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DO MICRO-LEVEL TUTORIAL DECISIONS MATTER: APPLYING
REINFORCEMENT LEARNING TO INDUCE PEDAGOGICAL TUTORIAL
TACTICS

Min Chi, PhD

University of Pittsburgh, 2009

In this dissertation, I investigated applying a form of machine learning, reinforcement learn-
ing, to induce tutorial tactics from pre-existing data collected from real subjects. Tutorial
tactics are policies as to how the tutor should select the next action when there are multiple
ones available at each step. In order to investigate whether micro-level tutorial decisions
would impact students’ learning, we induced two sets of tutorial tactics: the “Normalized
Gain” tutorial tactics were derived with the goal of enhancing the tutorial decisions that
contribute to the students’ learning while the “Inverse Normalized Gain” ones were derived
with the goal of enhancing those decisions that contribute less or even nothing to the stu-
dents’ learning. The two sets of tutorial tactics were compared on real human participants.
Results showed that when the contents were controlled so as to be the same, different tutorial
tactics would indeed make a difference in students’ learning gains. The “Normalized Gain”
students out-performed their “Inverse Normalized Gain” peers. This dissertation sheds some
light on how to apply reinforcement learning to induce tutorial tactics in natural language

tutoring systems.
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1.0 INTRODUCTION

Human one-on-one tutoring is one of the most effective educational interventions. Tutored
students often perform significantly better than students in classroom settings [Bloom, 1984,
Cohen et al., 1982]. Computer learning environments that mimic aspects of human tutors
have also been highly successful. Intelligent Tutoring Systems (ITSs) have been shown to
be highly effective in improving students’ learning in real classrooms [Anderson et al., 1995,
Koedinger et al., 1997, VanLehn, 2006].

The development of I'TSs has enabled schools and universities to reach out and educate
students who otherwise would be unable to take advantage of one-on-one tutoring due to
cost and time constraints [Koedinger et al., 1997]. Despite the high payoffs provided by
ITSs, significant barriers remain. High development costs and the challenges of knowledge
engineering have prevented widespread deployment.

In order to design an effective ITS, developers must form the basic core of the sys-
tem, determine what is taught, and how. Moreover, in order to increase ITSs’ deploy-
ments, individual instructors should have the ability to alter the ITSs to fit their pre-
ferred teaching style and fill in with their preferred domain contents. Authoring tools
[Murray et al., 2003, Aleven et al., 2006, Aleven et al., 2005, Ainsworth and Fleming, 2005]
that provide support for the software-engineering aspects of development, and thus enable
non-developers to implement a system, are one promising approach to this problem. These
software tools allow each individual to build customized ITSs to meet his or her own needs.
Generally speaking, users of authoring tools face challenges not only in developing the con-
tent to be taught, but also in determining how to interact with the students.

Most authoring tools are built with a predefined pedagogical strategy and allow domain

experts to configure parameters such as the amount of help the tutor will provide. One



potential problem is that this approach assumes all students learn best using the same set
of teaching strategies. However, there are no well-established domain-general pedagogical
strategies in the learning and cognitive literature, and thus, the effectiveness of these prede-
fined pedagogical strategies is often not clear. Additionally, instructors are domain experts
not learning scientists. Therefore, determining how to interact with students is a challenging
task for them, because they do not necessarily have a good understanding as to how these
parameters will impact student performance or subsequent behaviors [Chi et al., 2004]. In
order to improve their effectiveness, the authoring tools should provide more, and more

effective, methods, to help instructors decide how to interact with students.

On the other hand, it is still an open question as to whether the decisions on how to
interact with students would impact learning. For any form of tutoring, the tutor’s be-
havior can be viewed as a sequential decision process wherein, at each discrete step, the
tutor is responsible for selecting the next action to take. That is, the tutor’s main task
can be seen as deciding what action to take at each turn. Each of these tutorial deci-
sions affects successive actions. One preferred assumption as to the effectiveness of hu-
man one-on-one tutoring has been that the human tutors are good at making such types
of tutorial decisions; moreover, these decisions are responsible for students’ learning gains
[Chi et al., 2001, Collins and Stevens, 1982, McArthur et al., 1982, Merrill et al., 1992]. In
the learning literature, the skills used to making such tutorial decisions are often referred to
as pedagogical skills. More formally, Chi, Siler, and Jeong [Chi et al., 2004] define these ped-
agogical skills as those that “involve skillful execution of tactics, such as giving explanations

and feedback, or selecting the appropriate problems or questions to ask the students.”

However, little evidence has shown that either human tutors have effective pedagogi-
cal skills, or pedagogical skills were the reason the students learned. In fact, many previ-
ous studies indicated that human tutors rarely employ any pedagogical skills when tutor-
ing [Cade et al., 2008, Chi et al., 2004, Cho et al., 2000, Core et al., 2003, Katz et al., 2007,
Evens and Michael, 2006, Merrill et al., 1995, Merrill et al., 1992, VanLehn, 1999], see also
[VanLehn et al., 2003]. Additionally, skillful execution of these pedagogical skills may require
that tutors adapt their actions to tutorial context, which includes each student’s current

knowledge level and general aptitude, the subject matter under discussion, the institutional



context in which the tutoring takes place, and so on. But little evidence has been found either
that human tutors are able to monitor students’ understanding accurately [Chi et al., 2004],
or that tutors really adapt their decisions based on the tutorial context [Putnam, 1987]. For
instance, Chi, Siler, and Jeong [Chi et al., 2004] found that human tutors do not seem to
process an accurate model of students’ knowledge levels during the tutoring. In fact, Put-
nam [Putnam, 1987] found that experienced tutors did not attempt to form highly-detailed
models of their students’ knowledge before attempting remedial instruction; rather, each

teacher appeared to move through a curriculum script to teach the individual students.

If it was not superior pedagogical skills that enabled students to learn in these previous
studies [Bloom, 1984, Cohen et al., 1982], then what did cause students to learn? One indis-
putable explanation is instructional content and practice opportunities. For example, previ-
ous research repeatedly showed that students working with a tutor often learned significantly
more than those without one [Anderson et al., 1995, Chi et al., 2008b, Koedinger et al., 1997,
Lane and VanLehn, 2005, VanLehn et al., 2007a, VanLehn et al., 2005]. However, once con-
tent was controlled to be the same across all conditions, little evidence was found that there
was any difference among students under different learning treatments. Several techniques
have been employed to control for content. For example, in some previous studies the do-
main content was controlled by ensuring students worked on the same training problems with
the same human tutors or on a computer tutor that was scripted by the same human tu-
tors [Evens and Michael, 2006, VanLehn et al., 2007a, Reif and Scott, 1999]. Additionally,
the content can be controlled to be equivalent by running a human tutoring condition first,
videotaping the tutoring sessions, and then having another group of students watch those
videotapes [Chi et al., 2008b]. Though it is often assumed that human tutors possess more
effective pedagogical skills than ITSs, previous research has shown that students who were
tutored under human expert tutors were no more effective than those who were tutored
under ITSs [Evens and Michael, 2006, VanLehn et al., 2007a, Reif and Scott, 1999]. There-
fore, it seems the large benefit of tutoring over no-tutoring found in previous studies, may
be due to a difference in instructional content rather than a difference in pedagogical skills.
Until recently, there have been rising doubts in cognitive science regarding the impact of

pedagogical skills on students’ learning [Chi et al., 2008b, Chi et al., 2004, Chi et al., 2001,



VanLehn et al., 2007a].

However, absence of evidence is not evidence of absence. The lack of evidence supporting
the impact of pedagogical skills on learning does not mean these skills are irrelevant or not
important. In the studies underlying this thesis, [ applied and evaluated a general data-driven
methodology to learn how to make these tutorial decisions from pre-existing interactivity
data rather than, as is presently common, implementing a priori pedagogical theories drawn

from experts.

In order to investigate the effect of pedagogical skills on learning, it was necessary to
separate tutorial decisions from instructional content, strictly controlling content so that it
is equivalent for all students. It is generally difficult to control tutoring content with human
tutors. Computer tutors, on the other hand, permits much greater control over, and tracking
of, the tutorial content than human tutors [Evens and Michael, 2006, VanLehn et al., 2007a,
Reif and Scott, 1999]. In this thesis, Cordillera, a Natural Language (NL) tutoring system

was implemented to teach college students introductory physics.

Tutoring in domains like math and science is often structured as a two-loop procedure.
An outer loop selects the problem or task the student should work on next, while the inner
loop governs step/level decisions during problem solving [VanLehn, 2006]. In this structure,
there are two main sources of content variation: selection of different problems, and guid-
ing students along a different solution path. In order to minimize content variation, all
participants in this thesis solved the same problems and followed the same major problem-
solving steps for each problem. In educational literature, the term “step” often refers to
the application of a major domain principle or equation such as Newton’s Third Law of
Thermodynamics during problem solving. However, in this thesis a step generally consists
of multiple micro-level steps. For example, one of the training problems, P4, is defined in

Figure 1.1.

In order to solve P4, students need to apply several domain principles, and some principles
need to be applied more than once. For instance, one of the domain principles the students
need to apply to solve for P4 is the definition of Kinetic Energy (KE = $muv?). More
specifically, they need to apply the definition of Kinetic Energy to the rock at T0. In order

to do so, the tutor takes the following four micro-level steps: selecting the principle to apply,



A 0.6kg rock in space has a velocity of magnitude 2.0m/s at point A and kinetic energy
of 7.50J at point B. What is the net work done on the rock as it moves from A to B? We
define:

Ty: the time point when the rock is at point A.
Ti: the time point when the rock is at point B.

Figure 1.1: A Training Problem: P4

writing the corresponding equation, solving the equation, and engaging in some qualitative
discussion about the principle. At each micro-level step, at least one tutorial decision needs
to be made as to how to carry out the step. As a result, this study focused on pedagogical
skills that govern low-level tutorial interaction decisions on a single micro-level step: for
example, whether the student is told what principle to apply, or if the system elicits it from
him or her with a prompt; and whether or not the student is asked to justify the answer,

once he or she has completed a step.

Figure 1.2 shows a sample dialog for how student-tutor interactions would look for car-
rying out the four micro-steps. In Figure 1.2, each numbered line represents a dialog turn.
The labels T and S designate tutor and student turns respectively. In the example shown
in Figure 1.2 the tutor and student complete a single principle application, the application
of the definition of Kinetic Energy to solve for K Fy, (the rock’s kinetic energy at Tj) and
begin to solve for vy (the rock’s instantaneous magnitude of velocity at 77). The tutor and
student first selected a principle to apply (lines 2 and 3), wrote the corresponding equation

(4), then solved it (5), and finally, discussed the principle (6-8).

Some of the tutor turns in Figure 1.2 are labeled {ELICIT} or {TELL}. This label
designates a tutorial decision step wherein the tutor has to make a tutorial action decision
deciding whether to tell the student the information or to elicit the requisite information
with a question. For example, in line 2, the targeted principle is the definition of Kinetic
Energy, labeled as K5, and the tutor chooses to elicit the answer from the student by
asking the question, “Which principle will help you calculate the rock’s kinetic energy at



1. T: So let’s start with determining the value of K E.

[\]

. T: Which principle will help you calculate the rock’s kinetic energy at T0? Please
provide the name of the principle, not an equation. {ELICIT}, KCsy

3. S: Definition of kinetic energy

4. T: Yes, I agree. Now I will write the equation for applying the definition of kinetic
energy to the rock at T0: KEO = 1/2*m*v0"2 {TELL}, KCy

5. T: I calculate the value for KEO = 0.5%0.6kg*2.0 m/s"2 = 1.2 J {TELL}, KCy;

6. T: We do not know the direction of the rock’s velocity at TO from the problem
statement. Would the direction of v0 affect the rock’s kinetic energy at T0?
{ELICIT}, KCsy

7. S: No, it would not affect

8. T: Yes, I agree. This is because the kinetic energy only depends on the rock’s mass

and magnitude of velocity, not the direction of the rock’s velocity. {TELL}, KCsy

9. T: We've calculated KEO, recall that our plan is to calculate v1 next.

Figure 1.2: An example Dialog with Cordillera

TO? Please provide the name of the principle, not an equation.” By contrast, if the tutor
elected to tell the students, then he or she would have stated, “To calculate the rock’s kinetic
energy at TO, let’s apply the definition of Kinetic Energy.” Both steps cover the same target
knowledge.

For the purposes of this thesis the term “pedagogical tutorial tactics” will be used to
refer to the policies for selecting the tutorial action at each micro-step level when there
are multiple actions available. The primary research question in this thesis is whether ped-

agogical tutorial tactics focused on individual interaction decisions impact students’ learning.

Existing I'TSs typically employ hand-coded pedagogical rules that seek to implement



existing cognitive or instructional theories. These theories may or may not have been well-
evaluated. For example, in both the CTAT [Anderson et al., 1995, Koedinger et al., 1997
and Andes systems [VanLehn et al., 2005], help is provided upon request because it is as-
sumed that students know when they need help and will only process help when they desire
it. Research on gaming, however, has raised some doubts about this, by showing that stu-
dents sometimes exploit these mechanisms for shallow gains thus voiding the help value
[Baker et al., 2004b, Baker et al., 2004a]. It is often difficult to evaluate hand-coded rules in
a tutoring system as their performance depends upon a number of factors, such as the content
difficulty, the student’s incoming competence, the system’s usability, and so on. Previous
researchers have largely treated the specification of tutorial tactics as a design problem: sev-
eral versions of a system are created, the only difference among them being the pedagogical
model employed. Data is then collected from human subjects interacting with each version
of the system, and the students’ performance is then statistically compared. Due to cost

limitations, typically, only a handful of alternative tutorial tactics are explored.

Recent work on I'TSs has shifted focus from hand-coded tutoring designs to more data-
driven methodologies. For example, I'TSs researchers have used decision theory to guide the
tutoring system in lieu of hand-crafted rules [Murray and VanLehn, 2006]. In this thesis,
the approach adopted does not have to rely upon a priori belief about how the tutor should
teach. Instead, it proposes to “learn” how to make tutorial decisions from pre-existing
student-computer interactivity corpora. The machine-learning technique chosen for this
task is reinforcement learning (RL). The methodology reported in this thesis is heavily
motivated by previous research in non-tutoring dialog systems. In these previous studies
RL has been successfully applied to improve the effectiveness of non-tutoring dialog systems
[Williams et al., 2005, Walker, 2000, Singh et al., 2002]. The system employed in this thesis
is a NL tutoring system named Cordillera [Jordan et al., 2007, Jordan et al., 2006]. While
NL tutoring systems can be seen as complex dialogue systems, applying RL to NL tutoring
systems raises certain challenges in that the research is focused on a more complex task —
instruction — than most dialogue systems. Thus it is still an open question whether RL-
derived policies will prove effective in an educational context. In the following paragraphs,

I will describe a general methodology showing how RL was applied to derive tutorial tactics



from computer-student interactivity data. The secondary research question is: Will RL

provides a feasible method to induce pedagogical tutorial tactics?

1.1 RESEARCH QUESTIONS

1.1.1 Question 1: Do Micro-level Pedagogical Tutorial Decisions Affect Stu-

dents’ Learning?

1.1.1.1 Background on Pedagogical Tutorial Tactics Many studies of one-on-one
tutoring show that tutors tend to dominate the tutoring sessions. For instance, they take
more initiative. The tutor’s primary task can be seen as deciding what action to take on each
turn [Chi et al., 2001, Graesser et al., 1995]. Much of this research takes an implicitly tutor-
centric perspective. It assumes that the tutors’ actions are primarily responsible for tutoring
effectiveness based upon the way they craft and adapt their actions to the students’ needs
[Collins and Stevens, 1982]. Even though students can benefit from being tutored by novice
tutors [Cohen et al., 1982], expert human tutors seemingly produce better learning outcomes
[Lu et al., 2007, Eugenio et al., 2006]. Here both expert and novice tutors are domain ex-
perts who differ only in terms of their tutoring experience. Similar, but less significant, results
were found by Chae et al. [Chae et al., 2005] and Kim, Chae and Glass [Kim et al., 2005].
In their work students’ learning gains under expert tutors were larger than learning gains
under novice tutors; however, their results were only marginally significant. On the other
hand, it has also been shown that expert human tutors employ different tutorial tactics than
novice tutors [Hume et al., 1995, Kim et al., 2005, Lu et al., 2007]. In short, these results
suggest that expert tutors may be more effective than novice tutors because they make more
effective tutorial decisions.

On the other hand, the majority of previous research studies have shown that human
tutors may not be very effective when selecting tutorial actions and the tutors’ pedagog-
ical skills may not determine students’ learning. For example, Clark, Snow, and Shavel-

son [Clark et al., 1976] found that human tutors’ educational effectiveness was not necessar-



ily correlated with their level of training or prior experience. They conducted a comparison
study between trained human tutors and rank novices in the domain of physics. Partic-
ipants were tutored for five one-hour sessions that were completed in one week. Results
showed that the trained tutors were no more effective than the inexperienced tutors. Chi et
al. investigated three hypotheses regarding tutor effectiveness: a tutor-centered hypothesis
assuming that tutoring effectiveness arises from the tutors’ pedagogical skills; a student-
centered hypothesis assuming it arises from the students’ active generation; and an interac-
tive hypothesis assuming that it arises from the joint effort of both the tutors and students
[Chi et al., 2001, Chi et al., 2004, Chi et al., 2008b]. They found evidence supporting the
latter two hypotheses, but not the tutor-centric hypothesis.

Research in computer learning environments has found a similar lack of evidence for the
tutor-centric view of tutoring effectiveness. Evens and Michael conducted a series of studies
comparing four learning treatments in cardiovascular physiology [Evens and Michael, 2006].
The no-tutoring condition studied a text that included examples of the correct reasoning
for solving a pacemaker problem. The CIRCSIM condition solved one training problem on
a tutoring system, CIRCSIM, which presented a short text passage for each incorrect step.
The CIRCSIM-tutor condition solved the same training problem on a sophisticated natural
language tutoring system, CIRCSIM-tutor, which replaced the text passages in CIRCSIM
with typed natural language dialogue. The human tutor condition also solved the same
training problem with expert human tutors. Results showed that the latter three conditions
out-performed the no-tutoring condition, but the three treatments, CIRCSIM, CIRCSIM-

tutor and expert human tutors, tied with each other.

While I'TSs generally support students both in the selection of problems to work on and
the solving of those problems, computer-aided instructional (CAI) environments generally
support only the outer loop, the problem-selection loop. Previous studies have shown that
when students study the same materials and solve the same problems, a CAI will be as effec-
tive as an ITS [Sleeman et al., 1989]. More recently VanLehn et al. [VanLehn et al., 2007a]
compared students who studied the same material and then studied the same training prob-
lems under a variety of conditions, including expert human tutors and a variety of ITSs. All

students in the study showed learning gains but no significant difference was found among



the groups. In a subsequent review of studies of human tutors, VanLehn [VanLehn, 2009]
noted that human tutors were seldom more effective than moderately interactive forms of

tutoring, such as step-based tutoring systems [VanLehn et al., 2007a).

In sum, previous research has suggested that tutorial content is indisputably an important
source that contributes to the effectiveness of one-on-one tutoring. The effectiveness of the
pedagogical tutorial tactics, however, is still an open question. In order to investigate whether
pedagogical tutorial tactics alone will make a difference in learning, it is necessary to control

such factors as the tutoring content.

In this thesis, all students studied the same subject matter, the same training problems
using the same tutorial scripts, and interacted with the computer tutors using the same user
interface. For each training problem, all students experienced the identical information for
all of the non-tutorial decision steps, and the variance among the students was on tutorial
decision steps. For any given tutorial decision step, once tutorial action was taken, the same
domain content would be carried out for all students. The following example will illustrate

this.

The example used here is P4 (shown in Figure 1.1), one of the seven training problems
used in this dissertation. For each training problem all participants followed a two-phase
strategy which consists of collaborative solution wherein the student and tutor solve the
problem together (phase 1), followed by post-problem discussion where the student reflects
upon the solution (phase 2).

