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Abstract. In a Exploratory Learning Environment users acquire knowledge 
while freely experiencing the environment. In this setting, it is often hard to 
identify actions or behaviors as correct or faulty, making it hard to provide 
adaptive support to students who do not learn well with these environments.      
In this paper we discuss an approach that uses Class Association Rule mining 
and a Class Association Rule Classifier to identify relevant interaction patterns 
and build student models for online classification. 
  We apply the approach to generate a student model for an ELE for AI 
algorithms and present preliminary results on its effectiveness  
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1  Introduction 

Exploratory learning environments (ELEs) provide functionalities such as interactive 
simulations and visualizations for student-led exploration of a target domain. The idea 
is to promote active discovery of knowledge, which in turns triggers deeper 
understanding of the target domain than more controlled instruction. Research 
however, has suggested that the pedagogical effectiveness of an ELE is highly 
dependent on the student who uses it: while some students appreciate the 
independence afforded by of this learning activity, others suffer from the lack of 
structure and would benefit from more guidance during interaction [1]. Such findings 
highlight the need for ELEs to provide adaptive support for students with diverse 
abilities or learning styles.  
  One of the challenges of providing this support is the difficulty in identifying student 
behaviors that warrant interventions vs. behaviors that indicate an effective learner. 
Traditional approaches based on creating datasets of human-labeled patterns [2][3] 
that can be used to classify new users are often unfeasible, because they need a priori 
definitions of relevant behaviors when there is limited knowledge of what these 
behaviors may be.   



In this paper, we explore an alternative approach that relies on mining Class 
Association Rules to automatically identify common interaction behaviors and then 
uses these rules to build a user model based on a Class Association Rule Classifier. In 
previous work, we presented a version of the approach that used clustering algorithms 
to first identify learner types based on the potential effectiveness of their interaction 
behaviors, and then to classify new students in real time based on these clusters [11]. 
While the approach showed good classification accuracy in terms of the student’s 
learning outcomes, it does not allow the system to isolate the specific behaviors that 
cause a given student to learn effectively or not from the environment. The approach 
based on association rules and a class association rule classifier that we present in this 
paper has a finer classification granularity, and thus it is better suited at guiding 
adaptive interventions to improve interaction effectiveness. We test the approach on 
AISpace[4], an ELE that uses interactive visualizations to help students understand 
Artificial Intelligence (AI) algorithms.  
  Several other researchers have looked at using association rules in ITS. To our 
knowledge, however, ours is the first attempt at using this approach for on-line 
student modeling with an ELE. In [5], logged data from students interaction with an 
ITS for the SQL database were mined using association rules to discover error 
patterns that can help teachers improve their presentation of this topics. In [6], the 
authors use association rules to discover similarities among exercises in terms of 
solution difficulty by mining logs of student solutions in an ITS. [7] uses association 
rules for the off-line analysis of students usage of a web based educational system 
spanning a complete university course, once the course is complete. Further off-line 
processing of the rules generates recommendations for teachers as to which usage 
patterns are more relevant for course revision.  

The paper is structure has follows. We first describe our general approach to detect 
and recognize relevant interaction patterns in ELEs. We then introduce the ELE we 
used in this research. Next, we describe association rules and how they are used in our 
approach, and we presents results on their effectiveness in identifying effective and 
ineffective learners in AISpace. We conclude with a discussion of future work. 

. 

2  General Student Modeling Approach 

Our student modeling approach for ELEs  divides the modeling process into two 
major phases: offline identification and online recognition.  

In the offline phase, raw, unlabelled data from student interaction with the target 
environment is first collected and then preprocessed. The result of preprocessing is a 
set of feature vectors representing individual students in terms of their interaction 
behavior. These vectors are then used as input to an unsupervised clustering algorithm 
that groups them according to their similarity. The resulting groups, or ‘clusters’, 
represent students who interact similarly with the environment. These clusters are 
then analyzed to determine which interaction behaviors are effective or ineffective for 
learning. The analysis consists of first identifying how the different clusters relate to 
learning outcomes, and then isolating in each cluster those behaviors that are 



responsible for the learning effects. Understanding the effectiveness of students’ 
interaction behaviors with an ELE is useful in itself to increase educator awareness of 
the pedagogical benefits of these environments, as well as to reveal to developers how 
the ELE can be improved [8][9][10]. However, our long-term goal is to use the 
interaction behaviors to guide automatic ELE adaptations while a student is 
interacting with the system. Thus, in the online recognition phase, the clusters 
identified in the offline phase are used directly in a classifier user model. The user 
model’s classifications and the learning behaviors identified by cluster analysis can 
eventually be used to inform an adaptive ELE component to encourage effective 
learning behaviors and prevent detrimental ones. 

