each thread completes its
iteration in slow mode, waits for its predecessor to finish, validates its reads, and
writes back. This saturation limit is reached when d = 1 — that is, when

(p− 1)(cc + rfw) = w(rs − (p− 1)(rc − rf ))



4

We can solve this equation for p, yielding

psat =
rsw + cc + rcw

cc + rcw
=

slowpath + transition
transition

Substituting psat in the equation for s gives maximum achievable speedup smax.
In Section 3 we describe two run-time systems, one based on “values” and

the other on “signatures”. The former has a larger rc, the latter a larger cc. If,
for a given workload and system, cc >> w, psat will be very close to 1. On the
other hand, if cc is very close to 0, we will have psat ≈ (rs + rc)/rc. If, for a given
workload and system, rs = krc for some k, we will have psat ≈ k + 1.

All of this, of course, is predicated on the assumption that iterations (or other
speculative blocks) are numerous and approximately equal in size. If this is not
the case, we may want to assign different amounts of work to each thread.

2.2 Optimal Static Partitioning

Given a possibly parallel loop and a machine with p processors, static partition-
ing divides the loop iterations into p tasks for execution on the p processors. A
static partition is optimal if the loop is executed no slower than it would be with
any other static partition. For this part of the model, we assume that work can
be divided into arbitrary chunks w1, . . . , wp. Other parameters of the system are
the same as in Section 2.1.

In static partitioning, all tasks start at the same time. The first task runs
in fast mode. A later task i executes in slow mode until it finishes its work or
until task i − 1 finishes, whichever comes first. It then validates and, assuming
the validation is successful, writes back the work it has completed and executes
the rest of its work, if any, in fast mode.

We claim that given p processors and a sufficiently large amount of aggregate
work W, a schedule (partition) in which task i completes its work (in slow mode)
just as task i − 1 finishes is strictly faster than any other schedule. Under this
“tight packing” strategy, for i > 1, we have

ti = ti−1 +
ti−1

rs
rc + cc = ti−1

(
1 +

rc
rs

)
+ cc = ati−1 + cc, where a = 1+

rc
rs

.

In closed form we have

ti = ai−1t1 + ccSi, where Si =
∑

1≤j≤i−1

aj−1 =
ai−1 − 1

a− 1
. (1)

Processor 1 will perform t1/rf work. For i > 1, processor i will perform work
ti−1/rs, for an aggregate total of

W =
t1
rf

+
1
rs

∑
1≤i≤p−1

ti



5

In closed form, after considerable rearranging, we have

W = t1

(
1
rf

+
Sp

rs

)
+

cc

rc
(Sp − p + 1) (2)

(NB: Tight packing is feasible only if the work we need to accomplish is greater
than the second of these terms. In the following discussion, we assume that this
is always the case.)

Solving for t1 in equation 2 and combining with equation 1, we can calculate
all tight packing times ti and work allotments wi as functions of W and p.

Optimality: Tight packing is trivially optimal for p = 1. Suppose it is likewise
strictly optimal (faster than all alternatives) for p < n and sufficiently large
W . Suppose further that strategy X is optimal for n processors, and that it
gives processor n more work than tight packing does (and the other processors
correspondingly less). The extra y units of work will be performed in fast mode
after all previous processors have finished and processor n has validated and
written back its results.

Consider what would happen if we move y/2 units of work back to processor
n − 1, to be performed there in fast mode. If processor n simply waits for this
work to complete before performing its validation, write-back, and remaining
fast-mode work, total execution time will be unchanged. While processor n− 1
is doing the moved work, however, processor n has the option of doing yrs/2rf
units of work in slow mode. Then, after processor n−1 finishes, processor n will
be able to validate and write back that slow mode work in lieu of executing it
in fast mode. Since rc < rf , this is a net win, and we have reduced the running
time achieved by supposedly optimal strategy X.

Suppose on the other hand that optimal strategy X gives processor n less
work than tight packing does (and the other processors more), and that processor
n sits idle for some amount of time u before processor n−1 finishes. During this
idle time it could have performed u/rs work in slow mode. Consider what would
happen if we move u/2rs work from processor n− 1 to processor n. The missing
work in processor n−1 relieves it of the obligation to perform urc/2rs time units
of validation and write-back after processor n−2 finishes, allowing processor n−1
to complete, and processor n to start its validation and write-back, that much
sooner. At the same time, the extra u/2rs work in processor n obligates it to
perform urc/2rs additional validation and write-back, leaving overall completion
time unchanged.