During phase 1, the student and the tutor solve the problem together. One important
characteristic of this phase is that the tutor guides the student by applying one principle at
a time. For example, solving training problem P4 (shown in Figure 1.1) involves applying
three major domain principles with some principles needing to be applied twice. The three
domain principles are: the definition of Kinetic Energy (KE: KFE = %mvz), the definition
of Total Mechanical Energy (TME: TME = KE + GPE + SPE), and the Change of Total
Mechanical Energy for Non-isolated Systems (Nety = TM Ey — TME,). The solution path
for P4 students followed in this dissertation was: 1) applying the definition of Kinetic Energy
to solve for the rock’s kinetic energy at Ty, 2) applying the definition of Kinetic Energy to
the rock’s magnitude of velocity at 17, 3) applying the definition of Total Mechanical Energy
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to solve for rock-system’s Total Mechanical Energy at T, 4) applying the definition of Total
Mechanical Energy to solve for rock-system’s Total Mechanical Energy at 7}, and 5) applying
the Change of Total Mechanical Energy for Non-isolated Systems to solve for the work done
on the rock-system from Ty to T;. All of the students applied one domain principle at a time
and followed the same solution path in the same order of 1-5. For each domain principle
application, the tutor generally would make 3-5 micro-level tutorial decisions as shown in
Figure 1.2.

During phase 2 the tutor highlights the solution’s main steps, reviews any confusion that
students may have had during the solution, and considers how the solution varies when the
problem statement is varied in certain ways. For example, in the post-problem discussion for
training problem P4 (shown in Figure 1.1), the tutor would cover eight main topics, generally
one topic for each domain principle. These eight topics include the discussion about whether
there are any extra steps in the solution path during the problem solving, the definition
of potential energy, how changing the mass of the rock would affect the final result, and
so on. In this dissertation, all four groups of students went through all main topics in the
post-problem discussion in the same order (shown in Appendix I). Similar to the problem
solving, the difference is how these discussions were carried out. For example, in the domain
of work and energy, potential energy always involves two objects, such as potential energy
of block-earth pair or potential energy of block-spring pair. However, students often focus
on only one object such as the block. One of the eight topics in the post-problem discussion
for P4 is regarding potential energy and there were two versions of discussion: elicit version

vs. tell version. An example of the elicit version of post-problem discussion in P4 looks like:

Tutor: In this problem, we have selected the rock as the system. Is it possible to define
potential energy for the rock system?
Student: No, it is not possible.

The tell version of the same point is:

Tutor: In this problem, we have selected the rock as the system and we *cannot* define a
potential energy for the rock system.

This project employed four types of tutorial tactics: Exploratory, Dichotic Gain (Dich-
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Gain), Normalized Gain (NormGain), and Inverse Normalized Gain (InvNormGain). All
four groups of participants covered the same material using the same procedure and were
trained on four versions of the same tutoring system. The only difference among the different
versions employed by the four groups was the policy that each tutoring system followed to
make tutorial decisions.

The primary research question is: “Will pedagogical tutorial tactics focused on individ-
ual interaction decisions impact students’ learning?” For the purposes of this thesis, two
types of interaction decisions, Elicit/Tell and Justify /Skip-Justify, have been made the focus
of this research. For each Elicit/Tell decision step, some students would be told the informa-
tion, while others would be asked to provide the information. For each Justify/Skip-Justify
decision step, the tutor sometimes would execute the justification for some students and
at other times the tutor would skip the justification. Each type of interaction decision is

described in detail below.

1.1.1.2 Elicit/Tell During the course of one-on-one tutoring, the tutor often faces a
simple decision, should he or she elicit the next step information from the student, or should
he or she tell the student the next step directly? We refer to such tutorial decisions as
elicit/tell (ET) decisions. While a lecture can be viewed as a monologue consisting of an
unbroken series of tells, individual tutoring is characterized by a great deal of give and take
and is thus a mixture of elicits and tells. Generally speaking, eliciting more information from

the student during tutoring will result in a more interactive tutorial dialogue.

Figure 1.3 presents a pair of sample dialogues comparing elicit and tell versions of a single
tutorial dialogue extracted from a log file collected in this project. Both dialogues begin and
end with the same tutor turns (lines 1 and 6 in (a) and 1 and 4 in (b)). In dialogue (a) the
tutor chooses to elicit twice (lines 2-3 and 4-5 respectively). In contrast, dialogue (b) covers
the same domain content with two tell actions (lines 2 and 3). As a consequence, tutorial
dialogue (a) is more interactive than (b).

For the purposes of this dissertation interactivity is quantified in terms of Interactivity

ratio (I-ratio), which is defined as the number of elicit decisions a student received divided
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(a) Elicit Version

1. T: So let’s start with determining the value of v1.

\V]

. T: Which principle will help you calculate the rock’s instantaneous magnitude of
velocity at T1? {ELICIT}, KCsy

3. S: definition of kinetic energy

4. T: Please write the equation for how the definition of kinetic energy applies to this

problem at T1 {ELICIT}, KCy

5. S: kel =0.5*m*v1"2

6. T: From KE1 = 0.5*m*v1"2, we get v1"2=KE1/(0.5*m). We substitute KE1 with 7.5

J and m with 0.6 kg. The equation now becomes: v1°2=7.5 J/(0.5*0.6 kg). The

magnitude of velocity is always positive, therefore, vi= 5.0 m/s. {TELL}, KCj3;

(b) Tell Version

1. T: So let’s start with determining the value of v1.

2. T: To calculate the rocks instantaneous magnitude of velocity at T1, we will apply the
definition of kinetic energy again. {TELL}, KCy

3. T: Let me just write the equation for you: KE1 = 0.5*m*v1°2. {TELL}, KCy

4. T: From KE1 = 0.5*m™*v1°2, we get v1"2=KE1/(0.5*m). We substitute KE1 with 7.5
J and m with 0.6 kg. The equation now becomes: v1°2=7.5 J/(0.5*0.6 kg). The

magnitude of velocity is always positive, therefore, vi= 5.0 m/s. {TELL}, KC3;

Figure 1.3: Elicit vs. Tell

by the total number of ET decisions received in a given dialogue and can be expressed in:

I-ratio= ——"+—F—
NEiicit + Nren
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The higher this value, the more interactive the dialogue. If I — ratio = 0.5 means that
students were given elicitation prompts as often as they were simply told the information
while I — ratio > 0.5 means that they were more likely to be prompted for information, and

I — ratio < 0.5 means that the conversation was more didactic.

A key characteristic of one-on-one tutoring, whether from human tutors or computer sup-
port, is high interactivity. A common assumption, often referred as the monotonic interaction
hypothesis [VanLehn et al., 2007a] is that greater interactivity leads to greater learning. But
Chi et al. [Chi et al., 2001, Chi et al., 2008b] and Rose [Rose et al., 2001] found no difference
in learning between students tutored on an interactive tutor and those tutored on a more
didactic one. A detailed review of the literature [VanLehn et al., 2005, VanLehn, 2009] (sub-
mitted) distinguished between the widely-accepted, monotonic interactivity hypotheses and
the better supported interaction plateau hypothesis. The former states that an increase in
interactivity causes consistent increases in learning gains, while the latter states that beyond
a given threshold point, increasing interactivity will yield diminishing educational returns.
In this dissertation, it will be argued that it may not be the absolute volume of interactivity

that is at issue, but rather how the interactivity is guided.

Some existing theories of learning suggest that when deciding whether to elicit or tell,
a tutor should take into account several factors including the students’ current knowledge
model. Vygotsky [Vygotsky, 1971] coined the term “zone of proximal development” (ZPD)
to describe the space between abilities that a student may display independently and those
that they may display with support. He hypothesized that the most learning occurs when
students are assigned tasks within their ZPD. In other words, the task should neither be
so simple that students can achieve it independently or trivially, nor so difficult that they
simply cannot make progress even with assistance. We expect, based upon this theory, that
if students are somewhat competent at a given step, the tutor should elicit, and provide help
only if the students fail, so that they can practice their knowledge. If students are completely
unfamiliar with the step, however, then the tutor should tell them directly. Collins, Brown
and Newman [Collins et al., 1989] describe a progression from tells to elicits following their
“model, scaffold & fade” rubric. Koedinger and Aleven [Koedinger and Aleven, 2007] by

contrast defined an “assistance dimension”, which includes elicits and tells. The level of
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assistance a tutor should provide may be resolved differently for different students and should
be adapted to: the learning environment, the domain materials used, the students’ knowledge

level, their affect state, and so on.

1.1.1.3 Justify/Skip-Justify The second tutorial decision investigated was to execute
or to skip a justification step. During the tutoring process, human tutors sometimes ask
students to justify a step they have taken or an entry they have made. We refer to such
tutorial decisions as justify/skip-justify (JS) decisions. Their apparent goal appears to be
to help students understand domain knowledge in a deeper way. The open question is
when should tutors conduct an elaborate discussion of a problem solving step when this
discussion is not necessary for the solution? Some authors including [Chi et al., 1994],
[Conati and VanLehn, 2000], [Aleven et al., 2004] and others have found that asking stu-
dents to justify their solution steps improves learning. However, eliciting such a discussion
may not always be desirable if, for example, the student is well aware of the rationale. If
so, typing in a justification can be slow, frustrating, and distracting. Katz, O’Donnell, and
Kay [Katz et al., 2000] found that in some cases it may be better to delay discussion of the
justifications until after the problem has been solved, especially if the justification is abstract,
plan-based, or lengthy.

After a JS decision is made and the tutor has decided to execute a justification step, the
tutor sometimes needs to make an E'T decision immediately. Thus, there are three possible
decisions for these decision steps. Figure 1.4 presents three dialogue examples. Among them,
parts in (a) and (b) justification is employed to guide the student. More specifically, in parts
(a) and (b), the tutor first made a JS decision and decided to execute the justification step.
Then the tutor needed to make another decision about whether to elicit the information from
the students or to tell the students the justification directly. Examples (a) and (b) shows
what a tutorial dialogue may look like if the tutor decides to execute an elicit justification
and a tell justification respectively. In part (c), the justification is skipped. As before, all
three examples start and end with the same tutor turns (lines 1 and 5 in part (a) and lines
1 and 4 in part (b) and (c)). In part (a) the tutor asked the student to justify his or her
answer (lines 3-4); in part (b) the tutor told the student the justification directly (line 3),
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while in part (c) the tutor skipped the justification (line 3).
Similar to I-ratio, justification can be quantified in terms of Justification ratio (J-ratio),
which is defined as the number of times the tutor does not skip a justification step divided

by the total number of JS decisions the tutor made and can be expressed in:

NJustify

J — ratio = (1.2)

NJustify + NSkipJustify

The higher this value, the deeper and more elaborate the dialogue might be. In addition
to J-ratio, justification can also be quantified by the number of justification steps students
receive. The more justification steps in a student’s tutorial dialogue, the more deep learning
the student may gain.

Neither the ET (elicit/tell) nor JS (justify/skip-justify) steps are well-understood, and
there is no widespread consensus on how or when they should be used. This is why one
research objective is to derive tutorial tactics for them from empirical data. Given that
expert human tutors do not always make optimal, or effective, tutorial decisions, hand-
crafting rules based upon human data may be a suboptimal strategy. Inducing data directly

from interaction data may be the most suitable method.
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(a) Justify Version & Elicit

. T:Can we infer the direction of the velocity of the rock at T1 from the rock’s kinetic
energy at T1? {ELICIT}, KCy

. S:nope.

. T:Excellent! Please explain why. {JUSTIFY, ELICIT}, KCy

. S:Only the magnitude of the velocity and not the direction of it is part of the definition
of kinetic energy.

. T:Excellent! Now that we know v1, we will concentrate on the sought quantity for this

problem, that is, the net work done on the rock system from A to B.
(b) Justify Version & TELL

. T:Can we infer the direction of the velocity of the rock at T1 from the rock’s kinetic
energy at T1? {ELICIT}, KCy

. S:nope.

. T:Excellent! This is because the kinetic energy only depends on mass and the magnitude
of velocity, not the direction of velocity.{JUSTIFY, TELL}, KCy

. T:Now that we know v1, we will concentrate on the sought quantity for this problem,

that is, the net work done on the rock system from A to B.
(c) Skip-justify Version

. T:Can we infer the direction of the velocity of the rock at T1 from the rock’s kinetic
energy at T1? {ELICIT}, KCy

. S:no, we cannot

. T:Excellent! {Skip-JUSTIFY}, KCy

. T:Now that we know v1, we will concentrate on the sought quantity for this problem,

that is, the net work done on the rock system from A to B.

Figure 1.4: Justify vs. Skip-justify
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1.1.2 Question 2: Is Reinforcement Learning a Feasible Method to Induce Tu-

torial Tactics?

1.1.2.1 Previous research about applying RL in ITSs RL has been applied to
conventional ITSs and used successfully to improve system behavior. In [Beck et al., 2000]
the authors applied RL to develop a tutorial policy that would minimize the time students
take to complete a problem. In Beck et al.’s study, the resulting policy caused the students
to spend significantly less time per problem than their peers who did not follow the policy.
However, the authors used simulated data for the training datasets, making it possible to
accurately model time on task. As a consequence, they faced no problems of data sparsity.
In this dissertation, given that the cause of student learning is still an open question, it would
be difficult to accurately simulate students’ responses to the tutor and simulate how students
would learn. Therefore, we used a training corpus collected from real human subjects and,
due to the high cost of collecting educational data, the training corpus is comparatively

small.

Barnes and Stamper [Barnes and Stamper, 2008, Stamper et al., 2007] have applied RL
to automatically construct problem solutions for an I'TS called Proofs Tutorial, which teaches
college-level discrete mathematics. In their work, each student’s solution is defined as a
diagraph with a series of states connected by actions. A state is represented by the list
of premises generated in the solution so far and the actions are axiom, principle, or rules
applications taken at each step. The authors collected and merged all of the student solutions
into a single super-graph by taking the union of all possible states and transitions. Once the
super-graph was constructed, it included all previously examined paths taken by students in
solving the problem. The authors then applied MDP to induce an optimal solution using the
super-graph as the search space. More specifically, they assigned scores of 100 to the goal
state and -10 to each incorrect state, and a cost of 1 for each action taken. They then used
value iteration to calculate the value for each state in this single graph, which was then used
to generate hints for new students. They found that the extracted MDPs and the proposed

hint-generating functions were able to provide hints over 80% of the time.

The work described in [Tetreault et al., 2007, Tetreault and Litman, 2006a] used RL to
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learn tutorial tactics governing whether or not the system should provide feedback and what
type of questions it should ask. They used a previously collected corpus of physics tutorial
dialogues. Their state representation consisted of five feature vectors: Certainty, Correctness,
Percent Correct, Concept Repetition, and Frustration; and they defined four possible tutor
actions: ask a simple answer question, a complex answer question, a combination of the
two, or none at all. As with the present work, they used students’ final normalized learning
gains as reward. Their work is close to that of this thesis because both seek to apply RL
to derive effective pedagogical tutorial tactics. However, their dataset was not collected
with the goal of exploring the full range of tutorial tactics in that the tutor often executed
only one type of action in many dialogue states. Additionally, manually annotated features
such as Certainty and Frustration were used in their work while only features that could
be computed automatically or evaluated objectively, such as gender, were included in this
thesis and their feature space is also substantially smaller than the one explored in this
thesis. Moreover, the learned policies in their work were not tested on real students and thus
their predicted success was not verified empirically. In this dissertation, the research is based
on both an exploratory corpus designed to test the range of tutor actions and conducting

empirical tests of the resulting KC-based strategies using real human subjects.

In this dissertation, RL was applied to induce pedagogical tutorial tactics from student-
computer interactivity data. The studies tackled two challenges: the high cost of collecting
a training corpus and the lack of prior knowledge as to what information to include in the
state representations. Previous research on applying RL in ITSs focused on some, but not
both, issues addressed here. While there have been other methods for deriving effective

pedagogical tutorial tactics, they have typically involved other machine-learning methods.

Murray and VanLehn [Murray and VanLehn, 2006], for instance, applied decision theory
to determine the type of hints and feedbacks the tutor should give. In their work, a Dynamic
Decision Network was applied in an I'TS that would decide the best actions. Their approach
showed that human tutors would agree with the I'TS’s actions more frequently than a random
tutor. However, a Dynamic Decision Network requires knowing the utility function for each
state and deriving it is not trivial. The goal of this thesis research is to improve students’

learning gains and thus the utility function is only available for the last state. A Dynamic
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Decision Network would be required to perform look-ahead search, like a chess program,
all the way to the end before it could select a single move. Consequently, it would not be
straightforward to apply Dynamic Decision Networks to the current research.

As mentioned before, this research is chiefly motivated by the previous work on applying
RL to non-tutoring dialogue systems. However, Natural Language (NL) tutoring systems
differ from the non-tutoring dialogue system and thus it is not clear that RL is a feasible

approach here.

1.1.2.2 Applying RL to Dialogue Systems vs. Natural Language Tutoring Sys-
tems Dialogue Systems is a field of Computer Science that focuses on the construction of
computer systems that interact with human users via natural-language dialogues. Much of
the work in this area is focused on systems that obtain information or search databases such
as querying bus schedules [Raux et al., 2005], booking airline tickets [Rudnicky et al., 1999],
and accessing train schedules [Swerts et al., 2000]. NL tutoring systems can be seen as sys-
tems that use natural dialogue for instructional purposes such as helping students to learn a
subject by engaging in a natural language conversation. Auto-tutor [Graesser et al., 2001],
WHY-Atlas [VanLehn et al., 2002], and ITSPOKE [Litman and Silliman, 2004] for exam-
ple, are all NL tutoring systems that teach students conceptual physics. For both general
dialogue systems and NL tutoring systems the central component is the dialogue manager.
At each point in the dialogue, it decides which action to take. In recent years, work on the
design of dialogue systems has involved an increasing number of data-driven methodologies.
Among these, Reinforcement Learning (RL) has been widely applied [Williams et al., 2005,
Walker, 2000, Singh et al., 2002].

RL is a machine learning method that centers on the maximization of expected rewards.
RL has many features well-suited to the problem of designing the dialogue manager such
as unobservable states, delayed rewards, and so on. Its primary advantage is its ability
to compute an optimal policy within a much larger search space, using a relatively small
training corpus. It is data-efficient because it evaluates actions as a function of states.

Much of the previous research on the use of RL to improve dialogue systems such as

[Levin and Pieraccini, 1997, Singh et al., 1999] has used Markov Decision Processes (MDPs)
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[Sutton and Barto, 1998] to model the dialogue data and then optimize the policies from
the training corpus. An MDP formally corresponds to a 4-tuple (S, A, T, R), in which:
S = {S1,...,5,} is a state space; A = {A;,..., A, } is an action space represented by a
set of action variables; T is a set of transition probabilities between states that describe the
dynamics of the modeled system; and R = r(s;, s;, a) denotes a reward model that assigns
rewards to state transitions and models payoffs associated with such transitions. The goal
of RL is to find an optimal policy 7* that maps each state to the proper actions that would
generate the maximum rewards. The dialogue management problem can be naturally cast
into the MDP formalism: the states {Si,...,S,} in the MDP correspond to the dialogue
states (or an abstraction thereof); the actions {4i,...,A,,} correspond to the particular
actions the dialogue manager might take; and the rewards r(s;, s;, ax) are defined to reflect
a dialog performance metric, such as learning gains. Once the MDP structure has been
defined, the transition probabilities between states T" are estimated from a training corpus of
dialogues, and, based on them, the policy which maximizes the expected cumulative reward

is computed.

An MDP describes a stochastic control process and the state transitions possess the
Markov property, which assumes that only the present state gives any information about
the future behavior of a process and knowledge of the history of a process does not add
any new information. However, in many real-world applications, including this thesis, the
Markov property does not always hold. For example, in order to construct the MDP model,
one needs to simplify the sample dialogue data, reducing it to a set of computable features.
In doing so, we cannot avoid losing information some of which may be relevant. Given
that these defined features do not represent the whole state, the state representations in
this research do not have the Markov property. However, previous studies have shown
some theories which apply to cases exhibiting the Markov property, can also be applied to
many problems that do not, such as the task domain of this thesis [Williams et al., 2005,
Walker, 2000, Singh et al., 1999, Singh et al., 2002]. This is because the induced policies
may not be optimal, but they can still improve the effectiveness of the system and in most

of these previous studies, the baseline policy is making random decisions.

