
AUTOMATICALLY TUNING PARALLEL
AND PARALLELIZED PROGRAMS

Chirag Dave and Rudolf Eigenmann

Purdue University?

cdave,eigenman@purdue.edu

Abstract. In today’s multicore era, parallelization of serial code is es-
sential in order to exploit the architectures’ performance potential. Par-
allelization, especially of legacy code, however, proves to be a challenge
as manual efforts must either be directed towards algorithmic modifica-
tions or towards analysis of computationally intensive sections of code
for the best possible parallel performance, both of which are difficult and
time-consuming. Automatic parallelization uses sophisticated compile-
time techniques in order to identify parallelism in serial programs, thus
reducing the burden on the program developer. Similar sophistication is
needed to improve the performance of hand-parallelized programs. A key
difficulty is that optimizing compilers are generally unable to estimate
the performance of an application or even a program section at compile-
time, and so the task of performance improvement invariably rests with
the developer. Automatic tuning uses static analysis and runtime perfor-
mance metrics to determine the best possible compile-time approach for
optimal application performance. This paper describes an offline tuning
approach that uses a source-to-source parallelizing compiler, Cetus, and
a tuning framework to tune parallel application performance. The im-
plementation uses an existing, generic tuning algorithm called Combined
Elimination to study the effect of serializing parallelizable loops based
on measured whole program execution time, and provides a combina-
tion of parallel loops as an outcome that ensures to equal or improve
performance of the original program. We evaluated our algorithm on a
suite of hand-parallelized C benchmarks from the SPEC OMP2001 and
NAS Parallel benchmarks and provide two sets of results. The first ig-
nores hand-parallelized loops and only tunes application performance
based on Cetus-parallelized loops. The second set of results considers
the tuning of additional parallelism in hand-parallelized code. We show
that our implementation always performs near-equal or better than serial
code while tuning only Cetus-parallelized loops and equal to or better
than hand-parallelized code while tuning additional parallelism.

1 INTRODUCTION

Despite much progress in automatic parallelization over the past two decades
and despite the new attention this research area is receiving due to the advent
? This work was supported, in part, by the National Science Foundation under grants

No. 0429535-CCF, 0751153-CNS, 0707931-CNS, 0833115-CCF, and 0916817-CCF.

of multicore processors, parallelization is still not the default compilation op-
tion of today’s compilers. One reason is that there still exist many programs
in which todays parallelizing compilers cannot find significant parallelism. How-
ever, a more important reason is that, even where compilers find parallelism,
they cannot guarantee that the parallelism is executed beneficially. Users may
experience performance degradation unless they invest substantial time in tun-
ing the parallel program. One of the goals behind the work presented here is
to create a parallelizer that performs such tuning automatically, ensuring that
compiler-parallelized code performs at least as well as the original program.

State-of-the-art solutions for finding profitable parallel regions are usually
simple compile-time models. The compiler may count the number of statements
and iterations of a loop and serialize the loop if these counts are known to be less
than a user-defined threshold. This semi-automatic method is used in the Po-
laris parallelizer [1], and Intel’s ICC compiler, for example. Limited compile-time
knowledge of program input data, architecture parameters, and the execution
environment render these models inaccurate. Several techniques have provided
runtime and interactive systems for finding profitable parallel loops [2–4] and
improving parallel loop performance. While these solutions have shown to be
effective, they address only one of a large number of problems with compiler
techniques that are limited by insufficient static knowledge. To address this is-
sue, a secondary goal of our work is to develop a general automatic tuning
solution, which can be applied to many compilation techniques. In this regard,
our work is related to tuning approaches that navigate a search space of pos-
sible transformation options, picking the best through empirical evaluation [5].
This method contrasts with work that directs the search process through perfor-
mance models [6]. Model-guided tuning has the potential to reduce the search
space of possible compilation variants and thus tends to tune faster, while empir-
ical tuning has the advantage of using the ultimate performance metric, which is
execution time. The two methods actually complement each other and such com-
plementary approaches have been proposed that use run-time profile information
to drive optimization tuning at compile time [3, 7].