Now, having moved some work from processor n− 1 to processor n, consider
whether the schedule of work on the first n − 1 processors is optimal for the
work completed (W − wn − u/2rs). If so, we have a non-tight-packing optimal
schedule for n−1 processors, a violation of the inductive hypothesis. If not, there
exists a shorter schedule on n− 1 processors, and since there is still idle time in
processor n’s execution, it can begin its validation and write-back sooner, thereby
finishing sooner, and violating the assumption that strategy X was optimal for



6

n processors. This covers all cases, and completes an inductive proof of the
optimality of tight packing.

3 Implementation

Our Fastpath implementation strategy consists of two main components. First,
we use per-access instrumentation to perform conflict detection, using two algo-
rithms inspired by software transactional memory (STM). Second, we use a set
of code transformations to guarantee minimal overhead for single-threaded code
and pathological workloads. These transformations ensure that the fast path is
as fast as possible. The code transformations include support for transitioning
from slow to fast path at the earliest possible time.

While many STMs can avoid sandboxing, it appears fundamental to specu-
lative parallelization with transactions. The difference stems from program se-
mantics: STM is intended for explicitly parallel programs, in which transactions
are unordered; each transaction transitions the system from a state in which
any scheduled transaction can be executed safely to another state in which any
scheduled transaction can be executed safely. When we parallelize sequential
programs with STM, the resultant “transactions” do not preserve this property.
Briefly, if iteration Ti initializes a value v that is used by iteration Ti+1, then
there is a potential use before initialization error if Ti+1 runs in parallel with Ti

and accesses v first. If v is used as a divisor, a reference, or a function pointer,
then a signal may be generated. The only appropriate action is to use sandboxing
to recover from the fault and then restart Ti+1.

3.1 The “Value” Algorithm

Our first algorithm is based on the NOrec STM system [2], which in turn interits
its conflict detection mechanism from JudoSTM [3]. It mandates that whenever
a slow-mode thread reads a shared location, it logs the address and value read.
To transition to fast mode, the thread iterates through the log, and ensures
that all addresses still hold the values that they held when the log entries were
created. In contrast to JudoSTM, an address may be logged multiple times,
and there are no lookups into the log. These simplifications reduce overhead.
Furthermore, they do not sacrifice correctness: we “sandbox” slow-path code
to prevent it from performing any externally visible changes (even if it reads
inconsistent values from memory due to conflicts with previous threads), and
the transition to fast mode ensures that no inconsistent reads occurred.

With this approach, fast-mode threads require no per-access instrumentation
whatsoever. They run at uninstrumented speed, modulo a branch at the begin-
ning of the speculative region and an increment (to a shadow copy of the loop
control variable—LCV) at the end of the region. Slow-mode threads must log
an 〈address, value〉 pair for each read and each write. At the end of a slow-path
execution, a thread first transitions to fast mode (by checking all reads, replay-
ing all writes, handling any deallocations, and fast-clearing all logs), and then
increments the shadow LCV.



7

Assuming that most computation accesses potentially shared data, which
must be instrumented, this algorithm results in a slow-to-fast transition cost
that is linear in the amount of work done prior to the transition. Thus apprecia-
ble speedup is unlikely unless there is uninstrumented work: the best outcome
otherwise is that a thread’s speculative execution serves to prefetch all values,
so that the transition is slightly cheaper than it would otherwise have been.

In return for this overhead, the Value algorithm has two valuable charac-
teristics. First, there are never false conflicts due to the granularity of global
metadata. This stands in stark contrast to most STM algorithms, as well as the
Signature algorithm described below. Second, it is possible to obtain opportunis-
tic data forwarding from the fast-mode thread to slow-mode threads. Briefly, if
fast-mode thread F performs a write to location L before slow-mode thread S
reads L, then not only does the correct data reach S, but when S transitions
to fast mode (as it ultimately must in order to complete), no conflict will be
detected on location L. Since the fast-mode thread runs faster than slow-mode
threads, the algorithm provides the appearance of opportunistic post/wait in a
do-across loop [4] without explicit post and wait instructions.