In our previous investigations of this approach [11], the identification of behaviors 
that influence learning outcomes in each cluster was done by hand, using formal 
statistical tests to evaluate cluster similarities and dissimilarities along each of the 
feature dimensions. The outcome of this step is useful to help educators and 
developers gain insights on the different learning behaviors and design appropriate 
adaptive interventions targeting them. It was not, however, directly used during on-
line learner recognition. For this phase, we devised an online k-means classifier, 
trained on the clusters identified in the offline phase. This classifier incrementally 
updates the classification of a new student into one of the clusters from the offline 
phase, as the student interacts with the target ELE. While this classifier showed very 
good performance in predicting student learning outcomes with two different ELEs, it 
can’t identify which behaviors caused the classification at any given time. For 
instance, when applied to the ELE that we describe later in this paper, this approach 
identifies two clusters, one of high learners and one of low learners. Each cluster 
includes a variety of behaviors that can impact learning but the classifier can’t tell 
which behaviors are responsible for the student’s classification as student actions 
come in. This limits the ability of the approach to support adaptive interventions that 
target the relevant behaviors (e.g. discourage superficial browsing of functionalities). 
To address this limitation, we have introduced the use of Class Association Rules, 
described in the next section.  

 

3  Using Class Association Rules for Learner Classification in ELEs 

Association rules were originally devised for finding the hidden connections between 
items in a transaction database[12], and are generally used to find co-occurrence 
patterns in data. The connections are expressed as rules X --> Y, indicating that when 
X occurs, Y occurs with a given probability greater than zero. This probability is 
called the confidence of the rule conf(R), which essentially represents the strength of 
the correlation between X and Y. Algorithms for generating association rules use this 
measure, along with a measure of the relevance of a rule in a dataset, to select a set of 
appropriate rules among a usually very large pool of candidates. The measure of 
relevance is commonly known as support of the rule sup(R), computed as the 
percentage of datapoints satisfying both X and Y in the dataset. 



  The use of association rules to construct a classifier is called Associative 
classification mining or Associative Classification [13]. Algorithms for Associative 
Classification usually operate by first generating a complete set of class association 
rules (CARs) from training data, and then by pruning this initial set to obtain a subset 
of rules that constitute the classifier. When a new unknown object (a student in our 
case) is presented to the classifier, it is compared to a number of CARs and its class is 
predicted. The selection of the representative subset of CARs is one of the crucial 
steps in Associative Classification, entailing understanding what is the best number of 
CARs needed for classification, as well as which measures to use to select them.  
  We use Associative classification to increase the grain size of the on-line 
classification in the student modeling approach we described in Section 2. The overall 
approach is modified as follows. We still rely on an off-line clustering algorithm for 
generating the clusters that form the basis for the classifier, and each cluster is labeled 
with the overall learning performance of the corresponding student group. The off-
line phase is then augmented by performing Associative Classification within each 
cluster, thus obtaining a set of CARs that, for each cluster, link specific interaction 
behaviors with learning outcomes. During on-line classification, user interaction 
behaviors are tracked and updated after each action, as before. This time, however, 
they are matched against all available CARs and a classification is selected based on 
the cluster that has the highest percentage of matched rules. Thus, at any given point 
of the interaction, our student models generates a prediction of both the current 
student’s learning success, as well as the behaviors that influence it.  
  In the rest of the paper, we provide details on the approach and its effectiveness in 
the context of its usage for modeling students as they interact with the ELE known as 
AISpace CSP applet, described in the next section. 