While most previous work on using MDPs to train dialogue systems has been successful

21



[Walker, 2000, Henderson et al., 2005], whether it can be used to improve the effectiveness
of NL tutoring systems is still an open question. One major source of uncertainty comes
from the fact that the rewards used in RL are much more delayed in NL tutoring systems
than those in non-tutoring dialogue systems. Non-tutoring dialogue systems often use user
satisfaction or task completion as the rewards, while the most preferable rewards for NL
tutoring systems are students’ learning gains. More immediate rewards are more effective
than more delayed rewards for RL induction. This is because the issue of assigning credit
for a decision, attributing responsibility to the relevant decision is substantially easier in the
former case. The more we delay success measures from individual decisions, the more difficult
it becomes to identify the decision(s) responsible for our success or failure. Even though the
rewards in both types of systems will not be available until the conversation is over, NL
tutoring systems are more complex than the database-access dialogue systems described
above. In dialogue systems like the train scheduler, the interaction time is much shorter,
often less than 20 minutes, and the number of interactions within user-dialogue systems is
generally less than 20 turns [Singh et al., 1999, Singh et al., 2002]. In NL tutoring systems,
on the other hand, the preparatory training materials and testing typically exceed these
timeframes significantly. In the studies reported here, it took students roughly 4-9 hours
using the tutoring system itself, with around 280 interactions between a human subject and
the NL tutoring system during the entire training sequence.

Additionally, compared with non-tutoring dialogue systems, there are two major chal-
lenges in applying RL to NL tutoring systems. Each of these will be discussed in the following

section.

1.1.2.3 Whether RL Is Able To Induce Effective Tutorial Tactics Is Still An
Open Question. The first main challenge is that it is difficult to determine which fea-
tures of the learning environment are relevant, and thus, should be included in the state
representation. Ideally the state should include all of the relevant dialogue history necessary
to determine which action is taken next. One obvious but impractical choice is to use a com-
plete record of the dialogue to the present point; however, in practice we need to compress

the dialogue history to make the space tractable. The challenge lies in identifying the useful
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features. Increasing the size of the state space may make the learning problem intractable,
while the alternative may make the available data a much sparser sampling of the domain.
While most of the work on the use of MDPs to improve dialogues has focused on developing
the best policy given a set of features [Walker, 2000, Henderson et al., 2005], there has been

relatively little work done on feature selection.

Early work on RL and MDP in non-tutoring dialogue systems focused largely on relatively
simple task domains and used slot-based state representations. NJFun, for example, is a
real-time spoken dialogue system that provides users with information about things to do in
New Jersey. In applying RL to improve NJFun, Singh et al [Singh et al., 1999] used seven
features for the state representation, such as whether the system has greeted the user, how
many times a given piece of information has been asked for, and so on. However, as RL
and MDP have been applied to more complex domains [Frampton and Lemon, 2006], the
state space representations have increased in size and complexity, which creates a danger of

making the learning problem intractable or the decision space too large to sample effectively.

Some of the previous studies in this area have focused on domain-specific features
that should be included in the state-space. Singh et al. [Singh et al., 1999] showed that
dialogue length was useful, while Frampton and colleagues [Frampton and Lemon, 2005,
Frampton and Lemon, 2006] showed that incrementally adding high-level contextual infor-
mation (such as the user’s last dialogue act and the last system move) into a state model,

was also beneficial for building a better dialogue manager.

Previous research on applying RL in non-tutoring dialogue systems also investigated an
effective feature selection procedure. Paek and Chickering’s work, for example, showed how a
state-space can be reduced by only selecting features that are parents of the local immediate
reward performs just as well as a more complicated model with other variables that are
not parents [Paek and Chickering, 2005]. Recently, [Rieser and Lemon, 2006] used logistic
regression to select the best state features for a multi-modal dialogue system and showed
marked improvement over the baseline and some supervised learning methods. Most recently,
Tetreault, et al [Tetreault and Litman, 2008] tackled the feature selection issue by exploring
three evaluation metrics for assessing the utility of adding a particular state feature to a

model of user state. The feature selection procedure employed in this dissertation is based
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upon work by them. [Tetreault and Litman, 2008]. However, this thesis is fundamentally
different than Tetrault et al’s work because they explored three evaluation metrics and
used a relatively simple feature selection procedure. This thesis explored several different
feature selection procedures, but used only one evaluation metric, the Expected Cumulative
Reward (ECR). Specifically, Study 2 explored four categories of features suggested by the
previous learning literature and a “greedy-like” feature selection method. Study 3 explored

six categories of features and eleven more domain-general feature selection approaches.

The second main challenge is obtaining a training corpus. In order to use RL to induce
an effective policy, it is necessary to collect an exploratory dataset that explores the relevant
space of possible decision sequences. A common problem in RL is finding a balance between
exploration (attempting to discover more about the world) and exploitation (using what we
already know about the world to get the best results we can). A tutor in the real world must
often choose between maximizing its expected utility according to its current knowledge
about the world and trying to learn more about the world, since the latter may improve its

future gains. This problem is known as the trade-off between exploitation and exploration.

Balancing exploration and exploitation is particularly important in educational contexts
as data collection is generally very expensive. On one hand, without exploration, the tutor
might not find an effective policy at all. On the other hand, if the tutor explores too
much, it cannot stick to a path; in fact, it is not really learning as it cannot exploit its
knowledge, and so acts as though it knows nothing. Thus, it is important to find a good
balance between the two, to ensure that the tutor is really learning to take effective actions.
It is often unclear how much exploration should be done in order to induce an effective
policy. Ideally, of course, the training dataset should be as large as possible. One way to
speed the process would be to use simulated student data [Beck, 2001, Beck et al., 2000,
Ai and Litman, 2009]. Accurate simulations, however are difficult because the requirements
for and causes of students’ learning are still open questions. An alternative approach is to use
pre-existing data that was collected for other purposes. This route, however, is complicated
by the fact that pre-existing systems often explore a small space and number of the actions

and thus may yield biased or limited information.

In this dissertation, a different approach was taken. Instead of collecting a large ex-
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ploratory training corpus at once, the corpus was accumulated over several stages. An
initial exploratory dataset was collected that was large enough to apply RL to derive some
tutorial policies. Once derived, those policies were used to train a new group of students and
collect a new dataset. The new dataset was added to the original exploratory data to derive
additional policies since the new group of students experienced the identical procedure as
the original exploratory group. Such a process can be repeated until the learned policies
either become stable or reach the desired results. It will be argued that this incremental
improvement is the only practical method for continued improvement of an ITS. One would
not want to continue using a poor quality tutoring system semester after semester when a
better one could be available at the end of each semester. In this dissertation the process
was repeated twice to determine if it resulted in an improved ITS. All data was collected
before using the RL to adjust the tutoring system. In all, this dissertation includes three

studies.

In Study 1, an initial NL dialogue system, called Cordillera, was built, in which the
tutorial decisions on ET (elicit/tell) and JS (justify/skip-justify) were randomly made. This
was used to collect an exploratory corpus by training a set of real students using the system.
In Study 2, RL was used on the exploratory corpus to derive tutorial tactics, incorporate
them back into Cordillera, train another group of students on the new version of system,
and collect a new corpus. In Study 3, RL was applied to both the exploratory corpus from
Study 1 and the new corpus from Study 2, individually and again on a single merged dataset

combining students’ corpus from both studies.

1.2 GENERAL APPROACH

As described above, there are two primary research questions in this thesis:

Question 1: Given content controlled among conditions, will micro-level pedagogical tu-
torial decisions affect student learning?

Question 2: Is RL a feasible method to induce tutorial tactics?
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Each question represents a potential contribution to a field of research. Question 1 is
relevant to the fields of learning and cognitive science; Question 2 is relevant to the fields of

Intelligent Tutoring Systems, Al in Education, and Educational Data mining.

In order to investigate these two questions, Cordillera, a NL tutoring system was built
which teaches students introduction to physics. Since Fall, 2007, three studies have been
run [Jordan et al., 2007]. All three studies followed the same procedure: completing a back-
ground survey, reading a textbook, taking a pre-test, training on Cordillera, and finally,
taking a post-test. All three studies used the same training problems and instructional ma-
terials but on different versions of Cordillera. The versions differed only in terms of the

pedagogical tutorial tactics employed for micro-step level interactive decisions.

In Study 1, the Cordillera made interactive decisions randomly. This allowed us to
collect an exploratory corpus that examined the consequences of each tutorial decision with
real students. The student group for this study is referred to as the Exploratory Group. In
order to differentiate this version of Cordillera from the ones used in subsequent studies, this

version is referred to as Random-Cordillera.

In Study 2, RL was applied to the Exploratory corpus to induce a set of tutorial tac-
tics named Dichotic Gain (DichGain) tutorial tactics. This version of Cordillera was named
DichGain-Cordillera. DichGain-Cordillera employed the new policies to guide its interactive
decisions. As before, this version of the system was used to train students in a complete
study. The resulting corpus was named the DichGain corpus and the student group was
named the the Dichotic Gain (DichGain) group. A preliminary analysis of these tactics,
presented in Chapter 5, showed that they were no more effective than simple random deci-
sions. In Study 3, RL was applied to induce tutorial tactics from both the Exploratory and
DichGain corpora, both individually and again as a merged set. Two sets of tutoring tactics
were derived from the three corpora, Normalized Gain (NormGain) and Inverse Normal-
ized Gain (InuNormGain). The NormGain set was derived with the goal of enhancing the
tutorial decisions that contribute to the students’ learning; while the InvNormGain set was
derived with the goal of enhancing those decisions that contribute less or even none to the
students’ learning. We then ran a comparison study using the same educational materials

as those in Studies 1 and 2. In Study 3 students were randomly assigned to one of two con-

26



ditions. One condition, the NormGain condition, was assigned to use a version of Cordillera
which implemented the NormGain policies, named NormGain-Cordillera while another con-
dition, the InvNormGain condition, was assigned to a another version of Cordillera with the
InvNormGain policies, named InvNormGain-Cordillera.

Our primary hypothesis is:

The Normalized Gain (NormGain) group will out-perform

the Inverse Normalized Gain (InvNormGain) group.

The following thesis chapters will expand upon processes and outcomes from the studies
summarized in Chapter 1. Chapter 2 provides a more detailed description of Cordillera,
the Natural Language Tutoring System used in this thesis. Chapter 3 presents the detailed
methodology for using the Reinforcement Learning toolkit to induce the dialogue manage-
ment policies in this thesis. Chapters 4 through 7 present the three empirical studies. Chap-
ter 4 focuses on collecting the Exploratory corpus. Study 2, collecting the DichGain corpus,
is described in Chapter 5. Chapter 6 discusses the process for deriving the NormGain and
the InvNormGain tutorial tactics for Study 3. Chapter 7 presents an experimental com-
parison of the induced NormGain and InvNormGain tutorial tactics in Study 3. Chapter 8
presents a general comparison across three studies and summarizes the conclusions. Chapter
9 discusses contributions to the fields of Cognitive and Learning Science, and to the fields
of Artificial Intelligence and Education, Intelligent Tutoring Systems, and Educational Data
Mining. Finally, this chapter considers future research initiatives that may evolve from this

work.
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2.0 CORDILLERA

This dissertation made use of the Cordillera system [VanLehn et al., 2007b]. Cordillera
is a Natural Language (NL) based Tutoring System for introductory physics. The word
“cordillera” is defined as an extensive range of mountains along a coastline, often consisting
of a number of parallel chains. The Andes mountain range in South America is an example
which includes the Cordillera Oriental and the Cordillera Occidental. As noted in Chapter
1, four different versions of the system were constructed, each of which differed only in terms
of the tutoring tactics employed. Random-Cordillera, used in Study 1, made elicit/tell
(ET) and justify/skip-justify (JS) decisions randomly; Dichotic Gain (DichGain) Cordillera,
used in Study 2, followed DichGain policies induced from the exploratory corpus; while
the Normalized Gain (NormGain) and Inverse Normalized Gain (InvNormGain) Cordillera
systems, used in Study 3, followed the NormGain and InvNormGain policies induced from the
Exploratory and DichGain corpora, individually or combined. The remaining components
of the system, including the GUI interface, were identical for all participants.

Cordillera is based upon the TuTalk NL tutorial dialogue toolkit [Jordan et al., 2006,
Jordan et al., 2007]. TuTalk is an authoring tool which enables domain experts to construct
natural language tutoring systems without programming. Instead, the domain experts focus
on defining the tutoring content through scripts, which are then used for automating inter-
action. TuTalk supports dialogues in which the tutor tries to elicit a line of reasoning from a
student via a series of questions. This style of dialogue was inspired by the CIRCSIM-Tutor’s
directed lines of reasoning [Evens and Michael, 2006]. In addition, TuTalk is modular, so
that core modules, such as NL understanding, can be replaced or supplemented as needed.

To reduce confounds due to imperfect NL understanding in our experiments, the NL un-

derstanding module was replaced with a human interpreter called the language understanding
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i Student Interface I

Problem Statement | Dialog History |Vanan|sskquamns Problem Statement | Dialog History 1 Variables 1 Equations

You said: definition of kinetic energy («]| |A 0.6 Kkgrockin space has a velocity of magnitude 2.0 m/s at point A and
|| |kinetic energy of 7.50 )

Tutor said: Okay. Please write the equation for how the definition of at point B. What is the net work done on the rock as it moves from A to B?

kinetic energy applies to this problem at T1 ‘We define TO: the time point when the rock is at point A

T1: the time point when the rock is at point B
You said: value="kel=1/2¢m*y1"2'

Tutor said: Now it is easy to calculate the magnitude of v1. The
magnitude of v1is 5.0 m/s.

Tutor said: Before going on to the next step, let's think about the
application of this equation.

Tutor said: Can we infer the direction of the velocity of the rock at T1
from the rock’s kinetic energy at T17

‘You said: no, we cannnot

Tutor said: Excellent! Please explain why || Problem Statement | Dialag History | Variables ‘Equat\uns
only th.e magmtuge C.)f the velocity and not the direction of itis part of [ Name |Description
the definition of kinetic energy
m The mass of the rock is 0.60 kg
‘ - v0 The velocity of the rock during TO is 2.0 m/s at an unknown orientati
oK
— KEO The kinetic energy of the rock at T0 is 1.20 |
Comments
=] (vl The velocity of the rock during T1 is 5.0 m/s at an unknown orientati
I:l KE1 The kinetic energy of the rock at T1is 7.50 |
Wnet01 The work done on the rock

TMEQ The total mechanical energy of the system at TO
TME1 The total mechanical energy of the system at T1

I (D

Figure 2.1: Student Interface

wizard [Bernsen and Dybkjaer, 1997]. In this format, Cordillera works as a communications
framework that connects a student interface to a wizard interface. The student interface is
used by students to read the tutor’s tutorial instructions, to answer his or her questions, and
to respond to them by means of natural language entries. The wizard interface is used to
match students’ answers to a list of potential responses. These two interfaces are discussed

in detail below.

2.1 STUDENT INTERFACE

Figure 2.1 shows a screen shot of the student interface. The Message Window, located in the

bottom-left corner is where the dialogue interaction takes place. The remaining four panes
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are the Dialogue History Pane (upper-left), Problem Statement pane (upper-right), Variable
Pane (lower-right) and the Equation Pane (not shown). The tabs included on three of the
panels allow the student to select which four panels are visible and how where they will be
displayed. Brief descriptions of each pane follow.

The Message Window is the focus of interaction between the student and tutor. All
tutor messages appear here. Messages are displayed in this window, and students are then
able to enter a response below. In some cases the response is merely an acknowledgement,
i.e. clicking the [OK] button to proceed to the next action. In other cases, such as when the
tutor asks a question, the student can submit an answer by typing in a text field.

The Dialogue History Pane shows a record of the student-tutor dialogue thus far.

The Problem Statement Pane shows the problem statement and any accompanying fig-
ures if present.

The Variable Description Pane shows all the variables defined during problem solving.
The variables can be defined either by the student using a form interface or provided by the
tutor (elicit vs. tell).

Finally, the Fquation Pane displays the equations that have been input either by students
or by tutors up to that point in the problem solving. An equation is presented as a two-
column table where each row consists of a formula and its description. A description consists

of the name of the principle and its arguments.

2.2 WIZARD INTERFACE

The Wizard Interface, shown in Figure 2.2, mirrors the student interface in all respects
with the exception of the Message Window. This is replaced by the Student Response
Classification Window, which displays the student’s most recent response along with a set of
check-boxes for classifying the response. In the example below, the student’s response was
classified as the third choice. Once the student’s response has classified, the system would
follow control scripts to decide what to do next, and the dialogue manager would decide how

to do it. If none of the choices match the student’s entry, then the wizard makes no selection
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Tutor said: Given the system's total mechanical energy is equal to the
rock's kinetic energy at any given time point in this problem, can we say
anything about the ROCK's total mechanical energy, instead of the
system's total mechanical energy? Why or why not?

Student said: no, we can't. the mechanical energy is of a system and
not of an object

[ | No we cannot. But with *wrong* reasons.

[ ] No we cannot. But without reason.

END we cannot. Because the total mechanical energy always refers to :
§a system. In the problem, we only have one object in the system. But
|t still only refers to the system of the rock, not the object rock.

[ @o |

Comments

| -

] j Dl

Figure 2.2: Students’ Response Classification Window in Wizard Interface

and simply clicks the OK button.

2.3 AN EXAMPLE SCRIPT

Cordillera dialogues are governed by control scripts authored by domain experts. These
scripts control the dialogue messages as well as the content of each information panel. An
example script is shown in Table 2.1. In the example script, the highest level step is “define-
system” in Line 1. By name, it is about defining a system. This step consists of three

micro-steps listed in the order of Lines 2, 3, and 4.
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Table 2.1: A Sample Cordillera Script

L

© o N oo

10.
11.
12.
13.
14.

15.
16.

g define-system
do choose-system SEM ELICIT /TELL
do system-justification SEM JUSTIFY; ELICIT/TELL
do isolated-system SEM ELICIT/TELL

g choose-system SEM ELICIT

say “What would be your choice of the system for this problem?”
if “truck-Earth.” true
if “truck and the Earth.” true

otherwise do bottom_out_choose-system

g bottom_out_choose-system

say “What are the object(s) in the problem?”
if “truck and the Earth” true
otherwise say “[cont]There are two objects here, the truck and the Earth.”

say “[cont]The best choice of the system here is to select both.”

g choose-system SEM TELL

say “[cont|There are two objects in the problem, the truck and the Earth. The

best choice of the system for this problem is to choose both. “

for the term “semantic”. This is a feature of Tutalk, which was meant to be used to mark
semantically similar turns and to allow the student model to make decisions relative to that

semantically similar content. Line 3 shows that the tutor needs to make two decisions on the

Line 2 shows that the tutor needs to make an Elicit/Tell (ET) decision for the micro-
step “choose-system” since it is labeled with “SEM ELICIT/TELL.” Here “SEM” stands
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micro-step “system-justification” since it is labelled with “SEM JUSTIFY; ELICIT/TELL”.
When a tutorial decision step involves both ET and JS decisions, the system always makes
the JS decision first. If it decides to skip the justification step, then the system does not
need to make the ET decision and goes to next micro-step “isolated-system” in Line 4. On
the other hand, if it decides not to skip the “system-justification”, the system would then
make the ET decision. Line 4 shows that the tutor needs to make the ET decision on the
micro-step “isolated-system”. The next paragraph describes how the elicit and tell versions

of the “choose-system ” are executed in Cordillera.

Executing the Elicit Version of “choose-system”: If the system decides to elicit on

)

the micro-step “choose-system ” in Line 2, then the scripts from Lines 5-14 will be executed,
because they are the elicit version of “choose-system. ” Lines beginning with the command
“say”, that is, lines 6, 11, 14, and 16, initiate a tutor message. For each “say” line, if the
content immediately following it is a normal sentence, as in lines 6 and 11, then the tu-
tor will send the text to the student as a question, requiring the student to respond. For
example, when TuTalk sends Line 6 to Cordillera, it will then display the question “What
would be your choice of the system for this problem?” in the Message Window on the stu-
dent’s interface along with a text field for the student’s answer. The question will also be
shown in the Student Response Classification Window on the Wizard Interface. Once the
student inputs an answer and clicks OK, that answer will be added to the Student Response
Classification Window in the Wizard Interface along with the set of possible choices as a
checklist. These choices are taken from the lines prefixed with i¢f below the “say.” In the case

’ in Line 6 are “truck-earth” in Line 7 or

shown in Figure 2.1 the answer choices for the “say’
“truck and the earth” in Line 8. The human wizard chooses from this list the answer that
is closest to the student’s answer and submits it. Unmatched answers are left blank. Both

the student’s answer and the wizard’s match are sent to the system to guide the next decision.

Executing the Tell Version of “choose-system”: On the other hand, if the system
decided to tell on “choose-system ”, then the tell version of “choose-system” in Lines 15-16

will be executed. If the contents after “say” is a sentence starting with [cont/, which rep-
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resents “continue,” as in lines 14 and 16, then the tutor will tell the sentence following the
[cont]. For example, when line 16 is sent to Cordillera by TuTalk, the Message Window on
the student’s Interface will show the tutor’s message “There are two objects in the problem,
the truck and the Earth. The best choice of the system for this problem is to choose both.”
followed by an [OK] button. The student acknowledges the dialogue by clicking the OK

button at which point the dialogue will move on to the next topic.