3.2 The “Signature” Algorithm

Whereas the Value algorithm requires no global metadata apart from the shadow
LCV, our Signature algorithm, which is based on the RingSTM algorithm [5],
requires a small block of metadata shared by all threads. However, the metadata
is far simpler and more compact than that proposed for RingSTM.

We maintain a flat array of write signatures for conflict detection: a single
hash function maps each word of memory to a bit in the signature, much like
Bloom filters [6]. All threads update their array entries on every write (even
fast-mode threads). Furthermore, each slow-mode thread maintains a private
signature to represent all the shared locations it reads.

Using signatures, the transition from slow to fast mode entails signature
intersections, which can be accelerated via SIMD instructions on many machines.
A slow-mode thread S must intersect its read set with the write set of every prior
thread that was active when S started. S does not need to wait until its transition
to fast mode, however, to perform all intersections. As in the Value algorithm,
a fast-mode thread F indicates completion by incrementing the shadow LCV.
Doing so effectively announces that the signature array entry corresponding to
F ’s execution will no longer change. Any concurrent thread can intersect its read
signature with F ’s write signature at this point. Indeed, doing so decreases the
risk of conflicts: if F updates location L, and S reads L, then S conflicts with F
only if the read of L was before F completed. If F completes, then S intersects
its read signature with F ’s writes, and then S reads L, there is no conflict.

As in RingSTM, we can re-use array entries (the array is an ordered ring).
However, the array can be quite small. The key observation is that all threads are
ordered. When the array holds twice as many entries as threads, then each entry
can be mapped to a thread based on the thread order (more specifically, entry =
thread order % ring size.) The fast-mode thread never looks at older entries, since



8

it is logically oldest. However, when a thread is transitioning to fast mode, it
may need to look at the previous p− 1 entries (if, for example, it performed one
shared read and then preempted while the other p− 1 threads completed, then
it would need to check its read signature against those p− 1 signatures). When
a thread is transitioning to fast mode, at most p − 1 threads can be executing
logically younger operations. Thus at most 2p− 1 entries are ever needed.

Unlike the Value algorithm, our Signature algorithm admits false conflicts.
For small speculative regions, 1024-bit signatures should suffice, but with larger
regions, it may be necessary to increase the signature size. There is no notion
of data forwarding: if a slow-mode thread reads the value written by an in-
progress fast-mode thread, then it will ultimately be forced to abort and restart.
Furthermore, the algorithm puts overhead on the fast path, to set bits in the
signature. Our hope is that superscalar cores can mask this overhead, since it
can typically occur in parallel with program code. Finally, the algorithm requires
that threads clear their public write signatures on both the slow and fast paths,
and their private read signatures on the slow path.

By accepting these costs, the Signature algorithm obtains validation costs
independent of the amount of work performed in a speculative region. The tran-
sition to fast mode should be faster for large regions, read set metadata has a
constant size, and SIMD instructions can be used to further decrease metadata
operations (particulary signature clearing and signature intersection).

3.3 Compiler Instrumentation

To maximize the benefit of our Fastpath algorithms, some compiler support is
needed. Our current library implementation requires a small amount of code
transformation, which we currently perform by hand. In future work, we plan to
implement these transformations automatically, so that we can leverage static
analysis to optimize the code more aggressively.

Cloning – A näıve instrumentation would not distinguish between fast mode
and slow mode at the boundaries of a speculative region. This would result
in a setjmp call at the beginning of every region, even if the region could be
guaranteed to run in fast mode (as is the case when running in single-thread
mode). Our first optimization is to clone code to avoid setjmp overhead, as
depicted below:

Before: After:

for (...) for (...)

/* body */ if (fastpath())

/* instrumented body */

else

setjmp()

/* instrumented body */

Importantly, we provide a hint to the compiler that the added condition is
highly likely to be true. This results in code generation in which optimizations



9

(e.g., register allocation) assume that the branch will be taken, adding any nec-
essary overhead to the slowpath, but minimizing the overhead of fast execution.