Our work also aims at a third goal. Most of today’s tuning systems apply a
chosen compilation variant to the whole program. An important un-met need is
to customize compiler techniques on a section-by-section basis. Typical tuning
systems choose a set of compilation flags, which are then applied to the entire
program, even though some approaches have tuned individual subroutines [8].
Finer-grain tuning would allow many additional techniques and parameters to
be made amenable to runtime tuning; for example, the most suitable register
allocation method could be selected for each basic block. In our work, we develop
a tuning method that can choose the serial or parallel execution on a loop-by-
loop basis.

In this paper, we present the following contributions:

– We describe a compiler and runtime system that detects parallel loops in
serial and parallel programs and selects the combination of parallel loops
that shows the highest performance.

2

Fig. 1. High-level overview of the offline empirical tuning system. A search algorithm
navigates through the space of possible optimization variants. It makes a decision on the
next suitable optimization variant that the system should try. This variant is handed to
the version generator in order to be compiled. Performance of each version is measured
using execution time, the result of which feeds back into the search-space navigation
algorithm, which determines the next suitable variant, until a convergence criterion is
satisfied.

– We show that finding profitable parallelism can be done with a generic tuning
method. We have chosen the Combined Elimination Algorithm, which was
previously used to tune a generic set of compilation flags [9].

– We have developed a method that can be applied on a section by section
basis, to an entire program. We use it to provide fine-grained tuning of
parallelizable loops in the program.

– Using a set of NAS and SPEC OMP benchmarks, we show that our tuning
method can deliver program performance that improves through automatic
parallelization (of both serial and parallel program) and does not degrade
below that of the original program.

The remainder of the paper is organized as follows. Section 2 presents our
tuning method and its implementation using Cetus. Section 3 evaluates our
techniques using available manually parallelized benchmarks. In Section 4, we
draw our conclusions.

2 AUTOMATIC TUNING FRAMEWORK

This section describes the automatic tuning system. To understand the context,
we briefly introduce the Cetus automatic parallelizer. The core part of our au-
tomatic tuning system is comprised of i)navigation through the search space,
ii)version generation and iii)empirical evaluation of performance, as shown in
Figure 1. We describe each of these in detail in the following sections.

3

Table 1. Number of loops automatically parallelized by Cetus (only the loop that is
parallel and not enclosed by parallel loops is considered) and those already present in
the input are shown in this table for a subset of the NAS Parallel and SPEC OMP2001
benchmarks. The number of Cetus-parallelized loops forms the search space for our
tuning approach. Parallel loops that are nested inside outer loops can produce signifi-
cant overheads due to repeatedly spawning and joining parallel threads. Selecting the
right loops out of all the parallelized loops is crucial to obtaining better performance.

2.1 PROJECT CONTEXT: CETUS AUTOMATIC
PARALLELIZER

The Cetus Compiler Infrastructure is a source-to-source translator for C pro-
grams [10, 11]. Input source code is automatically parallelized using advanced
static analyses such as scalar and array privatization, symbolic data dependence
testing, reduction recognition and induction variable substitution. The transla-
tor supports identification of loop level parallelism and OpenMP-directive based
source code generation. Cetus has no compile-time heuristics or model driven ap-
proach to predict the behavior of parallelized loops and hence, it is expected that
overheads associated with parallelizing small, inner loops would be significant.

Table 1 shows the number of loops parallelized by Cetus at a single level
in the loop nest i.e. the outermost possible level. Some benchmarks with large,
but regular loops such as BT, LU and SP from the NAS benchmark suite ex-
hibit a larger percentage of computationally-intensive parallel loops, whereas
the number drops for others i.e. for programs that exhibit loops with function
calls, irregular subscripts or control flow issues as they are not amenable to
auto-parallelization.

2.2 METHODOLOGY

The automatic tuner supports the automatic parallelizer in providing a paral-
lelized version of the code that does not decrease performance below that of the
original code.

This can be achieved by identifying loops that, when executed in parallel,
contribute significantly to fork/join overheads or suffer from poor performance
due to issues such as memory locality or load imbalance. In most cases, the
size of the parallelizable loop body is too small or its iteration space is not
large enough to amortize the cost of (micro)thread creation and termination. By
serializing these loops during execution, the above overheads can be minimized,
thus leading to more favorable execution time.