Executing Justify /Skip-justify: For Justify/Skip-justify (JS) decisions, the scripts are
much simpler. An example of this is listed in Line 3. The label “JUSTIFY” in 3 indicates
that this is a JS tutorial decision step. If the dialogue manager decides to execute the micro-
step system-justification in Line3, the system will make the next ET decision on the step;
otherwise, the dialogue manager skips this micro-step and goes directly to execute the next
micro-step “isolated-system” in Line 4.

To summarize, the design of Cordillera allows domain experts to manage a natural-
language tutorial dialogue including GUI components such as variable listings and an equa-
tion display. The scripts allow variables and equations to be added or removed as needed as
well as for selected portions of the display to be highlighted. Alternative dialogue actions
such as elicits and tells, justify and skip-justify, are encoded in the dialogue for selection by
the dialogue manager. The script authors determine the flow of the dialogue within these
alternatives and the content of each question, including alternative choices. The NL tutor-
ing system or the wizards in the thesis study match these alternatives to student input at
runtime.

At present, the dialogue scripts can be written in XML or other more readable formats,
which are then compiled by the TuTalk system into executable script form or other textual
formats. TuTalk will be able to translate these human readable files into TuTalk- and
Cordillera-readable ones. Moreover, the reverse is also possible. As a result, the domain
experts can build an NL tutoring system by simply focusing only on the subject matter.

This chapter illustrated the Cordillera system. Chapter 3 will present a detailed descrip-
tion of the research methodology focusing on how to apply reinforcement learning to induce

the tutorial policies in this thesis.
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3.0 REINFORCEMENT LEARNING PROCEDURE

Chapter 3 further develops the previous discussion of RL and describes the general procedure
by which tutorial dialogue policies were induced from student interactivity data. The chapter
begins with a description of how a problem of inducing pedagogical tutorial tactics can be
fit into the general RL and MDP framework. In this thesis it is assumed that inducing
tutorial tactics specific to each Knowledge Component (KC) will be more effective than
inducing an overall KC-general policy. This chapter provides an overview of KCs (a more
detailed description of the identified KCs may be found in Chapter 4) and the approach
used to generate KC-based MDPs from the training corpus. It also describes the induction
toolkit employed and the assessment metrics used. Finally, the chapter discusses the issues

confronted when the induced policies were implemented back into Cordillera.

In this dissertation, a toolkit is used to calculate an optimal dialogue policy given a
suitable Markov Decision Process (MDP) model. The major challenge faced therefore was
the production of the MDP model, especially the KC-based MDPs. There were five distinct
issues that needed to be addressed. The list included collecting and/or selecting training
corpora from which the tutorial tactics will be derived, determining on which KCs the
tutorial tactics should be induced for, the reward function, the state representation, and how
to handle conflicting policies. These issues are discussed below. Additional details about
how these issues are addressed in Studies 2 and 3 and the resulting models are presented in

Chapters 5 and 6.
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3.1 REINFORCEMENT LEARNING FOR TUTORIAL TACTICS

Previous research on using RL to improve dialogue systems (e.g. [Levin and Pieraccini, 1997,
Singh et al., 1999]) has typically used MDP’s [Sutton and Barto, 1998] to model dialogue
data. The central idea behind this approach is to transform the problem of inducing effective
dialogue policies into computing an optimal policy for choosing actions in an MDP. An MDP
formally corresponds to a 4-tuple (S, A, T, R), in which:

S ={S1,---,Sn} is a state space.

A={Ay,---,A,} is an action space represented by a set of action variables;

T:8%xAxS — [0, 1] is a set of transition probabilities between states that describe the
dynamics of the modeled system; for example: P(S;|S;, A) is the probability that the
model would transition from state S; to state S; by taking action Aj.

R:S5x Ax S — R denotes a reward model that assigns rewards to state transitions and
models payoffs associated with such transitions.

Additionally, 7 : S — A is defined as a policy or tutorial tactics.

Dialogue management can be easily represented using an MDP: the states are vector
representations composed of relevant student and dialogue characteristics; the transitions
are dialogue system acts; and the reward function is calculated from the dialogue system’s
success measures such as completion on task, and, in the present case, learning gains. More
formally, we can view each dialogue d; as a trajectory in the chosen state space determined
by the system actions and user responses:

ng, na

1 1 2 2
1 %apTa; o %dpTd; ng, %; Td;
S S ... S
d; d; d;

o d ) ,ij .
Here sili BN sgl indicated that at the j; turn in the dialogue d;, the system was

in state s/, , executed action a , received reward 7, and then transferred into state s} .

The number of turns in d; is ng,. For a training corpus consisting of L dialogues with

ni,ng, - -+ ,ny turns in each dialogue respectively, the training corpus looks like:
1 1 2 2 n1 "1
1 QayoTdy 2 @dyoTdy L om Gay Tay
Sd, di i
1 1 4 7
Sl Ga;oTd, 82 @a; T, .M %d;"d;
d; d; d;
1 1 2 2 "L "L
1 %dpTdg 2 %y "d, L. onL YTy,
dr, Sdp, Sq

36



Once the MDP structure S, A, R has been defined, the model parameters T are estimated

k=1,-,m
Z»]:lv nt

from the training corpus as: T = {p(S;|S;, Ax)} More specifically, it is calculated
by taking the number of times that the system is in state .S;, took step Ay, and arrived in
state S; divided by the number of times the system was in S; and took Aj. The reliability
of these estimates clearly depends upon the size and structure of the training dataset. Once
a complete MDP is constructed, a dynamic programming approach can be used to learn the
optimal control policy 7%, i.e. the set of actions the model should take at each state, to

maximize its expected cumulative reward.

3.2 ISSUE 1: TRAINING CORPUS

One of the main characteristics that differentiate RL from other machine learning techniques
is exploration. In order to have confidence in the constructed MDP, the training corpus must
explore various possible actions from various possible states, and preferably, many times. In
other words, the training corpus must be exploratory with respect to the chosen states and
actions. If we never try an allowed action from a certain state, we cannot expect to know the
value of taking that action in that state. As a result, unexplored state transitions cannot be
estimated, and transitions that are explored infrequently will have poor or strongly biased
estimates. Even a large, but biased, corpus presents problems in that it may focus extensively
on one small subset of the domain. This is especially true with pre-existing tutoring corpora
where the data is gathered by using a system with a hand-tooled rule set. In that situation,
the existing policy and the subjects’ use of it may bias the dataset and prevent adequate
exploration. Some authors have proposed using simulated students to generate training data
[Levin and Pieraccini, 1997, Young, 1999]. It is still an open question, however, about what
causes students to learn and how they learn. As a result, constructing a valid simulation
that provides an accurate estimate of students’ responses and their learning is doubtful.
Therefore this thesis focused solely on real user data. Singh et al. suggest that authors avoid
using biased data by collecting “exploratory data,”, that is, data collected from a system

that makes tutorial decisions randomly, thus ensuring that the transitions are adequately
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explored [Singh et al., 2002].

In this research two approaches were adopted. In Study 1 students made use of Random-
Cordillera which made the crucial Elicit/Tell and Justify/Skip-justify decisions randomly.
In Study 2 students made use of Dichotic Gain (DichGain) Cordillera which made decisions
based upon a policy induced from the training corpus collected in Study 1. The former
random route is consistent with the exploration literature, while the latter route is consistent
with the task of gradually improving induced policies over time. As will be described in

Chapter 6, in preparation for Study 3 both corpora were used for policy induction.

3.3 ISSUE 2: KNOWLEDGE COMPONENTS

In tutoring literature, it is commonly assumed that relevant knowledge in domains such as
math and science is structured as a set of independent but co-occurring Knowledge Com-
ponents (KCs). A KC is “a generalization of everyday terms like concept, principle, fact,
or skill, and cognitive science terms like schema, production rule, misconception, or facet”
[VanLehn et al., 2007b]. For the purposes of tutoring systems, these are the atomic units of
knowledge. Problem solving in such domains typically involves complex problems consisting
of multiple steps, each of which involves a single or a combination of independent KCs. For
example, a simple algebraic equation, 2x + 5 = 21 can be solved via two steps: 1) subtract
the same term 5 from both sides of the equation; and 2) divide both sides by the non-zero
term 2. Here subtracting the same term from both sides of the equation is one KC and divid-
ing both sides of the equation by the non-zero term is another KC. As problems grow more
complex, the number of KC’s involved, and their combinations, can increase exponentially.

In the tutoring literature it is commonly assumed that KC’s are learned independently
of one another. A number of standardized tests, for example, are constructed based on this
assumed independence among KCs. Techniques exist to re-engineer the definition of KCs
so that they are independently learnable [Cen et al., 2006, Cen et al., 2007], thus improving
the overall effectiveness of the resulting tutoring system. When dealing with a specific KC,

the expectation is that the tutor’s interactive decision on that KC, elicit or tell, would

38



be based upon the student’s mastery of the KC in question, its intrinsic difficulty, and
other relevant, but not necessarily known, factors specific to that KC. In other words, the
assumption is that an optimal policy for one KC might not be optimal for another. Therefore,
the assumption made in this dissertation is that inducing tutorial tactics specific to each
Knowledge Component (KC) would be more effective than inducing an overall KC-general
policy. The KCs identified by the domain experts for the domain are described below. In
order to derive KC-based tutorial tactics, KC-based MDPs needed to be generated from the

training corpus.

3.3.1 Identified KCs in the Selected Domain

In order to learn a policy for each KC, the KCs in a domain need to be identified. The
domain chosen for this dissertation covers the work-energy chapter in college-level physics
textbook. Two domain experts (not the author) who are also knowledge representation
experts identified 32 KCs in the domain. For example, KC5 and K C5; are the two KCs that
were involved in the majority of the tutorial decisions on elicit/tell (ET) and justify/skip-

justify (JS) respectively.

Definition of Kinetic Energy (KFE = %va) —KCCy : If an object is moving, then its
kinetic energy at a time is %va, where m is the object’s mass and v is the magnitude
of the object’s instantaneous velocity.

Definition of Gravitational Potential Energy (GPE = mgh) —KCy : If an object
and a planet are in a system (or equivalently, the gravitational force of the earth on the
object is an internal force), then their gravitational potential energy is mgh, where m
is the mass of the object, g is the gravitational acceleration of the planet, and A is the

object’s height above a zero point. The zero point is arbitrary, but is often chosen to be

the planet’s surface.

Note that a complicated domain like physics can often be broken into many KCs. Here the
32 identified KCs are believed to cover the most important knowledge in the domain. There
are some other KCs shown in the tutorial decision steps that are not among 32 identified

KCs. After identifying the KCs involved in the domain, we needed to decide which KCs are
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needed in order to induce KC-based policies. Intuitively, it should depend on the relative
importance of these KCs and also on the frequency of their appearances in the training
corpus, and so on. To determine which KCs were required to induce the KC-based tutorial
tactics, the training tutorial dialogues were annotated with the tutorial action decisions

based on the KCs involved.

3.3.2 Tutorial Dialogue Annotation

A group of five individuals (including the author) annotated each of the tutoring dialogues
and action decisions with the relevant KCs. The KCs were drawn from the set of 32 KCs
described in Appendix A. Each tutorial dialogue consists of one human participant’s inter-
action with Cordillera to solve 7 problems. For each of seven problems, there were at least
two annotators. For each of 32 identified KCs, the final kappa was > 0.77 which is fairly
high given the complexity of the task.

Table 3.1 shows an example. Here lines 1, 5, 6, 7, 9 and 11 are tutor turns with the
action decisions and their target KCs listed on the right. Next, various labels in Table 3.1
will be explained.

Line 1 was labelled “(ELICIT, KC5)”. This indicates that this is an ET decision step
on K(Cy and the tutor decided to elicit.

Line 2 was labelled “(+KCy)”. It shows that the student answered the question cor-
rectly, so a +KCs was added to the student’s turn. Or it is a correct entry generated by
the student. Alternatively, a —K (s, would represent that it is an incorrect entry input by
the student on KC9,.

Line 5 was labelled “(TELL, xKC5)”. It indicates that the tutor made an ET decision
on K (9 and decided to tell the student directly. Here “xK (9" indicates that this piece of
information is about KCs,, and it was generated by the tutor. By contrast, ones that were
generated by the students are labelled with “+” and “-” to represent correct and incorrect
entries respectively.

Line 6 was labelled with a simple “(TELL)”. It indicated that the tutor made an ET

decision, but this step does not involve any identified KCs.
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Table 3.1: Example of Tutorial Dialogue with KC Labels

10.

11.

12.

T: At T2 we also know the spring is uncompressed. So, what type of energy can we
easily find now? (ELICIT, KC5)

S: spe (+KCy)

T: Yes, I agree.

T: At this point we know the values for KE2 and GPE2. It is time to compute the value
for SPE2.

T: Tt is important to remember that we cannot find the SPE of an OBJECT. We need
to find the spring potential energy of a pair: object-spring. (TELL, K Cy))

T: It is possible to compute the spring potential energy at T2 because we know the
spring is uncompressed. That is, d2=0 m.(TELL)

T: Using this information we can infer that the spring potential energy of the block-
spring pair at T2 is SPE2=0 J. (TELL, {+*KCy *KCy3)}

T: Now we have all we need to find the value for the system’s total mechanical energy
at T2.

T: TME of the system at T2 is the sum of the block's KE and the block-Earth pair‘s
GPE because the value for the spring potential energy is zero. In this case TME2=11.88
J+1.62 J =13.5 J. (TELL, {+KCy; *xKCa)})

T: At this point we have found the value for TME2. We can now easily find the system's
TME at all other time points since the system is isolated.

T: What principle gives us the system‘s total mechanical energy at every time point,
knowing its value at T2 and also given that the system is isolated? (ELICIT, {KCy;)})

S: student conservation of energy (4K Cyr)

Line 9 was labelled with “(TELL, {*KC; *KC5)})”. It indicated that the tutor made

an ET decision and that this step involves two KCs: {KCsy; KCy)}). Because the tutor

told the information, both KCs are labeled with “*”.
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The last tutor turn in the example is Line 11, labelled “(ELICIT, {KCy;)})”. This
indicates that the tutor made an ET decision on K C5; and decided to elicit the information
from the student.

Finally, Line 12 was labelled “(+KCy7)”. It indicated that it was a student turn and
the student input a correct entry for KCs;.

For a training dialogue d;, one dialogue trajectory can be constructed for each KC. More
specifically, we use ng, k¢, to represent the number of turns on KCj, in the dialogue d; and
we expect different ng, k¢, for different K Cj, because the number of tutorial actions on each

KC varies in the d;. Thus, we have:

" KCq, "i,KC
al rl a 1, 1
1 d;, KC1'Td; , KCp o ni ko, (dipKCy " diKCy

Sd;,KCy Sdi,KC1 " Sd;, KOy

"4, KCy, ™i,KCy,

1 1
g, KkCp, "y KCyy ni ko, i KCp " d,KCy,

1 2
Sd;, KCy, Sdi KCyp " 84, KCy,
1 1 " KCp ™i,KCp
1 %4, kCpTd;, KCp o nikop “di,KCpTd;, KCp
———9 DY
Sd;,KCp Sd;,KCp Sd;,KCp

Here P is the number of the KCs used to induce policies, and they are represented as:
j aéi,chv’"Jdi,ch 41 .. . . .

KCy, -+ ,KCp. And sy o, ———— Sy ¢, indicated that in the jy, turn in the
dialogue d; for KC} , the system was in state Sii, Ko, executed action agi’ Ko, received
reward réh xc,» and then transferred into state ngﬁ(ck'

For each K}, all of the dialogue trajectories on K} from each tutorial dialogue were
combined in the training corpus and used to generate the training corpus for KCj. From that
training corpus, an M D Pg¢, could be constructed and a dynamic programming approach

could be used to learn the optimal control policy Tk, . In the next section, the procedure

is described in detail.
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3.4 KC-BASED MDPS

In order to induce KC-based tutorial tactics, an MDP model was constructed for each KC.
For example, for KC K Cj, the corresponding MDP g, is defined as:
Skc, = {Skc,.1, -+ Skc,n} correspond to the dialogue states related with K Cj,

Agc, = {Akc, 1, Akc,,m} correspond to the tutorial actions involving K C}, only.

Tkc, : Skc, X Akc, X Skc, — [0, 1] is a set of transition probabilities between KCj
related states and action Agc, on KCj. Once the MDPgc, structure has been
defined, they are estimated from the corresponding annotated training corpus on K C}.

Ric, : S x Akc, X Skc, — Ric, aredefined to reflect dialog performance metric on KCj,
only.

Additionally, ﬂ}(ck : Skc, — Ak, is defined as a KC-based policy or tutorial tactics for
KCy.

The general approach for defining KC-based state representation, action choice space,

and reward function is described in the next subsection of this dissertation.

3.4.1 Issue 3: State Representation

For RL, as with all machine learning tasks, success is dependent upon choosing an appropriate
set of features to represent dialogue states. An ideal state representation should include all
of the tutorial dialogue information that is relevant and necessary to determine what action
the system should take next. Ideally this would include a complete record of the tutoring
interaction thus far-both for the present problem and preceding problems—as well as derived
features such as gender, MSAT, detailed pre-test scores, and so on. However, the high cost
of obtaining human tutorial dialogues makes it crucial to limit the size of the state space.
Nevertheless, even a state based on a handful of features can yield an enormous state space.

In order to obtain an effective representation that both minimizes data sparsity while
retaining sufficient information, a small but carefully selected feature space is preferable.
Using a small state representation to approximate the true state reduces the amount of data
required. The disadvantage of doing so is that it increases the risk that educationally relevant
features will be missed, resulting in a non-representative state space. To this end this thesis

began with a large set of features to which a series of feature-selection methods were applied
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to reduce them to a tractable subset. Because of this, the state representation issue can be

divided into four sub-issues for discussion purposes.

3.4.1.1 Sub-Issue 1: Feature Choices This sub-issue concerned what types of relevant
information can be included in the state space. For this dissertation only features that
could be computed automatically or evaluated objectively, such as gender, were included.
Hand-annotated dialogue features were omitted as the tutor would require the features to
be available in real time when the learned policies are employed. Moreover, in order to
induce KC-based tutorial tactics, the state representations were also KC-based. For example,
“pctCorrect KCPM?” is a feature choice in Study 2. It is defined as the students’ performance
on the specific KC. In MDP (K Cy) it refers to the students’ performance on K Cy, while in
MDP(KCy) it refers to the students’ performance on MDP(KCy).

3.4.1.2 Sub-Issue 2: Feature Discretization An MDP model generally requires all
the state features in the model to be discrete variables. Most of the features of interest
here, such as “pctCorrect KCPM”, are continuous. It is thus necessary to choose an effective

method for feature discretization.

3.4.1.3 Sub-Issue 3: Feature Selection One of the main challenges in this dissertation
was feature selection. For Study 2, a greedy-like search strategy for feature selection was
employed, while in Study 3 more extensive feature selection methods were employed. These

will be discussed in more detail in Chapters 5 and 6 respectively.

3.4.1.4 Sub-Issue 4: Maximum Number of Features The last major sub-issue re-
lated to state representation is the maximum number of features to be included in the state
space. The number should be small so that we have enough training data to cover each
state, yet large enough to would include enough features to represent states without losing

information necessary to make good tutorial decisions.
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3.4.2 KC-based Action

In the present studies there are two types of choices in the action space: Elicit/Tell (ET)
and Justify/Skip-justify (JS). These are available to the tutor at different times for different
KCs in the tutoring process. In each MDP (K C}.), the tutorial action choices were those that
involved the specific KC), only.

3.4.3 Issue 4: KC-based Reward

Based on previous research by [Tetreault and Litman, 2008, Tetreault and Litman, 2006b,
Tetreault and Litman, 2006a] Normalized Learning Gain (NLG) was selected as a reward
function because it measures students’ gain irrespective of their incoming competence. In
addition to mapping the training problems to KCs, a domain expert also mapped the pre-
/post test problems to the sets of relevant KCs. This resulted in a KC-specific NLG score

for each student. The reward function is defined as follows:

posttestc, — pretestyc,

NLGke, = (3.1)

1 — pretestgc,
Here post — testic, and pre — testxc, refer to the KC-specific pre- and post-test scores on
K (), for each student.

In this dissertation, only terminal dialogue states have non-zero rewards because a stu-
dent’s NLG will not be available until the entire of his/her tutorial dialogue is completed.