4 The AISpace CSP applet 

The ELE we use as a testbed for our approach is the Constraint Satisfaction Problem 
(CSP) Applet, one of a collection of interactive tools for learning common Artificial 
Intelligence algorithms, called AIspace [4]. Algorithm dynamics are demonstrated via 
interactive visualizations on graphs by the use of color and highlighting, and graphical 
state changes are reinforced through textual messages (see Figure 1 for an example). 

A CSP consists of a set of variables, variable domains and a set of constraints on 
legal variable-value assignments. The goal is to find an assignment that satisfies all 
constraints. The CSP applet illustrates the Arc Consistency 3 (AC-3) algorithm for 
solving CSPs represented as networks of variable nodes and constraint arcs. AC-3 
iteratively makes individual arcs consistent by removing variable domain values 
inconsistent with a given constraint until all arcs have been considered and the 
network is consistent. Then, if there remains a variable with more than one domain 
value, a procedure called domain splitting can be applied to that variable to split the 
CSP into disjoint cases so that AC-3 can recursively solve each case or sub-network. 

The CSP applet provides several mechanisms for interactive execution of the AC-3 
algorithm, accessible through the toolbar shown at the top of Figure 1 or through 
direct manipulation of graph elements. Here we provide a brief description of these 



mechanisms necessary to understand the results of applying our student modeling 
approach to this environment: 

 

 
 

Fig.1 CSP applet with example CSP 

• Fine Stepping. Cycles through three detailed algorithm steps: selecting an 
arc, testing it for consistency, and removing variable domain values when 
necessary. 

• Direct Arc Clicking. Allows the user to decide which arc to test, and then 
performs three Fine Steps on that arc to make it consistent. 

• Auto Arc Consistency (Auto AC). Automatically Fine Steps through the 
network. 

• Stop. Stops Auto AC. 
• Domain Splitting (DS). Allows the user to select a variable domain to split, 

and specify a sub-network for further application of AC-3. 
• Backtracking. Recovers the alternative sub-network set aside by DS. 
• Resetting. Resets the CSP network to its initial state. 

Currently, AI space does not provide any explicit support on how to use the 
available mechanisms to learn at best from the interactive visualizations delivered by 
its applets.  Research, however, shows that students may benefit from this support, 
since unaided exploration of interactive visualizations often fails to help students 
learn[11]. In the following sections, we describe the application of the modeling 
approach described in Section 3 to create a classifier user model that can detect 
suboptimal student interactions with the CSP applet and guide adaptive interventions 
aimed at improving them. 



5 Modeling student interaction with the CSP applet 

The data we use for this research was obtained from a previous experiment 
investigating the effects of studying sample problems with the CSP applet. We use the 
following data collected from 24 students who participated in the study: time-stamped 
logs of user interactions with the applet, and learning gains computed from pre and 
post tests administered to the study participants. From the logged data we obtained 
1931 actions of users over 205.3 minutes. In the off-line phase, in order to find 
clusters of students who interact with the CSP Applet in similar ways, each student 
must be represented by a multidimensional data point or ‘feature vector’. From the 
logged user study data, we computed 24 feature vectors corresponding to the 24 study 
participants. The feature vectors had 21 dimensions, resulting from deriving three 
features for each of the seven actions described in the previous section: (1) action 
frequency, (2) the average latency after an action (reported as avg in tables), and (3) 
the standard deviation of the latency after an action (reported as STD in tables). The 
latency dimensions are intended to measure if and how a student is reflecting on 
action results. Specifically, the second dimension is an indicator of student reflection, 
and the third dimension is an indicator of reflection selectiveness since varied latency 
may indicate planned rather than impulsive or inattentive behavior (e.g., consistently 
rushing through actions vs. selectively attending to the results of actions).  
  After forming the feature vector representation of the data, the next step in the 
offline phase is to perform clustering on the feature vectors to discover patterns in the 
students’ interaction behaviors. After experimenting with various clustering 
algorithms (including EM and hierarchical clustering) we chose k-means[14] for this 
dataset. K-means converges to different local optima depending on the selection of the 
initial cluster centroids and so in this research we execute 25 trials (with randomly 
selected initial cluster centroids) and use the highest quality clusters (based on 
Fisher’s criterion [15]) as the final cluster set. We also experimented with k set to 2, 3 
and 4, and obtained the best results for k = 2. More details on cluster generation can 
be found in [11].  
 When we compared average learning gains between the two clusters found by k-
means, we found that one cluster (4 students) had statistically significantly higher 
learning gains (7 points) than the other cluster (20 students, 3.08 points gain). 
Hereafter, we will refer to these clusters as ‘HL’ (high learning) cluster, and ‘LL’ (low 
learning) cluster respectively. 