4

Static time models [12, 13] provide the compiler with a performance esti-
mate based on which certain optimizations would lead to better run time. These
models can be overly simplified or in many cases too complex, especially while
modeling for different optimizations. They also fail to accurately capture in-
teractions between various optimizations. Instead, our system measures whole
program execution time, which is a simple, but comprehensive metric for con-
sidering all effects of various optimizations. This paper, however, only considers
parallelization/serialization of loops in the optimization search space. No other
optimizations are considered.

In order to consider the overall effects of different combinations of parallel or
serial loops on the program execution time, we use an offline empirical tuning
method. While we make no claims about the superiority of offline tuning versus
dynamically adaptive optimization (in fact, this option was considered in prior
work [14]), we have found that offline tuning performs well for most of the present
benchmarks.

2.3 TUNING ALGORITHM

Empirical tuning can make use of the most powerful performance metric, which
is execution time. But an exhaustive search of all the possible combinations of
optimization variants can be prohibitively expensive in this case. In the context
of this paper, the search space is composed of all parallelizable loops. SP has 97
parallelizable loops, and an exhaustive search would involve 297 runs. A tuning
algorithm logically narrows down the search space by eliminating optimization
variants that may have similar effects or by deriving information related to in-
teractions between different optimizations.

We aim at providing a generic tuning algorithm that is capable of traversing
the search space of compiler optimizations, irrespective of their specific implica-
tions on the performance of the program. As described above, the overall effects
of serializing/parallelizing a loop are evident in the program execution time. The
Combined Elimination algorithm [9] is one such generic algorithm that has pre-
viously been used to tune a generic set of compiler flags by measuring each flag’s
contribution in terms of its effect on program execution time. The same algo-
rithm is applied here to a search space composed of all the parallelizable loops
in the program, each considered as a distinct on/off compiler optimization.

To the best of our knowledge, this is the first time such a tuning algorithm
is being considered to study the effects of loop parallelization on a section-by-
section basis for application performance. Note that the capability of the algo-
rithm to narrow the search space by considering interactions between different
compiler flags directly translates to considering interactions between parallelized
or serialized combinations of loops. Such interactions make the development of a
tuning method that operates on a section-by-section basis non-trivial. We do not
rely on any compile-time decisions to improve our handling of these interactions
and solely allow the tuning algorithm to consider them during its traversal. This,
as shown in Section 3, largely improves the measurement of effects of paralleliza-
tion on performance.

5

2.4 TUNER IMPLEMENTATION IN CETUS

Parallelization output is generated by Cetus in the form of cetus parallel an-
notations that are attached to corresponding loops in the Intermediate Repre-
sentation (IR). Traversal of the IR is used to obtain this information through
annotations, and build the search space of optimizations for the tuner. Also,
the annotations provide a convenient way to implement fine-grained tuning on
a loop-by-loop basis. This is facilitated by selective generation of OpenMP an-
notations in the output pass.

Initially, relevant information is extracted during the parallelization phase to
generate the tuning search space. At every iteration of the combined elimination
algorithm, the next parallelization configuration (a combination of optimization
variants) is provided to the version generating output pass of Cetus via command
line. The lexical order of appearance of a loop in the source program corresponds
directly to its index in the optimization vector provided to the version generator.
Different combinations of parallel loops can easily be considered for tuning by
looking at Cetus-parallelized loops or loops that were OpenMP parallel in the
input source itself. Figure 2 shows an example with the corresponding optimiza-
tion variants that might be tested during tuning.

2.5 SYSTEM WORKFLOW

Figure 3 describes the implementation of the entire system. It is currently im-
plemented in Python. There is no user intervention at any stage; the system
is completely automated. The source program is provided to the tuning frame-
work. The first step is auto-parallelization and identification of the number of
outermost parallel loops identified by Cetus. Parallelization is performed only
once and the Cetus-annotated output is stored for future reference.

A backend compiler then generates the parallel code for execution and pro-
gram performance is measured at runtime. We use Intel’s ICC compiler for code
generation.