Thus for a tutorial dialogue d;, Tclli, KC, T TZ?%KCCIC’“_I are all equal to 0 and only the final

Ck

nd; K . . .. .
reward 7, %" equals to non-zero rewards. The final reward in this thesis is determined by

the student’s NLG on the corresponding KC. Here ng, k¢, represents the number of turns

that tutorial dialogue d; had made decisions on KCj.

3.5 INDUCE KC-GENERAL POLICIES

To this point, the dissertation has focused on inducing KC-based tutorial tactics. However,

certain tutorial decision steps do not involve any identified KCs. Line 6 in Table 3.1 is
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such an example. Next we need to decide how the dialogue manager should perform in this
instance. In this dissertation, the issue was resolved by inducing a KC-general tutorial tactic.

In both Study 2 and Study 3, we induced one KC-general policy for ET and one for JS.
This was done by using the same general approach as inducing KC-based policies except that
the state representation, action, and choice are no longer based on any particular KC. For
KC-general policies, the final rewards are calculated based upon the student’s cumulative
KC-based NLGs. When a tutorial decision step does not involve any KCs, the dialogue
manager would follow the KC-general policies.

Once an MDP model has been completed, calculation of an optimal policy is straight-
forward. This dissertation work employed an RL toolkit developed by Tetreault and Litman
[Tetreault and Litman, 2008, Tetreault and Litman, 2006b, Tetreault and Litman, 2006a].

3.6 TETREAULT AND LITMAN’S RL TOOLKIT

Tetreault, & Litman’s toolkit [Tetreault and Litman, 2008, Tetreault and Litman, 2006b,
Tetreault and Litman, 2006a] uses a dynamic programming algorithm for policy iteration
[Sutton and Barto, 1998]. The code was originally built on the MDP toolkit written in Mat-
lab [Chades et al., 2005]. The purpose of this algorithm is to handle the problem of reward
propagation. As noted above, rewards, in this case learning gains, are not assigned until the
end of the tutoring process, long after any action has occurred. The dynamic programming
algorithm propagates the rewards back to the internal states weighting the V-value of each

state, s via the following recursive equation:

Vi(s) = max R(s,a)+ Z P(s'|s,a)yV (s) (3.2)

Here P(s|s,a) is the estimated transition model from the training corpus, R(s,a) is
the estimated reward model, and 0 < 7 < 1 is a discount factor. If v is less than 1,
then it will discount rewards obtained later. For all the studies reported here, a discount
factor of 0.9 was used, which is common in other RL models [Tetreault and Litman, 2008,

Tetreault and Litman, 2006b, Tetreault and Litman, 2006a].
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The V-values, as defined by Equation 3.2, can be estimated to within a desired threshold
using policy iteration [Sutton and Barto, 1998]. Here an estimated v-value and a best pos-
sible action to take for each state are recorded. These are then iteratively updated based on
the values of its neighboring states. This iteration stops when each update yields a difference
below some threshold €. Once the policy iteration process is complete, the optimal dialogue
policy 7 is obtained by selecting the action that produces the highest expected reward (or
V-value) for that state. At this time we also compute the Expected Cumulative Reward

(ECR) and a 95% confidence interval for the ECR (hereafter, 95%CI) for the optimal policy.

3.6.1 Expected Cumulative Reward (ECR)

The Expected Cumulative Reward (ECR) of a policy is derived from a side calculation in
the policy iteration algorithm: the V-values of each state, the expected reward of starting
from that state and finishing at one of the final states. More specifically, the ECR of a policy

7 can by calculate as follows:

ECR, = : x Vi(s; 3.3
S v o3
Where sq, -, 8, is the set of all starting states and v(s;) is the V-values for state s;; N;

is the number of times that s; appears as a start state in the model and it is normalized by

dividing - +N . —— . In other words, the ECR of a policy 7 is calculated by summing over all

ot Nom
the initial start states in the model space and weighting them by the frequency each state
appears as a start state.

In Tetreault and Litman’s work [Tetreault and Litman, 2008], the authors used ECR
as a evaluation metric for feature selection. Additionally, ECR has been widely used as
the criteria for evaluating the policy in the area of inducing policy from simulated corpus
[Janarthanam and Lemon, 2009, Williams and Young, 2007b, Williams and Young, 2007a).
More specifically, given two MDP structures: M DP, = {S;, A, R} and MDP, = {Ss, A, R},
which have the same action choices A and reward function R but different state represen-

tation, the transition probability T} and 75 were estimated from the same training corpus.

Two different policies, m; and 7y, were derived based on M DP, and M DP, respectively.
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The higher the ECR value of a policy, the better the policy is supposed to perform.

3.6.2 Confidence Interval

Tetreault and Litman pointed out one limitation of using the ECR as an evaluation metric
for a policy: it assumes that there was sufficient collected data to derive a reliable policy
[Tetreault and Litman, 2008, Tetreault and Litman, 2006b, Tetreault and Litman, 2006a].
However, in practice researchers frequently have to deal with issues of data sparsity. They
proposed a novel approach by taking into account the reliability of the transition probability
estimates from the training data and constructing a confidence interval for the ECR for the
learned policy.

As described earlier, an estimate for the ECR was computed by using the transition prob-
abilities derived from the training corpus. Note that these transition probabilities are simply
estimates which are more or less accurate, depending on how much data is available. As an
illustration, Tetreault and Litman used the following example [Tetreault and Litman, 2008]:
In an MDP model, we have S = {51, 52, 53}, A = {A;, Ay}, From a training corpus, there
were ten cases that an action A; was taken from state S;. Out of these, three times the
system transitioned back to state S, two times it transitioned to state S,, and five times to

state S3. Thus we have

2

P(Sa|S1, A1) = 55 =02 (3.5)
5

P(S3]S1. A1) = 15="05 (3.6)

From the same corpus, there were 1000 times that action A, was taken from state .Ss.

In 300 of those cases it transitioned to state Si; in 200 cases to state Sy; and the remaining
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500 times to state S3. Thus,

300
200
500

While both sets of transition parameters have the same value, the second set is more
reliable. In order to take this lack of reliability into account, Tetreault and Litman pro-
posed a CI estimate based upon the available data in [Tetreault and Litman, 2008], see also
[Tetreault and Litman, 2006b, Tetreault and Litman, 2006a]. It is done by taking transition
matrix 7" for slice and sample from each row using Dirichlet distribution for ¢ times. As a
result, it generates a large number of new transition metrics 74,75, - - - , T that are all very
similar to 7. They then run MDP on all ¢ transition matrices to get a range of ECR’s (in
this dissertation m=1000 was used, which is also used in [Tetreault and Litman, 2008]).

Their algorithm looks like this:

1. Compute transition probability matrix T from from the training data.

2. Use Policy iteration to compute an optimal policy 7* for S,A,T,R.

3. Sample q transition metrics 71,75, -- ,T; by sampling from the Dirichlet
distributions corresponding to the counts observed in the training data;

4. Compute the value of the optimal policy 7* in each of these m models.

5. Numerically build the 95% confidence interval for the policy 7* based on the
resulting value estimates: the bounds for the confidence interval are set at the lowest
and highest 2.5 percentile of the resulting distributions.

3.6.3 An Example to Illustrate ECR and CI

This section illustrates ECR and CI with an example. In [Tetreault et al., 2007] the authors
employed five feature choices to represent the state space: Certainty, Correctness, Percent
Correct, Concept Repetition, and Frustration. Their system employed four possible tutor
actions: ask a simple answer question; ask a complex answer question; ask a combination of
the two; or do nothing. They estimated the reward value based upon the students’ NLG.
For the purpose of strategy induction, they assigned a reward of +100 if the students’” NLG
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T
Features: Certainty, Correctness, and Concept Repetition.
ECR: 42.56
95%CI: [28.37,59.29]

Interval Width: 23.52

Ty
Features: Certainty, Correctness, and Percent Correctness
ECR: 28.50
95%CI: [—5.89,57.82]

Interval Width: 63.71

Figure 3.1: ECR and CI Sample Learned policies

was above the median value. NLG scores below the median value were assigned a score of
—100. Two of the learned policies are summarized in Figure 3.1.

According to this assessment, m; will be both more effective and more reliable than m,
because the former has a higher ECR, but a narrower CI than the latter. In Study 3, both
the ECR and 95%CI were employed as feature selection criteria. More specifically, the
upper and lower bounds of the CI were used, and are referred to as the lower-bound and

upper-bound of the policy.

3.7 ISSUE 5: CONFLICTING POLICIES

Once the tutorial tactics were induced, in order to test their effectiveness on the real subjects
the researchers needed to implement them back to Cordillera. In order to execute these

tutorial tactics, the dialogue manager needed to keep a record of the student’s current states
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on each KC. Moreover, it should also retain a KC-based record on the tutorial decision
steps. So when a tutorial decision step occurred, the dialogue manager first looked up the
KC(s) involved in that step and then looked up the corresponding policies. When a tutorial
decision did not involve any specific KCs, the dialogue manager followed the KC-general
tutorial tactics. When it involved a specific KC, the dialogue manager followed the tutorial
tactics for that KC only. However, sometimes a tutorial decision involved multiple KCs,
which generated conflicting decisions. In this case, the researchers needed to decide how the
dialogue manager should deal with conflicting policies. This was the fifth and final issue

requiring a decision.

3.8 DISCUSSION

To summarize, the general procedure for RL applications in this thesis was to first select a
training corpus and then which KCs would be used to derive specific tutorial tactics for. For
each KCj, two types of tutorial decisions: < ET, JS > were derived and a KC-based reward
Ry, for each student’s tutorial dialogue is defined. The KC-based reward was defined based
on the student’s KC-specific NLG scores on KC;. Then the KC-based feature choices were
defined and each feature choice was discretized into discrete variables. Finally, the procedure
described in Figure 3.2 was executed.

The five main RL-related issues addressed in this methodology are 1) selection of a
training corpus, 2) choosing knowledge components to derive specific tutorial tactics on,
3) determining the state representation, 4) defining the reward function, and finally, 5)
dealing with conflicting policies on multi-KC steps. State representation was divided into
four sub-issues: a) defining feature choices, b) identifying feature discretization procedure,
c¢) determining the feature selection procedure, and d) determining maximum number of
features included in a policy.

In Chapters 5 and 6, the procedure for applying RL to derive KC-based tutorial tactics
will be described, including how the five issues and four sub-issues were addressed. The rest

of the procedure in both Studies 2 and 3 follows the general methodology described above.
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1. Select representations for dialogue states Sk¢,, Axc,, and reward Rgc,
2. FOR each subset of features i, selected from S by following a feature selection proce-
dure, do:
e Use a training corpus to building an MDP’ model based on Sy, Axc, and Rkc;.
The transition probability Ty, of this MDP’ is approximated based on the collected
exploratory corpus.
e Compute a policy from the learned MDP’ by Tetreault, & Litman’s toolkit.
3. Select a policy from all of induced policies that has the highest ECR.

Figure 3.2: General RL Procedure For Inducing KC-based Tutorial Tactics

This series of studies was designed to investigate two primary research questions: (1) Do
pedagogical tutorial tactics on Elicit/Tell and Justify /Skip-justify impact students’ learning?

And (2) Is reinforcement learning a feasible method to induce tutorial tactics?

In Study 1, an exploratory corpus was collected by training a set of real students in a
version of Cordillera that made random ET and JS decisions. In Study 2, we defined a set of
18 pedagogically relevant features, applied a greedy-like feature selection method to narrow
the list down to four and applied RL to induce KC-based pedagogical tutorial tactics from
the Exploratory corpus. The induced policies were then incorporated back into Cordillera

and a second group of students was trained with this new version of Cordillera.

Finally, in Study 3, a set of 50 features was defined and a variety of feature selection
methods were used to winnow them down to a set of six. More specifically, two sets of peda-
gogical tutorial tactics were induced: Normalized Gain (NormGain) and Inverse Normalized
Gain (InvNormGain). The NormGain set was derived with the goal of enhancing the tutorial
decisions that contribute to the students’ learning; while the InvNormGain set was derived
with the goal of enhancing those decisions that contribute less or even none to the students’

learning. Both sets were then incorporated back into Cordillera, and students were trained
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on the new versions of Cordillera with random assignments to conditions. The expectation

was that the NormGain group would out-perform the InvNormGain group.
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4.0 STUDY 1: EXPLORATORY CORPUS

The goal in Study 1 was to collect an exploratory corpus. The main advantage of collecting
an exploratory training corpus is to potentially compute an effective policy within a large
state space using a relatively small amount of training data. It addresses the situation in
which collecting real-world experience is highly costly, but computation is relatively cheap.
For example, it has been shown that this approach is effective at automatically learning the
effective action to take in any state in various dialogue systems where collecting data is even
less expensive than ITSs [Williams et al., 2005, Walker, 2000, Singh et al., 2002].

Study 1 used the Random-Cordillera on which the dialogue manager made random de-
cisions at each tutorial decision step. A set of real human participants interacted with
Random-Cordillera, from which an exploratory training corpus was collected for deriving
pedagogical tutorial tactics in Study 2 and Study 3. In the sections below this process will
be described in detail.

4.1 METHODS

4.1.1 Participants

Data was collected over four months during Fall 2007. Seventy college students were re-
cruited. They were required to have a basic knowledge of high-school algebra, but not to
have taken college-level physics courses. All subjects were paid for their time, regardless of
completion. Subjects who completed the study took from two to three weeks to complete

the study. In all, 64 students completed the experiment.
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4.1.2 Materials

As with the other studies in this thesis, Study 1 was done in the Physics work-energy domain,

a common component of introductory college physics courses.

4.1.2.1 32 Knowledge Components Two domain experts (not the author) who are
also knowledge representation experts, identified 32 KCs in the domain (see Appendix A).
They had experience identifying KCs for a series of previous studies involving college physics.

One example of their work is K5y which is defined as:

Definition of Kinetic Energy (KFE = %mv2) —KCCy : If an object is moving, then its
kinetic energy at a time is %va, where m is the object’s mass and v is the magnitude

of the object’s instantaneous velocity.

4.1.2.2 Physics Textbook The physics textbook used in this study is web-based. It was
written by a domain expert who is also a native English speaker (not the author). It includes
all the physics concepts that were needed for the domain. For each physics concept and
domain principle, a general description was presented together with some worked examples
(see Appendix D). For example, the description of KCy in the textbook begins with “One
type of energy, called kinetic energy (KE), is associated with individual objects. It depends
only on an object’s mass and on the magnitude of its velocity...”. More information can be
found at section D.0.2.13 in Appendix D. The textbook was 27 pages long. When reading
the textbook, students were free to move forward and back. Appendix D shows the textbook

content.

4.1.2.3 Pre- and Posttest The pre- and post-tests were identical in Study 1. Both
contained a total of 33 problems selected from the Physics literature (see Appendix E) by two
domain experts (not the author). The tests were given online and consisted of both multiple-
choice and open-ended questions. The latter questions required the students to derive an
answer by writing or solving one or more equations. Once an answer was submitted, the

students automatically proceeded to the next question without receiving any feedback on the
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Table 4.1: Major Principles of Work and Energy

KC Descriptions of the principles Expressions

KC;  Weight Law (w) W =mg

Ky, Definition of Work (W) W = Fdcos(a)

KCy Definition of Kinetic Energy (KE) KE = tmv?

K(Cy Gravitational Potential Energy (GPE) GPE = mgh

KCy Spring Potential Energy (SPE) SPE = {kd?

KC(Cy Total Mechanical Energy (TME) TME =KE+ GPE + SPE

KCy; Conservation of Total Mechanical Energy TME, =TME,
(CTME)

KCs Change of Total Mechanical Energy for Non- Nety = TME; — TMFE,
isolated Systems (TMENC)

correctness of a response. Students were not allowed to return to prior questions. Appendix
F listed the number of times each KC showed up in the tests. Except for K7, all the rest
of the KCs appeared in at least one test item. For example: the first test problem is an

open-ended question involving K Cy. It stated:

1. Enter the equation that defines the kinetic energy of an object (remember to use * for
multiplication and for exponentiation, and be sure to include an = sign):

4.1.2.4 Domain Principles The eight major principles in the domain are shown in
Table 4.1. In Table 4.1, the first column lists its corresponding KC number. The second
column describes the name of the principle. The last column is the formula or mathematical
expression of the principle. To differentiate these KCs from the rest of 24 non-domain
principle KCs, the name the domain principle-related KCs were named as primary KCs. As
the table shows there are eight primary KCs in this domain. For example, the fourth row in

Table 4.1 is the definition of Kinetic Energy and its corresponding KC is KCs.
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4.1.2.5 Seven Training Problems Participants solved a series of seven training prob-
lems. The problem statements are listed in Appendix G. The problems were arranged in
order of increasing complexity. Table 4.2 contains a list of the problems in the order they
were presented to the students and identifies which of the eight main KCs were relevant to
each problem. For example, P4 is an example used earlier in this dissertation. It is defined

as follows:

A 0.6kg rock in space has a velocity of magnitude 2.0m/s at point A and kinetic energy
of 7.50J at point B. What is the net work done on the rock as it moves from A to B? We
define:

Ty: the time point when the rock is at point A.
T1: the time point when the rock is at point B.

As mentioned in an earlier chapter, solving training problem P4 involved applying three
major domain principles, with some principles needing to be applied twice. The three domain
principles are: the definition of Kinetic Energy (KE: KFE = %mvz), the definition of Total
Mechanical Energy (TME: TME = KE4+GPE+SPFE), and the Change of Total Mechanical
Energy for Non-isolated Systems (Nety = TME; — TME,). These were represented as
KCyy, KCy, and Ky respectively. Therefore, the fifth row in Table 4.2 shows that the
relevant KCs for the training problem P4 are KCy, K5y, and KCyg.

Table 4.2: Seven Training Problems

Primary KCs
Problems: KCl K014 KCQ() KCQl KCQQ K024 KCQ7 KCQg
P1 X
P2 X
P3 X
P4 X X X
P5 X X X X
P6 X X X X X
p7 X X X X X

4.1.2.6 Training Scripts For each training problem, a tutorial script was written to
cover the relevant content. The content included how to solve the problem and the post-

problem discussions. The tutorial scripts were written collaboratively by a group of five
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authors (including this author). Four of the five were domain experts, while one was trained
in tutoring, specifically in the authoring of tutoring dialogues. Two of the domain experts
were native English speakers while the remainder were fluent in English. Appendix I provides
an example of the written tutorial script for training problem P4. Eventually each script
was checked by at least two out of five domain experts, who agreed upon the content of the

script.

4.1.2.7 Random-Cordillera The students in Study 1 trained on Random-Cordillera.
The dialogue manager on Random-Cordillera did not follow any tutorial tactics, but made

all the tutorial decisions randomly.

4.1.2.8 Human Wizards As described earlier, in order to reduce confounds due to
imperfect Natural Language understanding, human wizards were used. In Study 1, there
were a total of six human wizards. Their sole function was to map students’ entries to the
closest answer. They cannot control which tutorial actions the dialogue manager should take

next.

4.1.2.9 Some Clarification On The Number Of KCs Appearing In This Disser-
tation As mentioned before, for the Work and Energy domain, we have identified a total
of 32 KCs. Among them, 31 KCs were evaluated in the pre- and post-tests (K C7 was not).
Of these 31 KCs, 21 KCs were involved in the ET decisions while 10 KCs were involved in
the JS decisions. In Study 2, KC-specific tutorial tactics for all possible KCs were learned,
so 21 KC-specific ET tutorial tactics and 10 JS ones were induced. In Study 3, however, the
main focus was on the eight primary KCs that are also domain principles. Among the eight
primary KCs, K (' did not show up in any JS tutorial decisions. Therefore, in Study 3, eight

KC-specific ET tutorial tactics and seven KC-specific JS tutorial tactics were induced.

4.1.3 Procedure

The study itself consisted of five standard phases: 1) background survey, 2) pre-training, 3)

pre-test, 4) training, and 5) post-test. In each phase, students were not restricted to any
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time limits. This was also true for Studies 2 and 3. The background survey asked students
for demographic information such as gender, age, SAT scores, high school GPA, experience
with algebra, calculus, physics, and other information (see Appendix C). Following the back-
ground survey, students read the physics textbook during the pre-training (see Appendix D)
and took the pre-test (see Appendix F). The physics textbook was only available during
phase 2, pre-training. This was also true for Studies 2 and 3.