Optimized Instrumentation – Loads and stores to shared memory within the
speculatively parallelized body require instrumentation, much like the instru-
mentation required by STM. The simplest approach would be to test whether a
region was executing in fast mode immediately after each load, and to branch
immediately before each load or store depending on whether the thread was in
slow or fast mode. Once the above transformation is applied, this instrumenta-
tion is excessive: on the fast path, the tests and branches are unnecessary, since
the code is already running in fast mode. By cloning the loop body, we have the
ability to instrument the code differently in the fastpath and slow-path cases.

Transitioning to Fast Path – When the oldest slow-mode thread determines that
there is no older fast-mode thread, it may transition to fast mode. In order to do
so, the thread first performs a test to ensure that its reads remain valid. After
that test, the thread must replay its buffered writes to memory. In our current
implementation, slow-path threads perform a check on every read to determine
when there are no active older iterations.

When a thread determines that it is logically oldest, it immediately transi-
tions to fastpath mode. However, it does not immediately jump into the cloned
code with fastpath instrumentation. Instead, we place a test at the end of each
basic block in the slow-path instrumented code: if the test succeeds, then the
thread jumps to the bottom of the corresponding basic block in the fast path
code. The same approach can be applied on return from any function call. For
correctness, this optimization requires careful attention to stack frame layout.
In return, after the slow-to-fast transition a thread has two fewer tests/branches
per load and one fewer test/branch per store. In our current implementation, we
implement this transition by hand, by inserting goto statements directly into
the cloned source code.

4 Preliminary Results

We use a simple, list-based microbenchmark for preliminary testing of our two
TLS systems. Each list node consists of a next node pointer, a key, and a value.
We begin by generating a 256 element list. The outer loop (Figure 2) chooses
a list key to search for, and executes the microbenchmark inner loop with that
node as a target. The loop induction variable, i, is managed by OpenMP, and
determines the order in which iterations must commit. The workpernode global
is a command line parameter that allows us to control the ratio of shared to
local operations within the inner loop.

The inner loop executes speculatively. It searches the list for the correspond-
ing key, accumulating the keys that it encounters during the search, and writing
the accumulated value into the value at the node it finds. The inner loop is



10

1 // Outer loop, managed by OpenMP

2 parallel for (i = 0; i < iterations; ++i)

3 key = random_key(i)

4 // Inner loop

5 FASTPATH_BEGIN(i)

6 accum = 0

7 current_node = list_front

8 while (current_node->key != key)

9 tmp = current_node->key

10 // controlled by the command line

11 for (j = 0; j < workpernode; ++j)

12 tmp = rand_r(&tmp)

13 accum += tmp

14 current_node = current_node->next

15 current_node->value += accum

16 FASTPATH_END(i)

Fig. 2. Microbenchmark code.

mostly parallel. Each iteration reads all of the nodes between 1 and the gener-
ated key, and completes by reading and writing the target node’s value. This
strategy minimizes but does not eliminate true conflicts in our execution.

In Figure 3 we have hand-instrumented the microbenchmark according to
the algorithm described in Section 3.3. The primary transformation is straight-
forward: (1) clone and instrument the desired region, (2) add a branch to select
the right path, and (3) add transitions from the instrumented code as desired.
Much of the complexity in transforming larger regions is determining appropri-
ate slow-to-fast transition points, a task which we defer to future work. Note that
using builtin expect on Line 3 is crucial to single-threaded performance.

As described in Section 3, speedup is expected to depend critically on the
fraction of instructions in a speculative region devoted to shared-memory loads
and stores. We use the workpernode parameter to adjust this fraction by exe-
cuting workpernode calls to rand r per node. Each of these calls computes with
local data only, with no instrumentation required. We report speedups for the
resulting workload characteristics separately.

4.1 Test Platform

Our preliminary tests were performed on an quad chip, Intel Xeon platform.
Each chip in this platform contains two, 2-way SMT processors. We refer to
the resulting architecture as 4x2x2 in chips/core/SMT order. The underlying
64bit, x86 core is relatively powerful, an important consideration given the large
instruction level parallelism of much of the transactional instrumentation we are
adding. All benchmarks were compiled with gcc 4.4.0 with -fopenmp and -O3.



11

1 parallel for (i = 0; i < iterations; ++i)

2 key = random_key(i)

3 if (__builtin_expect(FASTPATH_START(i)), true)

4 fast_loop:

5 // Uninstrumented loop, lines 6-15 in Figure 2

...