We first measure serial execution time and also execution time of the manu-
ally parallelized code, if available. The system measures performance using the
UNIX time function for whole program execution; we verified that this is accu-
rate enough for feeding back into our tuning algorithm in order to obtain the
next configuration point.

The tuning process starts with a fixed initial configuration point. The opti-
mization configuration is provided to Cetus, this time only for version generation.
As shown in the example in Figure 2, OpenMP output code is generated for the
current configuration of loops. Empirical evaluation returns execution time for
different combinations of each base case. At every iteration for the current base
case, Combined Elimination uses a decision-making criterion to provide the next
configuration point. When the convergence criterion for the algorithm is met, a
final trained configuration of parallel and serial loops is obtained.

6

int foo(void)

{
#pragma cetus parallel

#pragma cetus private(i,t)

for (i=0; i<50; ++i)

{
t = a[i];

a[i+50] = cetus -ompGen -tune-ompGen=”1,1”
t + (a[i+50]+b[i])/2.0; (Parallelize both loops in output source)

} cetus -ompGen -tune-ompGen=”0,1”
#pragma cetus private(i,j,t) cetus -ompGen -tune-ompGen=”1,0”
for (i=0; i<50; ++i) (Parallelize only one of the two loops)

{ cetus -ompGen -tune-ompGen=”0,0”
a[i] = c; (Serialize both loops in output source)

#pragma cetus private(j,t)

#pragma cetus parallel

for (j=0; j<100; j++)

{
t = a[i-1];

b[j] =

(t*b[j])/2.0;

}
}
return 0;

}
(a) (b)

Fig. 2. Parallelized source code (a) and the different variants of loop parallelization
possible (b). (a) shows the output obtained from Cetus after loop parallelization. The
tuner uses the number of parallel loops as its search space and then navigates this
space using Combined Elimination to obtain the final binary vector configuration.
Cetus’ output pass is used to parse the commandline vector shown in (b) and generate
OpenMP directives corresponding to the input. The entire process is automatic.

7

Fig. 3. This figure shows the complete training phase of our tuning implementation.
Starting with auto-parallelization, the tuner starts iteration from a specific start con-
figuration (combination of parallel loops), moving to successive configuration points on
each iteration. A final configuration is derived from the trained input and is applied
for evaluation to other reference data sets. (RIP: Relative Improvement Percentage)

3 EVALUATION

In this section, we evaluate the final outcome of our automatic tuning approach
and compare our results specifically with the performance of the input source
code. The aim is to consider the effectiveness of automatic parallelization and
tuning in equaling or improving on the performance of input source code. Two
tuning scenarios are considered: tuning automatically parallelized source code
with no input parallelization information and tuning automatically parallelized
code that is extracted in addition to the parallelism already present in the input
source code. We also implemented a third scenario of using our framework to
tune only hand-parallel loops. No results are presented for this case, as we didn’t
see significant improvements. A subset of benchmarks from the NAS Parallel
benchmark suite and the SPEC OMP2001 suite was considered for evaluation.

We ran the tuning experiments in single-user mode on a Dual 2.33 GHz
quad-core IntelE5410 system with 32GB memory per node. All parallel runs
used the available 8 threads during execution i.e. all parallel loops executed

8

under the default OpenMP static scheduling model. Backend OpenMP code was
generated using ICC’s default optimization configuration(-O2).

We conducted the initial training of all benchmarks using a small data set.
Using the training input, we obtained a configuration of loops to be paral-
lelized/serialized. For the NAS Parallel benchmarks, the training input was the
W class data set. For the SPECOMP 2001 benchmarks, we used the train data
sets. Our system then applied this configuration and measured parallel perfor-
mance on other data sets.

Figure 4 shows the results of training and testing tuned configurations us-
ing different input data sets. All performance results are normalized to serial
execution time. HandParallel shows the performance of manually parallelized
benchmarks. CetusParallel is the performance of automatically parallelized code
without any tuning or performance estimation. Cetuned is the performance ob-
tained using our combined Cetus and tuner approach. We only tune paralleliza-
tion of Cetus-parallelized loops in this case. Hand+Cetuned is the performance of
the benchmarks where manually parallelized code is left untouched in most cases,
while additional parallelism identified by Cetus is tuned for better performance.