In phase 4, students were first trained to solve a demonstration problem, which did not
include physics content, on Cordillera. The sole purpose of this step was to familiarize them
with the GUI interface. They then solved the seven training problems on Random-Cordillera.
Finally, students took the post-test which was identical to the pre-test. Students were given

the same set of questions in the same order.

4.1.4 Grading

All of the tests were graded in a double-blind manner by a single domain expert who was an
experienced grader (not the author). In a double-blind manner, neither the students nor the
grader know who belongs to which group. In this case, the grader was not familiar with the
hypotheses being tested. Each test question was assigned two grades: overall and KC-based
grade. The overall grade was a score in the range [0, 1] describing the correctness of an
answer as a whole. Since there were 33 test questions in all tests across the three studies,
the maximum overall score for each test was 33.

Under the KC-based grading criteria, the grader first identified all of the relevant KCs
for a test question, and then assigned a score in the range [0, 1] for each KC application.
Each of these scores was called the KC-based score. Except for KC, all the remaining
31 KCs were present in at least one question of the tests. The maximum score for a test
question under the KC-based grading was the number of KCs involved in the question. A
KC cumulative score was calculated for each student by summing up all KC-based scores
across all of the test questions in the test. In this thesis, there were a total of 168 KCs in all

pre- and post-tests.

For each KC, e.g. KC}, a KC-based score was calculated by simply summing over the
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KC-based scores on KC}, across all 33 test questions divided by the number of test questions
problems that involves K C} in the test. The number of occurrences of each KC in the pre-
and post-tests in this dissertation is shown in the last row in Appendix F. It shows that the
frequencies of 31 KCs in the test vary from one to up to 16.

The following example illustrates these three grading scores. Figure 4.1 presents a stu-
dent’s answer to a test question 10. In this example, the question statement is listed first
and then the correct answer. The mapped KCs refer to the two KCs that needed to be
applied to solve the question: K5y and KCs3. Their corresponding descriptions are also
listed. The student’s answer is partially correct in that the number is correct but without
unit. So the overall score for this answer is 0.75 (maximum is 1 for each test question) and
the cumulative KC score is 1 (the maximum is 2 which is the number of KCs involved in
the test question 10). Additionally, the student also received two KC-based scores for this
problem: 1 for KC5 and 0 for KCss.

For comparison purposes all of the scores were normalized to fall in the range of [0,1].
Most of the analysis in the following sections is based upon the overall and cumulative KC
scores. The KC-based scores will be presented only for Study 1 and Study 2. This is because
the KC-based scores are used to describe the characteristics of the Exploratory and the
Dichotic Gain (DichGain) Corpora and the KC-based NLGs (calculated from the KC-based

pre- and post-test scores) were used to derive KC-based tutorial tactics in Studies 2 and 3.

4.1.5 Measures

The main purpose of Study 1 was to collect an Exploratory corpus. Therefore, the focus will
primarily be on two aspects: learning performance and the characteristics of the Exploratory
corpus. For the learning performance, students’ pre- and post-test scores were compared
under both grading criteria to determine whether the Exploratory group learned by training
on Random-Cordillera.

For the characteristics of the corpus, the average number of ET and JS decisions and

overall decisions across students’ tutorial logs were presented. The I-ratio and the J-ratio
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Question 10: A toy cart moves with a kinetic energy of 30 J. If the magnitude of its velocity
is doubled, what will its kinetic energy be?
Correct Answer:
1. Kinetic energy = 30J
2. KE =1/2%mxv?
3. new, = 2%*v
4. newgp = 1/2xm* (20)2 =4 (1/2xmxv?) =4+ KE = 4% 30J = 120J
Mapped KCs:
K Cy: definition of kinetic energy KE = 1/2 % m * v*
K Cy3: The unit for energy is the Joule (J)
Student Answer: newgp = 1/2xm* (20)2 = 4% (1/2 x m * v?) = 120
Overall Score : 0.75 (maximum is 1 for this problem)
Mapped KC Score: {KCy: 1}; {KCy3: 0}

Culmulative KC-based Score : 1 (maximum is 2 for this problem)

Figure 4.1: An Example of Three Grading Criteria

were also checked to determine whether the random decisions worked. Recall that previously

the I-ratio and J-ratio were defined as:

. NE’licit
I—-—ratio = ———— 4.1
NEticit + Nreu (4.1)
. NJustif
J —ratio = Y 4.2
NJustify + NSkipJustify ( )

The higher the I-ratio is, the more interactive the dialogue might be. The higher the J-
ratio is, the more likely the students would be presented a justification step. Specifically, the
average number of justification steps each student received was also presented. Additionally,

because the Exploratory Corpus would be used to induce KC-specific tutorial tactics in
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Studies 2 and 3, the analysis will include discussion of the characteristics of the Exploratory

Corpus and the KC-based learning performance.

Study 1 was conducted as a part of an NSF ITR (Information Technology Research)!
project, for which this author acted as a script author developing tutorial scripts for the
training problems. This author was primarily responsible for the scripts associated with
training problems P4 and P5. The scripts were checked by other members of the group.
This author was also involved in annotating training problems with relevant KCs and acting

as a human wizard during the collection of the Exploratory Corpus.

4.2 RESULTS

4.2.1 Time

Each student took between six and fourteen hours (3-7 sessions) to finish the study. Each
session typically lasted about two hours. In general the students spent roughly five hours
(ranging from as low as four to as high as nine hours) training with Random-Cordillera.
For analysis purposes, each student’s training dialogues were concatenated into a single
consecutive dialogue resulting in a single “super-dialogue” for each student. These super-
dialogues, together with pre- and post-test KC-based scores were used to derive the KC-based

policies for use in Studies 2 and 3.

On average, it took each student M = 280.38 mins (SD = 66.88) to finish the seven
training problems. For each training problem, the average time spent by the Exploratory
Group varied. In Figure 4.2, the y-axis shows the time on task in minutes. It shows the
Exploratory students spent less than 30 minutes on each of the first three simple problems,
while on the last problem P7, the averaged 67 minutes, the longest average time per problem.
As the training problems became more complicated, the more time it took the Exploratory

students to finish it.

LSupport for this research was provided by NSF grants #0325054
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Figure 4.2: Average Time Spent Per Training Problem By the Exploratory Group

4.2.2 Learning Results

A one-way ANOVA was used to test for performance preference differences between the pre-
and posttests. Regardless of grading criteria, participants made significant gains from pre-
test to post-test (Table 4.3), F(1,126) = 18.76,p < .001, R® = .73 under the overall grading
criteria and F(1,126) = 11.01, p = .001, R* = .69 under the cumulative KC-based grading
criteria. Table 4.3 also lists the overall NLG scores and the Cumulative KC-based NLG
scores. Since a student’s NLG is defined as his or her actual average learning gain divided
by his or her maximum possible actual gain, on average the Exploratory students made 29%
gains under the overall grading criteria and 25% of the possible gains under the cumulative

KC scoring rubric.

Figure 4.3 shows the Exploratory group’s pre- and post-test scores under the two grading
criteria. A double asterisk (**) shows that the difference is statistically significant (p < 0.05).

Table 4.3 summarizes the minimum, maximum, mean, and SD of each score.
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Figure 4.3: Learning Performance on Exploratory Group

Table 4.3: Exploratory Students’ Learning Performance

Grading Min Max Mean o

Pre-test | 0.14 094 0.48 0.20
Overall Post-test | 0.21 1.00 0.62 0.18
NLG -0.08 1.00 0.29 0.21

Pre-test | 0.13 096 0.46 0.20
Cumulative KC-based Post-test | 0.11 1.00 0.58 0.20
NLG -0.38 1.00 0.25 0.26
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4.2.3 Exploratory Corpus

4.2.3.1 Overall Characteristics The total number of ET tutorial decisions, referred to
as ET decisions in this thesis, ranged from 250 to 332 (M = 273.89, SD = 12.46) and that
of JS tutorial decisions, referred to as JS decisions, ranged from 52 to 71 (M = 56.61, SD =
3.43). The total number of the tutorial decisions regardless of actions, referring to as overall

decisions, for each student ranged from 288 to 372 (M = 305.48, SD = 14.01) 2.

In the Exploratory Corpus, since all tutorial decisions were randomly decided, the di-
alogues’ I-ratio was expected to be around 0.5. An analysis of the log files showed that
the I-ratios ranged from 0.44 to 0.56 (M = 0.50,SD = 0.03). Similarly, it was expected
that the J-ratio would be roughly 0.5 as well. The analysis of the log files showed that
this value ranged from 0.39 to 0.68 (M = 0.53, 5D = 0.06). The larger justification range
is unsurprising as there were fewer possible justification steps in the script. More specifi-
cally, the number of justification steps in a student’s tutorial dialogue ranged from 21 to 40
(M =30.17,SD = 3.83).

Table 4.4 summarizes the overall characteristics of the tutorial decisions in the Ex-

ploratory Corpus.

Table 4.4: Overall Characteristics On Tutorial Decisions in Exploratory Corpus

Value | Min Max Mean o

ET Decisions | 250 332 273.89 12.46

JS Decisions | 52 71 56.61  3.43
Overall Decisions | 288 372 305.48 14.01
[-ratio | 0.44 0.56 0.50  0.03

J-ratio | 0.39 0.68 0.53  0.06

Justify | 21 40  30.17  3.83

2overall decisions < ET decisions+JS decisions because on certain tutorial decision steps, the tutor makes

both types of decisions: JS first and then ET. For instance: Line 3 in Figure 2.1. When we calculated the
overall decisions, such a step was counted as one decision step.
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4.2.3.2 KC-based Characteristics As described above, not all KCs appeared on tu-
torial decision steps in the authored scripts. In order for the tactic induction process to be
effective, a KC must be involved in the tutorial dialogues, the decision steps and the pre-
and post-tests. There were a total of 21 KCs that satisfied this requirement. All 21 KCs
appeared in at least one ET decision step. Only 10 out of 21 KCs appeared in at least one JS
decision step. The characteristics of the 21 KCs in the Exploratory Corpus will be discussed
next.

Table 4.5 presents KC-based scoring and breakdown for the KC-related information in the
corpus. More specifically, the second column lists the 21 KCs. The third and fourth columns
list the average number of ET and JS decisions for the corresponding KC respectively. The
last column presents the comparison of KC-based post-test and pre-test scores to show
whether students’ performance on the KC was improved after the seven training problems.

From columns 2, 3 and 4, we can see that the number of decision steps varies dramatically
across the KCs. Column 2 shows that the average number of ET decisions ranges from 1.5
for KChg to 72.6 for KCy: the definition of kinetic energy (KE = %va); column 3 shows
that 10 KCs appeared in the JS decision steps and the average number of JS decisions ranges
from 2 for KC'q, KCy4, KCs to 16.9 for KC21: definition of Gravitation Potential Energy
(GPE = mgh). The average number of overall decisions varies from 2 on KCig to 81.5 for
KCy.

In Table 4.5, the last column shows that students learned significantly on 13 out of 21
KCs (labeled with “**”) and on the remaining KCs, no significant difference was found
between their pre- and post-test scores.

The eight primary KCs are underlined. The Exploratory Group scored significantly
higher on the posttest than on the pre-test for six of the eight KCs. The two exceptions
are K(C14 and KCs. Among the eight primary KCs, KC} never occurred in any of the JS

decisions. The remaining seven KCs appeared in both ET and JS decisions.
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Table 4.5: KC-based Exploratory Corpus

KC ET JS Overall Decisions Compare Pre- and Posttests
1 KCixx 4 4 t(126) = 3.280, p = 0.001
2 K(Cj 2.1 2.1 t(126) = 1.204, p = 0.231
3  KCj 6.9 6.9 t(126) = 1.257,p = 0.211
4 KCy* % 2 2.5 t(126) = 3.527, p = 0.001
5 KCp 2.1 2 3 t(126) = 1.392, p = 0.166
6 KO3 3 3 £(126) = 1.560,p = 0.121
7T KCu 8 2 9 £(126) = 1.076, p = 0.284
8 KCiz*x*x| 7.5 7.5 t(126) = 2.470, p = 0.015
9 KCi7 3.8 4.4 t(126) = .880, p = 0.381
10 KCig 1.5 2 £(126) = 1.478,p = 0.142
11 KCyxx | 726 154 81.5 £(126) = 5.379, p = 0.000
12 KOy xx | 33.6 16.9 60.8 t(126) = 3.932, p = 0.000
13 KCyxx|30.7 3.3 32.1 £(126) = 2.389, p = 0.018
14 KCyxx|621 4 63 £(126) = 5.358, p = 0.000
15 KCyyxx | 52.7 15.5 60.5 t(126) = 3.924, p = 0.000
16 KCoyxx | 87 9.3 t(126) = 3.767, p = 0.000
17 KCyxx | 4.2 2 6.1 £(126) = 2.063, p = 0.041
18 KCyrxx | 21.5 4.8 23.9 £(126) = 4.522, p = 0.000
19 KOs 142 4.1 16.6 t(126) = 1.911, p = 0.058
20 KO3 %% | 18.6 19.2 £(126) = 2.446, p = 0.016
21 KCs %% | 14.4 14.4 £(126) = 3.888, p = 0.000
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4.3 DISCUSSION

The goal of Study 1 was to collect an Exploratory Corpus. Ideally, the Exploratory Corpus
should be collected by exploring all possible states and testing all possible actions from
each possible state, preferably for many times. But given the high cost of collecting these
educational data, it is not possible to do so. Therefore, in this thesis the Exploratory Corpus
was collected by choosing actions randomly. It was expected that viable, effective tutorial
tactics would be collected from the“Exploratory” training corpus. Our analysis of the corpus
showed that random decisions seemingly balanced the number of elicits and tells students got
during the tutoring (The mean of the I-ratio was 0.50). It was less so for JS decisions, but the
mean was off only slightly. (The mean of the J-ratio is 0.53). It also demonstrated that the
ET decisions were four times more frequent than the JS decisions. Moreover, 21 KC-based
ET tutorial tactics and 10 KC-based JS ones could be induces from the Exploratory Corpus.

While randomness may not be the best guide, the students made significant learning
gains in Study 1 as evidenced by their pre- and post-test scores. The results seemed to
confirm the previous view that content exposure might cause students to learn even from

tutors with non-optimal pedagogical skills.
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5.0 STUDY 2: DICHOTIC GAIN (DICHGAIN) GROUP

The main goal of Study 2 was to investigate whether the induced tutorial tactics from the
Exploratory Corpus would result in a more effective version of Cordillera. Ideally, in order to
investigate the effectiveness of the system, a full-scale comparison between the new system
and Random-Cordillera should be conducted by randomly assigning students to one of two
groups. However, given the cost of running a comparison, and the issues to be addressed
in order to apply the RL to induce tutorial tactics, Study 2 was treated as an engineering
project rather than a science project. A new group of subjects were tested on the new
system and the students’ results were compared with the Exploratory group. This type of
comparison is not rare and is used if the goal is to determine if a trend exists. For example,
in [Singh et al., 2002] the researchers tested the learned policy on a new group of users and
compared the new group’s results with the original training group.

If there was a trend showing the new system out-performing the initial Random-Cordillera,
a full- scale comparison would be conducted. However, a subsequent analysis suggested that
the learned policies may not be very effective. This led to the hypothesis that this trend
might be caused by the limited methodology used for applying RL to induce tutorial tactics.
For example, a greedy-like feature selection method was used to derive a set of pedagog-
ical tutorial tactics from the Exploratory Corpus collected in Study 1 (described below).
Nevertheless, an important contribution of Study 2 is that it generated a new corpus that
is similar to many other preexisting corpora and datasets in that it follows some types of
tutorial tactics, whether effective or not. This new corpus can be further used to induce new
tutorial tactics. If a successful policy can be induced from this corpus, then it will show the

potential for applying RL repeatedly to improve I'TSs from pre-existing data.
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Based on the reward functions employed in Study 2, the induced tutorial tactics were
referred to as Dichotic Gain (DichGain) tutorial tactics and the new version of the system
was labelled DichGain-Cordillera. The new group of students who were trained on DichGain-
Cordillera was named the DichGain group, and the new corpus was labelled the DichGain

Corpus. This chapter will describe Study 2 in detail.

5.1 APPLY RL TO INDUCE DICHGAIN POLICIES

Recall that the tutorial actions which are the central focus of this thesis were elicit/tell
(ET) and justify/skip-justify (JS). Chapter 3 provided a general overview of Reinforcement
Learning (RL) and described the toolkit used to derive tutorial tactics in this dissertation.
It was assumed that KC-based tutorial tactics would be more effective than KC-general
ones. Five issues needed to be addressed to induce KC-based tutorial tactics for each type of
action. The issues described were: 1) obtaining a training corpus; 2) selecting the target KCs
for which the tactics will be induced; 3) defining the reward function, 4) determining state
representation; and finally, 5) selecting a conflict-resolution policy for multi-KC decision

steps. In this section, it will be shown how those issues were addressed in Study 2.

5.1.1 Training Corpus

This study made use of the Exploratory Corpus collected in Study 1. That corpus consisted
of sixty-four student tutorial dialogues, one for each participant. Each dialogue covered the
entire interaction between the student and the Random-Cordillera system over the seven

training problems.

5.1.2 Knowledge Components

In order for the tactic induction process to be effective, a KC must be involved in the tutorial
dialogues, the decision steps and the pre- and post-tests. Table 4.5 in Chapter 4 lists the

21 KCs that meet these criteria. For this study, the decision was to induce one policy for
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each relevant KC. Therefore, of the thirty-two KCs in the domain, a total of thirty-one KC-
based tutorial tactics were induced: 21 KC-based tutorial tactics on ET decisions and ten
KC-based tactics on JS decisions. Additionally, two KC-general tactics, one for ET decisions
and another for JS decisions were induced. The KC-general tutorial tactics were used in the
decision steps that did not involve any of the identified KCs. In short, this resulted in a total
of thirty-three tutorial tactics: twenty-two ET tactics and eleven JS tactics. In the following
discussion, the study uses 7(KC;, ET) and (K C;, JS) to refer to KC-based tutorial tactics
for KC; for the ET and JS decisions respectively. For KC-general tutorial tactics, the study
uses m(KCx, ET) and w(KCx, J5S).

5.1.3 KC-based Reward

As described in Chapter 3, for a tutorial dialogue d; on KCY, there are a set of intermediate

rewards for each state and KC: 7y ;. ..., rgdk’;k’“_l all of which are equal to 0. Only the final

nd, .k .
reward, r,. 'kCZ’“, has a non-zero value. Here ng;, 1., represents the number of dialogue turns

d; in which the system made decisions regarding K C.

In Study 2, a similar approach to reward function was used as [Tetreault and Litman, 2008].
The student’s final reward for each K C} in his/her superdialogue d; was based upon his/her
KC-based NLG for KC}. More specifically, for each KC}, the students were divided into
two groups, low learners and high learners, according to a median split of the students’

KC-based NLGs.

The high learners were assigned a final reward of 4100, while the low learners were
assigned a final reward of —100. These final reward values will be propagated to the internal
states via a dynamic programming algorithm for policy iteration [Sutton and Barto, 1998].
For inducing KC-general tutorial tactics, the reward functions were based on the cumulative
KC-based NLG instead of KC-based NLG on a specific KC. The rest of the procedure

remained the same.
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5.1.4 State Representation

As described in Chapter 3, the issue of the state representation can be divided into four sub-
issues. They are: 1) defining the potential feature choices in state representation; 2) capping
the number of features included in each policy; 3) discretizing the features appropriately; and
4) determining feature selection procedures. The next section describes how these sub-issues

were addressed in Study 2.

5.1.4.1 Feature Choices

Moore et al. identified four types of features that are relevant for human tutors when
making tutorial decisions: autonomy, temporal situation, problem-solving state, and perfor-
mance to model the dialogue and the student’s state [Moore et al., 2004]. For each category
three to seven features were defined. Note that in this dissertation only features that could
be both automatically computed and unambiguously evaluated were included. This was
because the tutor would require the features to be available in real time when the learned
policies were employed. In order to help readers to understand each feature better, at the
end of this subsection I will use a simplified example to illustrate how these features were
calculated in Study 2.
Autonomy — three features

Autonomy features are related to the amount of work performed by the student in the

dialog. All autonomy features end with an ‘A’ in their name and are numeric. They are

F1 tellsSinceElicitA: The number of tells the student has received since the last elicit
prompt, irrespective of the KC involved. For example, tellsSinceElicitA = 2 means that
two tell decisions have been made since the last elicit decision. This feature reflects
how active a student is currently, that is, how much work the student has performed
recently.