15 else

16 FASTPATH_SETJMP

17 accum = 0

18 current_node = FASTPATH_READ(list_front)

19 while (FASTPATH_READ(current_node->key) != key)

20 tmp = FASTPATH_READ(current_node->key)

21 for (j = 0; j < workpernode; ++j)

22 tmp = rand_r(&tmp)

23 accum += tmp

24 current_node = FASTPATH_READ(current_node->next)

25 if FASTPATH_SWITCH() goto fast_loop:

26 value = FASTPATH_READ(current_node->value)

27 FASTPATH_WRITE(current_node->value, value + accum)

28 FASTPATH_COMMIT(i)

Fig. 3. Hand-instrumented version of the microbenchmark code in Figure 2. The Sig-
nature algorithm would additionally require that the write on Figure 2, line 15 be
instrumented similar to line 27.

4.2 Results

Figure 4 shows speedup for our microbenchmark. Points are an average of five
trials of 10 million iterations, corresponding to actual execution times between
4 and 40 seconds. Speedups are relative to uninstrumented sequential code.

The first result from our tests is that single-threaded performance with Fast-
path instrumentation is indistinguishable from uninstrumented code. This is
important for two reasons: the overhead of fast mode execution is one of the
fundamental factors that controls the system’s scalability, and a single binary
may be suitable for distribution in both single and multi-threaded environments
on this particular Xeon system. This is not a general result—its powerful pipeline
hides much of the instrumentation latency. Preliminary single-threaded results
on a much less complex Sun Niagara2 processor show 15% and 20% slowdown
for Value and Signature, respectively.

The scalability of both systems shows the importance of the characteristics of
the workload being parallelized. Neither the Value nor the Signature implemen-
tation appears able to speed up workloads in which the ratio of uninstrumented
to instrumented work is low. The intuition behind this result is that it does us
little good to execute speculatively if “replaying” the speculative state takes as
long as, or longer than, calculating it in the first place.

The Value system replays by validating its read locations, and writing its
write buffer to memory. Validation is proportional to the number of instrumented



12

●

●

● ● ● ● ● ●

FASTPATH speedups Using 'Value' Algorithm

Parallelism

S
pe

ed
up

1 2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 ● 0x rand_r

1x rand_r
2x rand_r

●

●

●
● ● ● ● ●

FASTPATH speedups Using 'Signature' Algorithm

Parallelism

S
pe

ed
up

1 2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

● 0x rand_r
1x rand_r
2x rand_r

Fig. 4. Speedup for a 4 chip Intel Xeon server.

reads performed. Clearly, the lower the ratio of instrumented to uninstrumented
work, the lower the cost of replay vs. the cost of sequential execution.

The Signature system has the same general tasks, but where the Value sys-
tem’s validation is proportional to the number of instrumented reads, the Signa-
ture system’s validation is proportional to the number of active threads in the
system (with a constant factor determined by signature size). This implies that
the number of instrumented reads should not play a part in the scalability of
the Signature system; rather, the Signature system requires that the amount of
overall work available per iteration be enough to dominate the cost of valida-
tion. The one caveat to this conclusion is that Signature’s accuracy is sensitive
to load factor—the number of locations accessed (and thus inserted in the sig-
nature) as a fraction of the signature’s size. If an iteration touches too many
different locations, false conflicts may lead to unnecessary aborts. The size of
the signatures can be adjusted dynamically if these conditions arise, at the cost
of higher validation overhead.

The 0x rand r curves in both graphs in Figure 4 show that the simple list
traversal neither contains enough work to overcome Signature’s validation cost,
nor provides a good enough ratio for Value to scale effectively.

On the other hand, adding one rand r call per inner-loop execution shows
promising results for Value, showing no slowdown at any of the thread levels
tested, and scalability to a speedup of 1.36 at 8 cores. Two calls to rand r
per iteration results in a speedup of 2.10 at 7 cores. These results point to
the importance of compiler analysis and optimization to reduce unnecessary
instrumentation, an area we are investigating as future work.

Signature behaves differently. A single rand r call can hide the overhead of
one validation per iteration, resulting in a speedup of 1.09 at two cores, but not
more. An additional rand r boosts speedup to 1.27, with performance trailing
off quickly with more cores.