3.1 TUNING AUTO-PARALLELIZED CODE

This experiment represents the first scenario of automatic tuning. Only Cetus-
parallelized loops were considered during parallel execution. All OpenMP direc-
tives in the input were removed. We were then dealing with programs that only
consisted of loop-level parallelism. For the starting point in the tuning search
space, parallelization is turned on for all parallelizable loops in the program.

Consider the training runs in Figure 4 i.e. the results obtained while training
the NAS Parallel benchmarks on the W data set and the SPEC OMP2001 bench-
marks on the train data set. It is clear that the CetusParallel version degrades
performance significantly, even compared to serial execution. This can be ex-
plained by factors described in Section 2. In a large number of cases, paralleliza-
tion of inner loops leads to significant fork/join overheads and hence, degradation
in performance. For example, in the case of LU, Cetus identifies 40 parallel loops,
21 of which are not hand-parallelized. Some of these Cetus-parallelized loops are
at the 3rd or 4th nesting level which can lead to an explosion of fork/join over-
heads. The same can be said for art, for which only 11 loops are parallelized by
Cetus. Some of these are repeatedly executed inside while loops, thus increasing
parallelization overheads. The Cetus-parallelized version of art executes for 217s
as opposed to only 2.6s for the serial version, thus barely showing up on the
speedup chart in Figure 4.

Even though our tuning process starts from the configuration that yields this
degradation, it effectively trains itself to a configuration that nearly equals or
improves over serial execution time. For example, for the above mentioned art
result, the tuned version executes in 3s i.e. we filter out non-profitable loops to
go from an execution time of 217s to 3s.

We observe a slight anomaly on some benchmarks, where the final trained
configuration is poorer than serial. This could easily be avoided by setting the

9

Fig. 4. Tuning results for all benchmarks. Training performed with W data set for
NAS Parallel suite and train data set for SPEC OMP2001 suite. CetusParallel shows
performance for compiler-parallelized code. Cetuned tunes only Cetus-parallelized loops
and performs close to equal or better than Serial. Hand+Cetuned tunes parallel loops
that exist in addition to hand-parallel loops HandParallel.

10

final configuration to serial. However, it is important to notice that the trained
configuration always improves performance on the test data sets. This proves
that Cetus correctly identifies parallel loops that are eventually beneficial for
performance, even though it is not apparent during the training phase due to the
short execution time for the train data sets. BT is an example of this observation.

For data classes A and B, the average improvement in execution time over
serial execution was 14.5% with almost 2x increase for SP on data class A.
Cetus parallelizes 97 loops in SP. Only 13 of these 97 loops are serialized in
the final configuration, mostly loops with small iteration counts and small loop
bodies. None of the serialized loops were hand-parallel, thus ensuring that Cetus
doesn’t eliminate important loops. Most importantly, 31 of the 97 loops were
also hand-parallel and another 33 of the 97 loops enclosed hand-parallel loops,
thus providing coarser-grain parallelism. This leads to much better performance
using automatic parallelization for SP.

3.2 TUNING ADDITIONAL PARALLELISM IN
HAND-PARALLELIZED CODE

This experiment represents the second scenario. Only Cetus-parallelized loops
that were not already parallel on input or were not enclosed by loops that were
parallel on input were considered in this case. In cases where Cetus identified
outer-level parallel loops as opposed to those parallelized in the input, the Cetus-
identified level was parallelized during evaluation. For the starting point in the
tuning search space, parallelization was turned off for all additional parallelizable
loops in the program.