F2 pctElicitA: The percentage of elicit/tell decision points in which the tutor has opted
to elicit during the dialog, irrespective of KC. This feature describes how interactive
the overall tutorial dialogue is. If answering questions makes the student more active
and interactive than simply receiving information from the tutor, then the higher the
value of pctElicitA is the more active and interactive the tutorial dialogue is.

F3 pctTellsKCSessionA: The percentage of tells received in a session for a specific
KC, e.g. KCy. This feature describes how interactive the tutorial dialogue is for this
session. This feature measures the autonomy characteristics of the student’s tutorial
dialogue. It uses a longer timeframe than tellsSinceElicitA, but a smaller one than
pctElicitA.
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Of these features, pctTellsKCSessionA (F3) is KC-specific. The focus is on the value
specific to the current KC. For example, if a policy for KCy; is induced, this feature com-
putes the KC performance in terms of the tutorial actions on all previous instances of K5
solely. In order to differentiate from other feature choices, a label “KC” was added to the

name for all KC-specific features.

Temporal Situation — 3 features
Temporal situation features cover temporal information such as time spent on the training
thus far. All three temporal situation features end with a ‘T’ and were numeric. Three

features were defined:

F4 durationKCT: Time duration since the last tutorial decision was made on the current
KC. e.g K(Cy. The feature reflects how active a student’s knowledge of the current KC
is. For example, if “durationKCT” is high, it means that the tutor has not mentioned
the KC recently, so the student’s knowledge on the current KC may be still.

F5 TimelnSessionT: The total time in the session so far. This feature can be used to
measure the student’s fatigue level.

F6 TimeBetweenSessionsT:The time elapsed between the end of the previous session
and the beginning of the current one. This feature reflects how likely it is that a student
has forgotten what was learned in previous sessions. The higher the value, the more
likely the student has forgotten what was previously learned. If TimeBetweenSessionsT
is high, then the tutor should probably remind the student of some domain knowledge
at the beginning of the session.

Among them, durationKCT is a KC-specific feature.

Problem Solving Context — 5 features
Problem solving features include state information, such as what phase the dialogue is in
(e.g. problem solving or post-problem discussion), the problem’s difficulty level, and so on.

All problem solving-related features end with “PS.” Five feature choices are defined below.

F7 EarlyTrainingP$S: Problems P1, P2, P3 are categorized as early training problem
andthe rest four training problems are categorized as late ones For early training
problems, the tutor may ask students to practice certain entries to let them get used
to the tutor.

F8 ProblemComplexityPS: Problems P1, P2, P3 are simple; P4 and P5 are medium;
and P6 and P7 are complex. This feature reflects the increasing complexity of the
solutions for training problems. The feature is relevant because it is expected that

73



fewer students will be able to solve a training problem on his/her own as the complexity
of the training problem increases.

F9 DuringWalkThroughPS: For each training problem the tutorial dialogues follow
a two-phase procedure: first problem solving, followed by a post-problem discussion.
This feature describes whether a tutorial decision was made during the problem solving
or during the post-problem discussion. It is probably relevant to learning because
certain tutor actions would be better to happen during the problem solving but not
post-problem discussion and vice versa. For example, qualitative discussions may
sometimes distract students from problem solving, and thus it would be better to
reserve qualitative discussion for the post-problem discussion rather than during the
problem solving itself.

F10 nKCsPS: The number of times the current KC has occurred in the current tutorial
dialogue. This feature reflects the student’s overall familiarity with the current KC.

F11 nKCsSessionPS: The number of occurrences of the KC, e.g. KC 20 in this session.
This feature reflects how many times the student has accessed the current KC in this
session.

Two features are KC-specific: nKCsPS(F10) and nKCsSessionPS (F11).

Performance — seven features
Performance features describe factors such as the quality of the student’s previous an-
swers and the student’s ability. All performance-related features end with “PM”. Seven have

been defined. These are described below:

F12 pctCorrectPM: Defined as: ——7¢t____ op a]] KCs. The number of correct

correct+incorrect
and incorrect entries calculated in the students’ logs that were labelled with + and —
respectively. This feature measures the student’s overall competence when only elicits
are counted as learning opportunities.

F13 pctOverallCorrectPM: Defined as _—— +§;’;’;iitect e on all KCs. This feature is
probably relevant to learning in that it reflects the student’s overall competence when
both elicits and tells are counted as learning opportunities.

F14 nCorrectKCPM: The number of correct responses on the current KC, e.g. KC 20.
This feature reflects the student’s competence on the current KC.

. ¢ .

F15 pctCorrectKCPM: Defined as ;72— on the current KC. e.g. KCo. This
feature is probably relevant to learning in that it reflects the student’s competence on
the current KC when only elicits are counted as learning opportunities.

F16 pctOverallCorrectKCPM: Defined as —.—— fiffcrofid e on the current KC. e.g.
K (9. This feature reflects the student’s competence on the current KC when both

elicits and tells are counted as learning opportunities.

F17 nIncorrect KCPM: The number of incorrect responses on the current KC, e.g. KC
20. This feature reflects the student’s incompetence on the current KC.
. . £
F18 pctCorrectKCSessionPM: Defined as Cormgfﬂi‘éormct on the current KC. e.g.
Ky in this session. This feature reflects the student’s lack of competence on the

current KC in this session.
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Five out of seven features are KC-specific. They are: nCorrectKCPM(F14), pctOver-
allCorrect KCPM(F15), pctCorrectKCPM(F16), nIncorrect KCPM(F17), pctCorrect KCSes-
sionPM(F18).

As mentioned above, a successful application of RL is heavily dependent upon choosing
an appropriate set of features to represent tutorial contextual states. In other words, the
state representation for RL should include all of the tutorial dialogue information that is
relevant and necessary to determine what action should be taken next. On the other hand,
user modeling focuses on developing cognitive models of human users, such as the modeling
of users’ skills, knowledge level, and so on. Therefore, the features included in the state rep-
resentation for the RL should include, but not be limited to, the features that model human
users. In this project, some features, especially performance-related features as defined in
Study 2 and Study 3 (described in Chapter 6) can be seen as modeling students’ knowledge
levels. One example of such a feature is “pctCorrect KCPM” which represents the percentage

of times a student had the correct answer on a specific KC.

Earlier an explanation was provided for how KC-specific features were calculated for
inducing specific KC tutorial tactics. However, when inducing KC-general tutorial tactics
on either ET or JS decisions, all the KC-specific features become KC-general features and
take into count all of the previous instances regardless of KC. For example, nCorrect KCPM

becomes the number of correct responses on all the KCs instead of on a specific KC.

This section explains how the eighteen features were calculated from the log files. The
following is an sample of a tutorial dialogue that was extracted from log files of a student
solving the training problem P4. The entire dialogue between the student and Random-
Cordillera is contained in Appendix H. All the tutor turns and the student turns are labelled
to the corresponding KCs in Appendix H. The sample dialogue shown here covers one step
applying K (Cy: the definition of Kinetic Energy, to solve the KE of the rock at 7.

The sample dialogue covers five micro-steps. They represent the first principle application
in solving the training problem P4. So EarlyTrainingPS = 0 and ProblemComplexityPS =
medium. The dialogue occurred during problem solving as opposed to post-problem discus-

sion so DuringWalkThroughPS = 1. The sample dialogue happened in the student’s first
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training session on Cordillera, so the time duration between his current session (start time of
the current session) and his last session (the end time of last session) TimeBetweenSessionsT

is 0. In fact, this is the student’s fourth training problem in the current session.

In Table 5.1, the first column refers to the relative order. For simplicity, it begins at
one. The second column lists the time the action happened. The third column lists the

2

dialogue between the tutor and the student. All the tutor turns start with “Tutor: ” while
the student’s turns start with “Student: ”. In the last column, each of the student’s and
tutor’s turns were mapped to the corresponding KCs. For example, in Line 2, the tutor
made an ET decision and decided to tell. The target KC is KC5,. Because it is a tell, this
turn is labelled with * K C'20 which means this is tutor-generated information in the dialogue

on K(Cy. Line 4 shows an example of an entry generated by the student, which is correct

and also targeted to KCsy. So the turn is labelled with +K Cy.

In Table 5.1, there are total of five micro-step decisions. They are labelled as “D+ line
number”, D2, D3, D5, D8, and D10 respectively. Among the five tutorial decisions, with
the exception of D5, all remaining tutorial decisions involved K. Therefore, to induce
a KC-specific tutorial tactics on Ky, only the tutorial decisions that involved KCyy were

taken into account.

What follows is a simplified illustration of how the sample tutorial dialogue was trans-
formed into one of eighteen features on K Cyy. In Table 5.1 the feature I picked to illustrate is
“tellsSinceElicitA”, one of three autonomy features. Initially the “tellsSinceElicitA”’s value
is two, which means that the tutor made two tell decisions since the last elicit decision before
this sample dialogue. For the decision D2, the tutor made another tell decision and now the
“tellsSinceElicitA” value is three. The dialogue continues to the next decision, D3, and this
time the tutor has made an elicit decision. So “tellsSinceElicitA”’s value goes back to 0.
The next micro-step decision involving Ky is D8. Because the tutor did not make any
tell decisions between lines 3 and 8 the “tellsSinceElicitA” value is still 0. The tutor made
two decisions in D8: first on JS and then on ET. The tutor decided not to skip the justifi-
cation step and also decided to elicit the step from the student. So “tellsSinceElicitA” value
remains 0 until the tutor made the decision in D10. At D10, the tutor made a decision to

tell and thus “tellsSinceElicitA”’s value became 1 until the tutor was ready to make another
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decision.

Table 5.1: A Simplified Example of Part of Student Log on Training Problem P4

# Time String Label

1 14:56:08 | Tutor:So let‘s start with determining the value of
KEO.

2 14:56:11 | Tutor:To calculate the rock‘s kinetic energy at T0O, | TELL *KCyy, D2
let‘s apply the definition of kinetic energy.

3 14:56:27 | Tutor:Please write the equation for applying the | ELICIT KCy, D3
definition of kinetic energy to the rock at TO.

4 14:56:31 | Student:ke0 = 1/2 * M * V0"2 + K Cy

5  14:56:32 | Tutor:Since all the variables in the equation are | ELICIT KCy3, D5
known except for KEO, we can calculate KEQ easily.
What is the value of KEQ?

6  14:56:47 | Student:1.2J +KCys

7 14:56:48 | Tutor:Okay.Before we go any further, let‘s discuss
this principle in a little more detail.

8  14:56:56 | Tutor:Why does the rock have a non-zero kinetic | JUSTIFY ELICIT
energy at T0? KOy, D8

9  14:57:17 | Student: because it has a nonzero mass and a | +KCy
nonzero magnitude of velocity

10 14:57:18 | Tutor: Yes. We do not know the direction of the | TELL * Ky, D10

rock’s velocity at TO from the problem statement.
However, the direction of v0 does not affect the

rock’s kinetic energy at T0.
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Table 5.2 illustrates how the three autonomy features got updated as the sample dialogue
in Table 5.1 continues. In Table 5.2, the first row shows the corresponding values for the
three autonomy features when the tutor reaches D2 in Figure 5.1 and the last row shows
their values when the tutor reaches the decision D10 in Figure 5.1. The rest of the 18 features
were calculated in a similar manner. Appendix J show how the eighteen features varied as

the sample example dialogue in Table 5.1 goes on.

Table 5.2: Autonomy Features Updated

Decision tellsSinceElicitA  pctElicitA  pctTellsKCSessionA
D2 2 0.47 0.64
D3 3 0.47 0.65
D8 0 0.48 0.64
D10 0 0.49 0.63

5.1.4.2 Maximum Number of Features Previously I discussed the problems of data
sparsity for RL. In an RL model, the size of the state space increases exponentially as the
number of involved features increases. In order to learn effective tutoring tactics, a corpus
should cover each of these states at least once, which means at least 2!8 in our case. However,
it is almost impossible to do so due to the high cost of collecting educational data. On the
other hand, the learned policy may become too subtle to be necessary. Based on the size
of the Exploratory Corpus collected in Study 1 and the number of categories of features
defined in this study is four, the state representation was capped four features. Moreover,
as discussed in subsection 5.1.4.1, the maximum number of features within each of the four
categories was limited to one. This was done because it was anticipated that this would

better represent the relevant information.

5.1.4.3 Feature Discretization In Study 2, except for EarlyTrainingPS(F7, binary),
ProblemComplexityPS (F8, three), and DuringWalkThroughPS (F9, binary) which are dis-
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crete features, the remaining fifteen features are continuous features and need to be dis-
cretized. In Study 2, this was accomplished for each feature by turning each feature into a
binary feature via a median split. This was done in order to balance the number of cases
across clusters. Therefore, apart from ProblemComplexity, which has three categories, all

other features are binary.

5.1.4.4 Feature Selection In Study 2 a two-pass feature selection process was em-
ployed. For each KC and decision pair (e.g. KC4, ET) 18 single-feature MDPs were gener-
ated. Each MDP used one and only one of the 18 features to represent the state, and used the
relevant tutorial decisions to represent the actions. All other features were ignored. For each
of these MDPs, the Tetreault and Litman’s toolkit was applied [Tetreault and Litman, 2008]
to induce a single-feature policy together with its corresponding ECR.

In the second pass the four best features were selected. Using Moore’s categories and
the ECR, the policy with highest ECR from each of the categories was selected. The
process involved choosing one from among features 1-3 for the single autonomy feature;
one from among features 4-6 for the temporal situation feature, and so on. The criteria
used for the selection ECR, specifically the single-policy feature who had the highest ECR
relative to its’ peers is selected. Note that the policy’s Confidence Interval was ignored
because ECR was more widely used in RL community for evaluating the derived policies
[Williams and Young, 2007b, Williams and Young, 2007a, Janarthanam and Lemon, 2009].
An MDP was then defined for the KC and action decisions by using the four lead features
for the state representation, and induced a new four-feature policy from it. From all eigh-
teen single-feature policies and the four-feature policy, the policy with the highest ECR is
selected for each KC and action decision. Recall that the higher the ECR of a policy, the
more effective the policy is supposed to be.

However, a subsequent analysis of this feature selection method showed its limitations.
Notably, other feature selection methods were applied to the 18 features, which included
four RL-based feature selection methods (reviewed in Chapter 6) and a random feature
selection method, the induced policies had significantly higher ECR [Chi et al., 2008a]. For
example, Table 5.3 shows the ECR of the DichGain tutorial tactics and the tutorial tactics
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induced by applying new feature selection approaches to the eight primary KCs for the
ET decisions. The new tutorial tactics had higher ECRs than the DichGain ones across
all eight KCs. For example, line 5 shows that ECR(7picncain(KCo, ET)) = 9.4 while
ECR(Tpew(KCa, ET)) = 44.29, four times higher than the former.

Table 5.3: Compare DichGain Tactics With Tutorial Tactics Under New Feature Selection
Methods On Eight Primary KCs

DichGain Tutorial Tactics Tutorial Tactics With New Feature Selection
ECR 95% CI Range | ECR 95% CI Range
1 KCy |20.196 [5.19, 34.19] 29.01 || 51.79 [32.67, 63.71] 31.04
2 KCyy| 5415 [47.9,59.58] 11.69 || 59.48 [54.3, 63.21] 8.91
3 KOy | 481 [0.75, 8.66] 7.9 8.08  [4.24, 11.9] 7.66
4 KCy | 1548 [7.85,21.78] 13.94 | 26.94 [19.8, 29.28] 9.48
5 KCy 9.4 [-5.37, 20.69] 26.05 | 44.29 [23.49, 50.51] 27.02
6 KCy | 7.23 [2.72, 11.31] 8.59 12.91 [7.22, 16.43] 9.21
7 KCy | 16.78 [5.95, 24.9] 18.95 | 27.25 [13.87, 32.16] 18.29
8 KCy% | 1529 [2.52,26.05] 23.52 32.8 [22.08, 38.61] 16.53

5.1.5 Conflicting Policies

In some cases, a given tutorial step involves multiple KCs and thus, multiple policies. When
multiple policies are relevant, the policy with the highest ECR was followed.

5.1.6 Summary: Procedure of Inducing Tutorial Tactics in Study 2

In sum, Study 2 involved using the Exploratory Corpus collected in Study 1 as the training
corpus and the reward functions are defined as either +100 (high learner) or —100 (low

learner) based on corresponding KC-based NLGs. In Study 2 a total of thirty-three policies
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were induced: twenty-two ET policies (21 KC-specific and one KC-general) and eleven JS
policies (10 KC-specific and one KC-general).

In order to induce the necessary policies a multi-pass approach was adopted. In the
multi-pass approach, a set of 18 MDPs were constructed for each KC and decision pair (e.g.
KC4, JS) with all features either discrete or discretized via a median split. Then a set of 18
single-feature policies was induced, one for each MDP. For each of Moore’s four categories, a
feature was selected whose corresponding single-feature policy had the highest ECR among
features in the same category. A four-feature MDP was then defined from which a more
complex policy was induced. All of the work here was done with Tetreault and Litman’s
toolkit [Tetreault and Litman, 2008]. Finally, the policy with highest ECR for the KC and
decision pair was selected from among the 19 derived policies: 18 single-feature policies and
one four-feature policy.

Appendix K lists the 22 ET tutorial tactics and the 11 JS policies that were induced
and applied in Study 2. One of the resulting policies is shown in Figure 5.1. This policy
involved four features: durationKCT, ProblemComplexityPS, tellsSinceElicitA, and pctCor-

1. Features: durationKCT, ProblemComplexityPS,
tellsSinceElicitA, pctCorrect KCSessionPM
2. Cutoff: durationKCA ="50.0" tellsSinceElicitA =’0.0001"
pctCorrectKCSessionPM =’0.7179’
3. Policy:
a. Flicit:  0:MED:1:0, 1:COMP:1:0, 0:COMP:1:1, 0:MED:0:0, 0:COMP:1:0,
0:MED:1:1, 0:COMP:0:1, 1:COMP:0:1
b. Tell: 1:MED:0:1, 1:MED:0:0, 1:MED:1:0, 1:MED:1:1, 0:MED:0:1
c. FElse: 0:COMP:0:0, 1:COMP:0:0, 1:COMP:1:1

Figure 5.1: The Induced Policy 7pjchgain(K Cor, ET): Gravitational Potential Energy
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rect KCSessionPM. Three of these features were continuous. The median cutoff values used
to discretize them are shown in line 2 (“cutoff”). This policy contains a total of 2* = 16
rules. In eight cases, the tutor elicited (line a); in five cases the tutor elected to tell (line b);
and in the remaining three the tutor could choose to do either (line ¢). For example, “elicit:

[0:MED:1:0)” (shaded in line a) means:

IF' the duration since the most recent decision made on Ky is less than 50sec;

AND the ProblemComplexity is 'medium’;

AND the students have received at least one tell since the most recent elicit (tellsSinceElicit)
AND the student’s performance on this kc in today’s session is less than 71.79% correct;
THEN: the tutor should elicit the next step from the student.

The example in Figure 5.1 indicated that the induced tactics were a very specific set of
case decisions, and could easily be implemented back into Cordillera. Moreover, the tactics

were quite subtle.

Then the thirty-three induced policies were implemented back into Cordillera producing
a version of the system called DichGain-Cordillera. This version of the system used the
KC-specific policies when facing a relevant decision, resolved ties by selecting the policy
with the best ECR, or followed the KC-general strategies when no policy was relevant.
As described below, a set of students were trained on this system to collect the DichGain
Corpus. For Study 2, the author was responsible for application of the MDP toolkit to the
Exploratory Corpus and induced the 33 DichGain tutorial policies. Once the policies were
implemented back into Cordillera, the author acted as a human wizard during the collection

of the DichGain Corpus.

5.2 METHODS

5.2.1 Participants

Data was collected over a period of three months during Spring 2008. As in Study 1, a set

of forty-two college students were recruited and paid for their time regardless of completion.
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The students were required to have a basic knowledge of high-school algebra and not to
have enrolled in college-level physics courses. All told, thirty-seven students completed the

experiment.

5.2.2 Materials & Procedures

The students followed the same procedure, used the same preparatory materials and prob-
lems, and involved the same group of human wizards as in Study 1. More specifically, the
DichGain group completed a background survey, read a textbook covering the target domain
knowledge, took a pre-test, solved the same seven training problems in the same order on

DichGain-Cordillera, and finally took a post-test. Only two salient differences exist between

Study 1 and Study 2:

1. Interaction decisions made by DichGain-Cordillera were guided by thirty-three derived

tutorial tactics; and

2. One test problem, ()99, on the pre- and post-test was changed for Study 2 to, )3,. Both
Q20 and Q%, are multiple-choice questions and cover the same KCs. But )y is a simple
question and had only two choices (true, false), so there is a good chance that students
could guess the answer. The new version of ()5,,covered the same KCs but was more
difficult by providing five choices. So it is less likely that students could guess the answer.
The remaining 32 test items were identical in both studies. And as with Study 1, the

pre- and post-tests in Study 2 were identical.