The Signature algorithm requires that a speculative worker intersect the sig-
nature corresponding to its read set with all of the published write signatures
from tasks that completed between its start and commit points. This is typically
p signatures, with p being the maximum number of processors available. One



13

and two calls to rand r apparently provide enough work to overcome the cost
of validation with two active threads, but not with more.

We can minimize this problem somewhat. Our current Signature algorithm
chooses to validate speculative workers as soon as they detect a committing
writer. The writer’s filter was generated generated on a nonlocal core, thus this
eager validation results in guaranteed cache misses. Sandboxing provides specu-
lators the opportunity to prefetch the remote signatures and validate at a later
time. This should enable us to achieve continued speedup by overlapping much
of the cache-miss latency with continued speculative execution, but may also re-
sult in delayed conflict detection and lower efficiencies. We expect to implement
this heuristic and test its impact as part of future work.

5 Related Work

Loop-level software speculation was pioneered by the LRPD test [7]. It executed
a loop in parallel, recorded data accesses in shadow arrays, and checked for de-
pendences after the parallel execution. Later techniques speculatively privatized
shared arrays (to allow for false dependences) and combined the marking and
checking phases (to guarantee progress) [8–10]. The techniques supported par-
allel reduction [7, 8]. More general speculation support has been used in Java
programs to enable safe futures [11], speculative return-value prediction [12],
and speculative data abstractions [13] and in C programs through the copy-or-
discard model (CorD) [14].

These techniques use metadata to precisely record the set of data being
read and modified. They also use a single copy of the code for both lead and
speculative threads. We present two different schemes: the Signature algorithm
records the location of data access using an imprecise (but safe) Bloom filter,
and the Value algorithm records the result of data access using a log. In both,
the lead thread executes faster code.

The STMlite system of Mehrara et al. [15] also draws ideas from software
transactional memory, but with a very different implementation, in which all
validation checks are performed by a single bookkeeping thread. Other threads
log their writes, build read and write signatures, and enqueue these structures for
perusal by the bookkeeping thread. They then await permission to write back.
Unlike our system, STMlite permits concurrent writebacks in separate threads
so long as their write signatures are disjoint. Because the bookkeeping thread
does no “real” work of its own, at least three threads are required in order
to achieve any speedup, and read and write instrumentation appears in every
worker thread.

In SpLIP [16], threads acquire STM-like ownership records for reading and
writing, and then perform writes “in place.”. Threads keep undo logs for roll-
back. The code is optimized for ordered speculation, and exploits architectural
characteristics to avoid the need for atomic read-modify-write instructions. In
the absence of conflicts, SpLIP tasks operate entirely in parallel, without write-
back serialization. Rollback, however, is extraordinarily expensive: to achieve any



14

speedup, speculation must fail well under 1% of the time. Furthermore, after a
misspeculation one loop iteration must execute sequentially to ensure progress.

Previous studies do not address the question of optimality for either static
or dynamic loop scheduling in the presence of sequential commit. In this paper,
we have analyzed the effect of not just sequential commit but also mixed mode
speculation including the effect of path switching during execution.

Coarse-grain tasks can be implemented using processes, as in the BOP [17]
and Grace [18] systems. It has the advantage of being able to start a speculation
task anywhere in the code and to buffer speculative states and monitor specula-
tive execution using paging support without instrumenting data access. However,
the overhead of starting a process is too high for fine-grained parallelism in the
innermost loop. In addition, it monitors heap data at page granularity, which
may lead to false alerts.

6 Status and Plans

We have described a prototype implementation of Fastpath, a software system
for speculative parallelization of semantically sequential code. Our system is
distinguished by its single-address-space implementation, its use of conventional
hardware, and its asymmetric instrumentation, in which the lead thread runs at
near-native speed.

Our implementation is currently able to detect conflicts between threads
using either value-based validation or Bloom filter signatures. These exhibit a
tradeoff between per-read and per-region overhead. A simple analytical model
allows us to predict achievable speedup based on these overheads and proper-
ties of the application. Experiments with a hand-instrumented microbenchmark
demonstrate the feasibility of speedups on the order of 25% on two cores—and
better on more—when speculative regions have significant private computation
and few dynamic conflicts. Moreover they confirm the achievability of worst-
case slowdowns below 1%. This is significantly better than reported for previous
software-only systems.