Figure 4 shows that the training phase of tuning for additional parallel loops
yields little performance benefit. Training was however performed on a small data
set. The final tuned configuration did show some additional auto-parallelized
loops during the training phase. These configurations were then applied to the
reference data sets. In most cases, the benchmarks still behaved the same i.e.
the tuning of additional parallel loops yielded little performance increase for
data classes A and B. Automatic parallelization yields significant benefits in
the case of SP, where we find parallelism at outer levels in the loop nests that
are manually parallelized at inner nesting levels. Cetus parallelizes 66 additional
loops, out of which 12 loops are parallelized by the final trained configuration.
Out of these 12, 8 loops enclose originally hand-parallel loops and thus provide
coarser-grain parallelism. Hand+Cetuned identifies coarser-grain parallelism as
beneficial only in cases where it is beneficial. In many cases, the outer parallel
loop has a very low iteration count, and hence the inner hand-parallel loop is
the level defined as beneficial in the final configuration. Our Hand+Cetuned SP
version performs almost 50% better for class A and almost 20% better for class
B than manual-parallelization.

11

3.3 TUNING TIME

Tuning time was in the order of minutes for training each of the 9 benchmarks
and eventually obtaining the best possible tuned loop configurations. Having
trained on small data sets, the reference data runs would require only three runs
to measure relative performance benefits of automatically parallelized and au-
tomatically tuned code, which would require time corresponding to a particular
data set for the given application.

3.4 INTEL’S ICC AUTO-PARALLELIZER

We use ICC’s automatic-parallelizer to study a state-of-the-art approach based
on compile-time heuristics to parallelize loops. We tested the parallelizer using
three different parallelizing thresholds, which can be user-defined. The auto-
parallelizer uses the threshold (0-100) as a probability measure of the chances of
performance improvement as determined through compile time heuristics. The
default threshold of 100 means that ICC parallelizes the loop only if it is 100%
sure that parallelization would yield performance benefit. This is only possible
if it knows loop iteration counts at compile time. Hence, we also tested using a
threshold of 99 which implies all loops considered 99% beneficial but not certainly
beneficial can be parallelized. Lastly, a threshold of 0 was used, which tells ICC
to parallelize all loops irrespective of performance considerations.

ICC performed extremely poorly at threshold 0 on equake, BT, LU, MG
with upto 90% degradation in performance. The behavior at threshold 100 was
inconsistent. In almost all cases, the parallelized version performed only as well
as the serial execution. In the case of LU, the performance at threshold 100 was
down 65% from serial execution. Similar results were observed at threshold 99.

The results highlight the inadequacy and inconsistency of a purely compile-
time approach to automatic parallelization. Using the Cetus parallelizer and
an empirical tuning approach, we obtain significantly better application perfor-
mance.

3.5 DYNAMIC TUNING CONSIDERATIONS

An important observation with regards to the art benchmark is that the hand-
parallelized version itself shows little speedup for the train data set but more
than 4x speedup for the ref data set. This points to the fact that the parallelism is
highly input-dependent and that, in such a case, off-line tuning using a different
data set may yield little to no benefit for other data sets. Dynamic tuning would,
on the other hand, be able to take input-dependent effects into consideration.
However, dynamic tuning comes at the cost of incurring runtime overheads.
Also, self-adapting code is unfavorable in many cases, owing to correctness and
security considerations. Moreover, widely accepted techniques such as profiling
for performance data are highly input dependent but are known to perform well.
This argument favors our current offline tuning approach, which works well for
the set of benchmarks being considered.

12

In the case of art, the train data set offers little opportunity to recognize
beneficial parallelism. Despite this fact, the tuner identifies loops that are po-
tentially beneficial and this is evident in the results for the ref data set where the
tuned version improves significantly over the automatically parallelized version.

4 CONCLUSIONS

We have considered the important issue of finding profitable parallelism for auto-
parallelization of both serial and parallel programs. To the best of our knowledge,
we have presented the first implementation of an automatic parallelizer that
nearly equals or improves in performance over the original program execution
across a large set of benchmarks. Our system applies an offline tuning approach
that has previously been used to tune generic compiler flags. We have adapted
the algorithm to tune the parallelization of loops in the program and to apply
this optimization on a loop-by-loop basis. We have shown that the programs,
tuned with a training data set, always perform near-equal or better than the
original code on the production data sets.

We have provided results for the implementation on a subset of the NAS
Parallel and SPEC OMP2001 benchmarks. Our auto-parallelized and auto-tuned
benchmarks perform 14.5% better than serial on average. Tuning additional par-
allelism in hand-parallelized codes performs equal to or better than the original
programs (20-50% better in the case of SP).