5.1 CARs and Multiple Class Association Rule Classifier 

The next step in the student modeling process is to generate CARs to identify, for 
each cluster, the interaction behaviors that best characterize its students. In this work, 
we used the Hotspot algorithm in Weka [16], which inspects the training data and 
generates the association rules corresponding to a class label in the form of a tree. 
Table 1 shows the CARs generated for the HL and LL clusters, where we report the 
preconditions for each rule but leave out the consequence (Label HL for the high 
learners cluster and LL for the low learners cluster). Table 1 also shows, for each rule, 
its level of confidence (conf), and support within its cluster (supp).  



It should be noted that the attribute values mentioned in the rules in table 1 are 
discrete, while our original dimensions are continuous. Although CAR algorithms 
work with both discrete and continuous values, using continuous values in our dataset 
would produce a large number of very fine-grained rules, unsuitable for classification. 
We thus discretized our attributes using the equal-width method proposed in [17], 
which consists of dividing the range of observed values into k equally bins. For the 
time being we selected k=2, thus discretizing each attribute into HIGH and LOW 
values, although we plan to experiment with a higher number of bins to see how that 
affects the accuracy of the classifier. 

 Table 1 CARs for HL and LL clusters (STD refers to standard deviation, Avg 
referes to average) 

Rules for HL cluster 
 
Rule 1:   Stop Pause STD = HIGH; conf=100%; supp =50% 
Rule 2:  Fine Step Pause STD = HIGH; conf=80% supp =100% 
 |Rule 3 Fine Step Pause STD = HIGH &  Fine Step frequency = LOW  
        conf=100%   supp=100% 
 |Rule 4 Fine Step Pause STD = HIGH & Domain Split Pause STD = LOW  
        conf=100% supp =100% 
 
Rules for LL cluster 
 
 Rule 1   Fine Step Pause STD = LOW; conf=100%; supp =100% 
 Rule 2   Stop frequency = LOW; conf= 95% ; supp =95% 
 |  Rule 3 Stop frequency = LOW &  Fine Step Pause Avg = 'LOW 
         conf=100%   supp=100% 
 |  Rule 4 Stop frequency = LOW & Reset Pause Avg = 'LOW 
        conf=100%   supp=100% 

    
  The Hotspot algorithm has three parameters that influence the type and number of 
rules generated: the minimum level of support requested for a rule to be considered 
relevant; the branching factor of the tree, influencing how many new rules can be 
generated from an existing one by adding a new condition to its current set; the 
minimum improvement in confidence requested for creating a new branch in the tree. 
  We kept the default values for minimum improvement (0.01) and branching factor 
(2), while we used the minimum level of support within each cluster as a criterion to 
filter the number of rules generated [18]. Essentially, for each cluster we need to find 
a few rules that characterize as many elements in the cluster as possible and provide 
an easily understandable explanation of students’ behaviors for each learning 
outcome. After experimenting with various levels of support, we selected 50% for 
both the HL and the LL cluster, i.e., a rule has to involve at least half of the students in 
the cluster to be generated. 
  The CARs produced are shown in Table 1. They indicate that, for instance, high 
learners show more selective attention when observing the workings on the CSP 



algorithm in the applet (see high values for standard deviation in latency after 
stopping a running of Autosolve in Rule 1, and in latency during fine stepping in 
Rules 2-4). Low learners, on the other hand, are characterized by non-selective 
attention during fine stepping (see low standard deviation for pausing times during 
stepping in rule 1). Rule 2 represents a different detrimental behavior, i.e. short 
latency during stepping and limited usage of stopping during autosolving, indicating 
that the student is not taking the time to analyze the workings of the algorithm.  
  After producing the CARs for each cluster, the CARs were used as input to a 
classifier based on multiple class association rules. This classifier can generate a 
prediction in terms of high or low learning for a new user after each user action in the 
CSP applet. For each new action, all the related feature dimensions are recomputed 
(e.g., action frequency and the various latency dimensions), and the updated feature 
vector is matched against all existing CARs. The final classification is generated by 
selecting the cluster with the highest percentage of matched rules. 