We are currently constructing compiler infrastructure that will allow us to
instrument programs automatically, once the programmer has identified regions
of code for speculative execution. This infrastructure will enable us to experiment
with large-scale applications.

References

1. Halstead, R.H.: Multilisp: A language for concurrent symbolic computation. ACM
Trans. on Programming Languages and Systems 7(4) (Oct. 1985) 501–538

2. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: Streamlining STM by abolishing
ownership records. In: Proc. of the ACM Symp. on Principles and Practice of
Parallel Programming (PPoPP), Bangalore, India (January 2010) To appear.

3. Olszewski, M., Cutler, J., Steffan, J.G.: JudoSTM: A dynamic binary-rewriting
approach to software transactional memory. In: Proc. of the Intl. Conf. on Parallel



15

Architectures and Compilation Techniques (PACT), Brasov, Romania (Sep. 2007)
365–375

4. Cytron, R.: Doacross: Beyond vectorization for multiprocessors. In: Proc. of the
Intl. Conf. on Parallel Processing (ICPP), Saint Charles, IL (Aug. 1986) 836–844

5. Spear, M.F., Michael, M.M., von Praun, C.: RingSTM: Scalable transactions with a
single atomic instruction. In: Proc. of the ACM Symp. on Parallelism in Algorithms
and Architectures (SPAA). (June 2008) 275–284

6. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Comm.
of the ACM 13(7) (July 1970) 422–426

7. Rauchwerger, L., Padua, D.: The LRPD test: Speculative run-time parallelization
of loops with privatization and reduction parallelization. IEEE Trans. on Parallel
and Distributed Systems 10(2) (Feb. 1999) 160–199

8. Gupta, M., Nim, R.: Techniques for run-time parallelization of loops. In: Proc. of
the Intl. Conf. for High-Performance Computing, Networking, Storage, and Anal-
ysis (SC), Orlando, FL (Nov. 1998) 12

9. Dang, F., Yu, H., Rauchwerger, L.: The R-LRPD test: Speculative parallelization
of partially parallel loops. In: Proc. of the Intl. Parallel and Distributed Processing
Symp. (IPDPS), Ft. Lauderdale, FL (Apr. 2002) 20–29

10. Cintra, M.H., Llanos, D.R.: Design space exploration of a software speculative
parallelization scheme. IEEE Trans. on Parallel and Distributed Systems 16(6)
(June 2005) 562–576

11. Welc, A., Jagannathan, S., Hosking, A.L.: Safe futures for Java. In: Proc. of the
Intl. Conf. on Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA), San Diego, CA (2005) 439–453

12. Pickett, C.J.F., Verbrugge, C.: Software thread level speculation for the Java
language and virtual machine environment. In: Proc. of the Wkshp. on Languages
and Compilers for Parallel Computing (LCPC), Hawthorne, NY (Oct. 2005) 304–
318

13. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.:
Optimistic parallelism requires abstractions. Comm. of the ACM 52(9) (Sep. 2009)
89–97

14. Tian, C., Feng, M., Nagarajan, V., Gupta, R.: Copy or discard execution model
for speculative parallelization on multicores. In: Proc. of the Intl. Symp. on Mi-
croarchitecture (MICRO), Lake Como, Italy (Nov. 2008) 330–341

15. Mehrara, M., Hao, J., Hsu, P.C., Mahlke, S.A.: Parallelizing sequential applications
on commodity hardware using a low-cost software transactional memory. In: Proc.
of the ACM Conf. on Programming Language Design and Implementation (PLDI),
Dublin, Ireland (June 2009) 166–176

16. Oancea, C.E., Mycroft, A., Harris, T.: A lightweight in-place implementation for
software thread-level speculation. In: Proc. of the ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA), Calgary, AB, Canada (Aug. 2009) 223–232

17. Ding, C., Shen, X., Kelsey, K., Tice, C., Huang, R., Zhang, C.: Software behavior
oriented parallelization. In: Proc. of the ACM Conf. on Programming Language
Design and Implementation (PLDI), San Diego, CA (June 2007) 223–234

18. Berger, E.D., Yang, T., Liu, T., Novark, G.: Grace: Safe multithreaded program-
ming for C/C++. In: Proc. of the Intl. Conf. on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), Orlando, FL (Oct. 2009)