While overzealous parallelization of loops is the biggest source of overheads
in auto-parallelized programs, we intend to expand our tuning system to all
optimization techniques that are available in the Cetus infrastructure. We will
also consider combining empirical tuning with model-based approaches, so as
to reduce tuning time as much as possible. Furthermore, for large programs,
we expect that offline tuning will face limits, as different data sets may exhibit
significantly different execution paths through the program. For this case, we will
expand our techniques so they can be applied dynamically, during production
runs of an application, without the need for a training phase.

References

1. Blume, W., Doallo, R., Eigenmann, R., Grout, J., Hoeflinger, J., Lawrence, T.,
Lee, J., Padua, D., Paek, Y., Pottenger, B., Rauchwerger, L., Tu, P.: Parallel
programming with Polaris. IEEE Computer 29(12) (December 1996) 78–82

2. Voss, M.J., Eigenmann, R.: Reducing parallel overheads through dynamic serial-
ization. In: Int’l Parallel Processing Symposium. (1999) 88–92

3. Tournavitis, G., Wang, Z., Franke, B., O’Boyle, M.F.: Towards a holistic ap-
proach to auto-parallelization: integrating profile-driven parallelism detection and
machine-learning based mapping. In: Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and implementation. (2009) 177–187

4. Rauchwerger, L., Padua, D.: The lrpd test: speculative run-time parallelization of
loops with privatization and reduction parallelization. In: Proceedings of the SIG-
PLAN 1995 Conference on Programming Languages Design and Implementation.
(jun 1995) 218–232

13

5. Kisuki, T., Knijnenburg, P.M., O’Boyle, M.F., Bodin, F., Wijshoff, H.A.: A feasi-
bility study in iterative compilation. In: Proceedings of the Second International
Symposium on High Performance Computing, Springer-Verlag Lecture Notes in
Computer Science (1999) 121–132

6. Yotov, K., Li, X., Ren, G., Cibulskis, M., DeJong, G., Garzaran, M., Padua, D.,
Pingali, K., Stodghill, P., Wu, P.: A comparison of empirical and model-driven opti-
mization. In: Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation, ACM Press (2003) 63–76

7. Wang, Z., O’Boyle, M.F.: Mapping parallelism to multi-cores: a machine learning
based approach. In: Proceedings of the 14th ACM SIGPLAN Symposium on the
Principles and practice of parallel programming. (2009) 75–84

8. Pan, Z., Eigenmann, R.: Fast, automatic, procedure-level performance tuning. In:
Proc. of Parallel architectures and Compilation Techniques. (2006) 173–181

9. Pan, Z., Eigenmann, R.: Fast and effective orchestration of compiler optimizations
for automatic performance tuning. In: The 4th Annual International Symposium
on Code Generation and Optimization (CGO). (March 2006) 319–330

10. : Cetus: A Source-to-Source Compiler Infrastructure for C Programs [online].
available: http://cetus.ecn.purdue.edu

11. Johnson, T.A., Lee, S.I., Fei, L., Basumallik, A., Upadhyaya, G., Eigenmann, R.,
Midkiff, S.P.: Experiences in using Cetus for source-to-source transformations.
In: Proc. of the Workshop on Languages and Compilers for Parallel Computing
(LCPC’04), Springer Verlag, Lecture Notes in Computer Science (September 2004)
1–14

12. Baskaran, M.M., Vydyanathan, N., Bondhugula, U.K.R., Ramanujam, J., Roun-
tev, A., Sadayappan, P.: Compiler-assisted dynamic scheduling for effective paral-
lelization of loop nests on multicore processors. In: Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel programming. (2009)
219–228

13. Dou, J., Cintra, M.: Compiler estimation of load imbalance overhead in speculative
parallelization. In: Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques. (2004) 203–214

14. Voss, M.J., Eigenmann, R.: High-level adaptive program optimization with adapt.
In: Proc. of the ACM Symposium on Principles and Practice of Parallel Program-
ming (PPOPP’01), ACM Press (2001) 93–102

14