5.2  Evaluation 

To evaluate our approach, we used the same methodology followed in [11] and based 
on a 24-fold leave-one-out cross validation (LOOCV). In each fold, we removed one 
student’s data from the set of N available feature vectors, used k-means to re-cluster 
the reduced feature vector set and generated CARs for each newly generated cluster.  
Next, the removed student’s data (the test data) was fed into the CAR Classifier 
trained on the reduced set, and online predictions were made for the incoming actions 
as described above. Model accuracy is evaluated by checking after every action 
whether the current student is correctly classified into the cluster to which he/she was 
assigned in the offline phase. The percentage of correct classifications is shown in 
Figure 2 as a function of the percentage of student actions seen by the model (solid 
line labeled ‘Overall’ in the figure’s legend). The figure also shows the model’s 
performance in classifying HL students into the HL cluster (dotted line), LL students 
into the LL cluster (dashed line), and the performance of a base-line most-likely 
classifier.  

 

Fig. 2 Classifier accuracy (y axis) as a function of observed actions (x-axis) 
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  The classifier performs very well in identifying LL learners (100% accuracy after 
seeing about 30 actions), while it performs poorly with the HL learners. This is not 
surprising, since the HL cluster used to derive the CARs rule for this group contains 
on average only 3 data points during LOOCV. The high performance on the LL 
cluster, on the other hand, is very encouraging, because this cluster, although much 
larger than HL, still includes a relatively limited number of datapoints (20 on 
average). Still, we managed to learn from this dataset a CAR classifier that is very 
good at detecting students with suboptimal learning behaviors, indicating that overall 
performance can be significantly improved by collecting a richer dataset for model 
training.  
  It is interesting to compare the performance of our CAR Classifier with the 
performance of the previous k-means classifier [11]. That classifier had slightly lower 
accuracy on LL (constantly above 90% but never reaching100%) but scored much 
better than the CAR classifier in classifying HL, converging to about 75% accuracy 
after seeing about 40% of the available actions. These results suggests that the k-mean 
classifier learns more reliably from small datasets that the CAR classifier, but the 
price to pay is no information on which behaviors are responsible for a user’s 
classification at any given point of the interaction. The CAR classifier, on the other 
hand, can help identify these behaviors after every user action by providing the rules 
that were matched to generate the classification. This information can be used to 
provide adaptive hints to correct behaviors that can be detrimental for learning. For 
instance,  if Rule 3 below fires to classify a student   as  low learner   (see Table 1) 

 
Rule 3 Stop frequency = LOW and  Fine Step Pause Avg = 'LOW 
 

the ELE can try to make the learner stop more often when running the CSP algorithm 
in autosolve mode, and pause more in between stepping actions to reflect on the 
outcome of each step of the algorithm 

   6 Conclusions and Future Work 

We presented a student modeling approach that uses Class Association Rules and a 
Class Association Rule Classifier to discover and monitor student behaviors that can 
impact learning during interaction with an ELE. Modeling student interactions with 
ELEs is important to provide adaptive support for those students who do not learn 
well in absence of more structured instruction. It is also challenging, because in these 
environments it can be hard to identify a priory actions or behaviors as correct or 
faulty. We have provided initial results showing that our approach can identify these 
behaviors, and have discussed implications for providing adaptive support in ELE. 
One line of future work, thus, is to implement this adaptive support. In parallel, we 
want to refine our student modeling approach by experimenting with alternative 
techniques for selecting the set of relevant association rules (e.g. based on a variety of 
functions of support and confidence). We also want to see how our approach performs 
on larger datasets and how it transfers to different ELEs, for instance the ELE for 



mathematical functions that we used to test transfer of the first version of our 
approach without association rules [11]. 
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