5.2.3 Grading

All tests were graded by the same grader as in Study 1 (not the author). She applied the
same grading metrics and carried out the same grading process resulting in both the overall

and KC-based grades.
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5.2.4 Measures

There were two research objectives in Study 2: first, to determine whether the DichGain
group learned by training on DichGain-Cordillera, and second, to examine the DichGain
group and the Exploratory group to see whether the induced DichGain tutorial tactics would
result in better learning performance than making random decisions. Note that given the
cost of the study, we did not run a strict control-experimental study but simply confirmed
whether the trend of the DichGain group over-performing the Exploratory group existed.
The two groups’ learning performances were compared, using both the students’ pre-test,
post-test, adjusted post-test scores and NLG, under both the overall grading criteria and the
cumulative KC-based grading criteria. The adjusted post-test can be measured as a linear
association between the real post-test score for each student and the difference between the
pre-test score for the students and the mean of pre-test scores. The formula for the adjusted

post-test score is:

posttest; = posttest; — 3 X (pretest; — pretest) (5.1)

where i stands for the student, posttest! for the adjusted post-test score for student i,
posttest; for the true post-test score for the student i, § is the regression coefficient of
the post-test score upon the pre-test score, pretest; is the true pre-test score for the student
i, and pretest is the mean of the pre-test scores.

Results showed that there was no significant difference between the DichGain and Ex-
ploratory groups under either grading criteria. There are two potential reasons for this. One
is the lack of random assignments and two is that the RL approach may be limited. As a
result, Study 3 focused on a full-scale comparison by exploring a wider range of methods to
deal with the five RL issues. For example, three training corpora were explored in Study 3:
the Exploratory Corpus collected in Study 1, the new DichGain Corpus in this study, and
a combination of the two in a new corpus. Because of this decision, the second part of the
results section will focus on the characteristics of the DichGain corpus. These characteristics

will include the general number of decisions the tutor made, the number of ET decisions and
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the I-ratio, and the number of JS decisions and the J-ratio. Additionally, because the DIch-
Gain corpus will be used to induce KC-specific tutorial tactics in Study 3, the description

will include some KC-based learning performance and corpus characteristics as well.

5.3 RESULTS

In Study 2, it took each student from three to six sessions to complete the study. These
sessions were spaced over a period of one to three weeks. The sessions generally took less
than two hours to complete. The students spent roughly five hours, ranging from as few as

four hours to as many as nine hours, training on DichGain-Cordillera.

5.3.1 Compare Pre- and Post-test

Table 5.4: DichGain Students’ Pre- vs. Post-test Performance

Min Max Mean o

Overall Grading Pretest | 0.04 0.74 0.40 0.18
Posttest | 0.18 0.96 .58 19
NLG -0.09 0.89 033 .21

Cumulative KC-based Grading Pretest | 0.04 0.77 .42 A7
Posttest | 0.08 0.97 .54 20
NLG -0.33 0.86 0.25 0.23

A one-way ANOVA was used to test for performance preference differences between the
pre- and posttests. Regardless of grading criteria, participants made significant gains from
pre-test to post-test (Table 5.4), F(1,72) = 16.86,p = .000, R®* = .69 under the overall
grading criteria and F(1,72) = 8.55,p = .005, R* = .71 under the culmulative KC-based
grading criteria. The overall NLG scores ranged from —0.09 to 0.89 (M = 0.33,SD = .21).
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The cumulative KC-based NLG scores ranged from —0.33 to 0.86 (M = 0.25,5D = .23).
Table 5.4 summarize the minimum, maximum, mean, and SD values for each test scores.

Figure 5.2 shows the DichGain group’s pre- and post-test scores under the two grading
criteria. A double asterisk (**) indicates that the difference is statistically significant (p <
0.05). To summarize, the DichGain group scored significantly higher in the post-test than
in the pre-test. .

5.3.2 Post-hoc Comparison: DichGain vs. Exploratory

5.3.2.1 Post-hoc Comparison: DichGain vs. Exploratory On Training Time In
a post-hoc comparison with a one-tailed paired t-test, there were no significant overall time on
task differences between the DichGain group (M = 294.33, SD = 87.50) and the Exploratory
group (M = 280.38, 5D = 66.88) across the seven training problems : #(99) = .88, p = .38.

DichGain Group's

— Learning Performance
E ﬂ.fB - 0.54
50% -
40% - M Pretest
30% - M Posttest
20% -
10% -

0% -

Overall Culmulative KC-based
Grading Criteria "#%1 in dicates p<0.05

Figure 5.2: Learning Performance of Exploratory Group
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Average Time Spent on Seven Problems
106:00
#E
80.00
60.00
40.00 iE ® DichGain
** W Exploratory
20.00 -
0.00 -
Pl P2 P3 P4 P3 P6 P7
Seven Training Problems

Figure 5.3: Per Problem Time Comparison: DichGain vs. Exploratory Group

However, a significant difference was found between the two groups in the time they spent
on P1, P2 and P7 Figure 5.3 compared the average time students spent on each training
problem between the two groups. On P1 the DichGain group spent significantly less time
than the Exploratory group with a one-tailed paired t-test (#(98) = 3.15, p = .002) while on
P2, the DichGain group spent longer than the Exploratory group ((£(99) = 2.56,p = .012)).
Similarly on P7, the DichGain group spent significantly longer time than the Exploratory
group: ($(99) = 2.46,p = .016).

5.3.2.2 Post-hoc Comparison: DichGain vs. Exploratory On Learning Perfor-
mance Because of an administrative error, all of the background information for DichGain
group was not available for comparison. As mentioned above, one test problem Q20 was
changed from Study 1 to QQ20* for Studies 2 and 3. So in order to compare the two groups,
Q20 and (Q20* were excluded from the scores used here. As described in the previous chap-
ter, the tests contained thirty-three test items which covered 168 KC occurrences. Removing

(020 or Q20" reduced this total by one leaving thirty-two test items covering 166 KC occur-
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Table 5.5: DichGain vs. Exploratory Scores: Pre vs. Post-Test (No Qa)

’ ‘ Dich m(0)® Exp m(o)® ‘ Stat® ‘ d ‘ 1-3 ‘
Overall Pre- | .40 (0.18) .47 (0.20) | £(99) = 1.86,p = 0.066 | —0.37 | 0.39
Post- | 0.58 (0.19) 0.61 (0.18) | ¢(99) = 0.78,p = 0.44 | —0.16 | 0.54
Adj. Post- | 0.62 (0.10) 0.59 (0.10) | F(1,98) = 1.99,p = 0.16 | 0.3 0.46
NLG | 0.34 (0.20) .28 (0.21) t=1.36,p=0.18 029 | 047
Cumulative Pre- | 0.41 (0.17) 0.45 (0.20) | ¢(99) =0.99,p =0.32 | -0.21 | 05
KC-Based Post- | 0.54 (0.20)  0.57 (0.21) | ¢(99) = 0.66,p = 0.51 | -0.15 | 0.59
Adj. Post- | 0.57 (0.12) 0.56 (0.12) | F(1,98) = 0.09,p = 0.77 | 0.08 0.78
NLG | 0.26 (0.23) 0.25 (0.26) | £(99) =0.23,p =0.82 | 0.04 | 0.82

The Mean and SD of DichGain Group.

’The Mean and SD of Exploratory Group.

“Except an ANCOVA using pre-test score as the covariate on Adj.Post-test scores, the two groups were
compared with one-tailed paired t-tests on the pre-test, post-test and NLG scores.

rences. In the subsections learning performance will be compared across both groups using
both the overall and cumulative KC-based scores. For the overall scores, the maximum raw
score was 32 points while for the cumulative KC-based score had a maximum of 166 points.

For comparison purposes both scores were normalized to 1.

A one-way ANOVA was used to test for performance preference differences between
the pre- and posttests across the two groups. Across 32 test questions, participants in the
first two studies made significant gains from pre-test to post-test, F'(1,200) = 35.88,p =
.000, R = .70 under the overall grading criteria and F(1,200) = 19.51, p = .000, R* = 0.69
under the cumulative KC-based grading criteria. In a post-hoc comparison, however, no
significant pre-test score differences were found between the two groups on pre-test scores,
post-test scores, adjusted post-test scores, and NLG under either the overall-grading rubric
or the cumulative KC-based scores (Table 5.5). The first column in Table 5.5 shows the
eight comparisons: pre-test scores, posttest scores, adjusted posttest scores, and NLG under
both the overall-grading rubric and the cumulative KC-based scores. The second column
in Table 5.5 lists the means (m) and SDs ¢ of two groups’ corresponding scores. The third

column lists the corresponding statistical comparisons. No significant difference was found
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between the two groups across the eight comparisons. However, the DichGain students did
demonstrate marginally significant lower pre-test scores than the Exploratory group under

the overall grading criteria only.

The fourth column lists the effect size of the comparison. There are several accepted
ways to measure effect size, such as Cohen’s d effect sizes based on means, Hedges” g and so
on. For this dissertation, Cohen’s d is selected and it is defined as the mean learning gain
of the experimental group minus the mean learning gain of the control group, divided by
the groups’ pooled standard deviation. The final column listed the statistical power of the
comparison, 1 — 3. Generally speaking, it must be kept correspondingly high. Ideally, power
should be at least 0.80 to detect a reasonable departure from the null hypothesis. The reward
functions used for inducing DichGain tutorial tactics were based on the students’ cumulative
KC-based NLGs or KC-based NLG scores. However, the last row in Table 5.5 shows that the
Exploratory and DichGain groups were not significantly different on cumulative KC-based
NLGs and its power reached an acceptable level: 0.82 (often considered to be between .80
and .90).

Although no significant difference was found between two groups on learning performance
and overall time on training, the DichGain students did have a marginally significant lower
pre-test score than the Exploratory group under the overall grading criteria. One potential
reason for an absence of difference in learning between the two groups may be because the
lack of random assignment. However, there are other potential reasons for this. For example,
it might be because of the limitation of the RL approach used in Study 2. As discussed above,
the feature selection method in Study 2 is somewhat greedy-like. So in Study 3, significantly
more feature selection methods were explored to find ways to better use RL and a full-scale

comparison was run.

At this point in the research, two training corpora existed: the Exploratory Corpus in
which all decisions were randomly made, and the corpus that was collected by following the
induced DichGain tutorial tactics induced from the Exploratory Corpus. Although there

was no significant learning performance difference between the two groups, the two corpora

1 3 represents Type II error: false negative. It refers to the error of failing to reject a null hypothesis when
it is in fact not true.
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may differ in other aspects. In Study 3, both the Exploratory and the DichGain corpora
were used as training corpora. The characteristics of the Exploratory Corpus were discussed
previously in Chapter 4 and the characteristics of the DichGain corpus will be discussed

below.

Finally, the two corpora will be compared using the following measurements: the average
number of ET decisions, JS decisions, and overall decisions that the tutor made. Another
point of comparison is measured by the I-ratio, the J-ratio, and the number of justification
steps. In addition, because the DichGain corpus will be used to induce KC-specific tutorial
tactics in Study 3, its KC-based learning performance and corpus characteristics will also be

discussed.

5.3.3 Post-hoc Comparison: DichGain vs. Exploratory Tutorial Corpora

The DichGain corpus was used as one of the training corpora to derive KC-based tutorial
tactics in Study 3. The decision to choose one corpus over another means that it is valuable
to compare the characteristics of the two corpora. Similar to the Exploratory corpus, each
student’s individual problem dialogues were combined into a single super-dialogue listing all
tutor-student interactions in order of occurrence. Thus, one tutorial dialogue was combined

per participant.

5.3.3.1 Post-hoc Comparison: DichGain vs. Exploratory On Overall Tutorial
Decisions Table 5.6 compares the various tutorial decisions with a one-tailed paired t-test
across all KCs between the DichGain and Exploratory Corpora. Except for the total number
of overall decisions and the total number of ET decisions, the two corpora differed on all
the other seven aspects (labeled with “**”). Overall, the DichGain Corpus is significantly
less interactive in that the DichGain students received more tells and less elicits from the
tutor than the Exploratory Corpus. As a result, the I-ratio of the DichGain corpus was
significantly lower than that of the Exploratory corpus. Moreover, the DichGain-Cordillera

skipped more and executed less justification steps than the Exploratory-Cordillera.
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Table 5.6: Overall Tutorial Decision Characteristics: DichGain vs. Exploratory Corpora

Decision Condition Mean o Stats

tell** DichGain (37) | 152.46 13.05 | t(99) = 6.663, p = 0.000
Exploratory (64) | 138.02 8.71

elicit™* DichGain (37) | 118.08 13.33 | t(99) = —6.956, p = 0.000
Exploratory (64) | 135.88 11.82

ET decisions DichGain (37) | 270.54 10.00 | £(99) = —1.396, p = 0.166
Exploratory (64) | 273.89 12.46

skip-Justify** DichGain (37) | 33.54  4.80 | ¢(99) = 7.728, p = 0.000
Exploratory (64) | 26.44  4.24

(37)
(64)
(37)
(64)
(37)
(64)
(37)
(64)
(37)
Exploratory (64) | 30.17  3.83
(37)
(64)
(37)
(64)
(37)
(64)
(37)
(64)

Justify** DichGain (37) | 24.89  3.59 | ¢(99) = —6.826, p = 0.000

JS decisions™* DichGain (37) | 58.43  2.81 | t(99) = 2.742, p = 0.007
Exploratory (64) | 56.61  3.43

Overall Decisions DichGain (37) | 307.57 12.45 | t(99) = 0.749, p = 0.456
Exploratory (64) | 305.48 14.01

[-ratio** DichGain (37 0.44  0.04 | ¢(99) = —7.967, p = 0.000
Exploratory (64 0.50 0.03

J-ratio** DichGain (37 0.43  0.07 | t(99) = —7.894,p = 0.000
Exploratory (64 0.53 0.06

5.3.3.2 Post-hoc Comparison: DichGain vs. Exploratory On Individual KCs
Table 5.7 shows the number of tutorial decision steps for each KC and each type of tutorial
decision in DichGain Corpus. The third and fourth columns list the number of ET and JS
tutorial decisions for the KC. The last column lists the statistical results of comparing the
KC-based pre-test scores with post-test scores with one-tailed paired t-tests. If the DichGain
group had significantly higher post-test scores than its pre-test scores, the corresponding KC
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were labelled with “**”

next to their name in (column 2).

From Table 5.7, it can be seen that, as with the Exploratory Corpus, the DichGain
corpus had twenty-one KCs that occurred in at least one ET tutorial decision step and ten
KCs for JS decisions. Additionally, the number of occurrences of ET decisions varied from
one to seventy-two occurrences; for JS decisions it varied from two to sixteen occurrences.

Among the eight primary KCs, students learned significantly from six of them: KC;, KCy4,
KCQ(), KCQl, KCQQ, KCQ4 but not on KCQ7 and KC28.
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Table 5.7: Tutorial Decisions Per KC.

KC ET JS  Total Pre- and Posttests
1 | KC/** | 4.16 4.16  t(72) = 2.80,p = 0.01
2 | KCj 2.11 2.11  t(72) = 0.66,p = 0.51
3 || KCj 7.05 7.05  t(72) =1.64,p=0.11
4 || KCy** 1.22 2 t(72) = 2.46, p = 0.02
5 || KChs 1.46 2 3 t(72) =1.27,p=0.21
6 || KCi3 3 3 t(72) =1.27,p=0.21
7 | KO ** | 8.38 2 9 t(72) = 2.03,p = 0.05
8 | KCis 7.62 8.11  ¢(72) =0.98,p=0.33
9 | KCiy 4.43 5.43  t(72) = 1.68,p = 0.10
10 || KCis 1.14 2 t(72) = 1.60,p = 0.11
11 || KCy** | 72.43 16.43 82.84 ¢(72) = 4.45,p = 0.00
12 | KCxy** | 49  16.86 59.05 ¢(72) =4.30,p = 0.00
13 | KCx»** | 31.32 397 32.78 (72) =2.41,p=0.02
14 || KCy3™* | 61.11 4 62.95 ¢(72) =3.39,p =0.00
15 | KCo** | 4897 15.89 60.24 ¢(72) = 3.11,p = 0.00
16 || KCo5™* | 9.43 9.78  ¢(72) = 2.65,p=0.01
17 || KCq 541 281 746 t(72) =1.76,p =0.08
18 || KCy 21.92 462 23.73 t(72) =1.99,p = 0.051
19 || KCosg 14.19 514 1832 t(72) =1.82,p=0.07
20 | KC5, 18.32 19.16  ¢(72) = 1.82,p = 0.07
21 | KC3™* | 14.24 14.24  t(72) =2.29,p = 0.03

Overall, there was a significant difference between the two corpora on the I-ratio and J-
ratio. However, as this difference is analyzed, the variance becomes more complex. Table 5.8

shows the I-ratio difference between the DichGain and Exploratory corpora with one-tailed
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paired t-tests. The third and fourth columns of the table list the mean of the I-ratio in the
DichGain Corpus and Exploratory Corpus respectively. The fifth column gives the direction
of the difference in which “DG > EX” represents that the DichGain Corpus was more
interactive than the Exploratory Corpus on corresponding KCs. Similarly, “DG < EX”
means the reverse is true. If the column is blank, it means that there were no significant
differences between the corpora on the I-ratio for the corresponding KC. The last column
shows the statistical results between the two corpora. If the difference is significant, the KC
name in column 2 is labeled with “**”.

As shown in Table 5.8 the corpora differed significantly in terms of I-ratio on all but
three KCs: KCy, KCy, and K (3. The DichGain group was significantly less interactive
than the Exploratory group on six KCs (KC1a, KCig, KCo, KC53, KCyy, and KCy7), and

significantly more interactive than the Exploratory group on the remaining twelve KCs.
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Table 5.8: I-Ratio Between DichGain vs. Exploratory on a per-KC basis.

KC DichGain Exploratory Dift Stats Comparison

1 | KC** 0.90 0.49 DG*> EXP" | t(99) =8.92,p = 0.0000
2 | KC3** 0.80 0.51 DG > EXP t(99) = 4.05, p = 0.0000
3 | KCy** 0.56 0.46 DG > EXP t(99) = 3.37,p = 0.0010
4 | KCy 0.35 0.47 t(99) = —1.35,p = 0.1810
5 | KCp** 0.21 0.52 DG < EXP | t(99) = —3.81,p = 0.0000
6 | KCi3** 0.90 0.45 DG > EXP t(99) = 8.17, p = 0.0000
7 | KCy/** 0.89 0.50 DG > EXP £(99) = 12.00, p = 0.0000
8 | KCy5** 0.60 0.47 DG > EXP t(99) = 4.38, p = 0.0000
9 | KCy** 0.71 0.48 DG > EXP £(98)4.66, p = 0.0000
10 | KCpg** 0.04 0.43 DG < EXP | t(99) = —5.39,p = 0.0000
11 | KCoy** 0.23 0.50 DG < EXP | t(99) = —17.26,p = 0.0000
12 | KCo** 0.65 0.50 DG > EXP t(99) = 6.76, p = 0.0000
13 | KCy 0.46 0.49 t(99) = —1.53, p = 0.1300
14 | KCoy3** 0.45 0.49 DG < EXP | t(99) = —3.36,p = 0.0010
15 | KCoy** 0.28 0.50 DG < EXP | t(99) = —17.43, p = 0.0000
16 | KCoys** 0.73 0.50 DG > EXP t(99) = 7.70, p = 0.0000
17 | KCoy** 0.58 0.43 DG > EXP t(99) = 3.05, p = 0.0030
18 | KCor** 0.41 0.51 DG < EXP | t(99) = —3.78, p = 0.0000
19 | KCog** 0.64 0.48 DG > EXP t(99) = 4.23, p = 0.0000
20 | KCg** 0.67 0.51 DG > EXP t(99) = 7.42, p = 0.0000
21 | KCs 0.52 0.50 t(99) = 0.55, p = 0.5830

*DG = DithGain
bEXP=Exploratory

Table 5.9 shows the J-ratio difference between the two corpora. Similarly, the third and
fourth columns of the table list the mean of the J-ratio in the DichGain Corpus and Ex-
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Table 5.9: Justify Ratio Differences on a per-KC Basis.

KC DichGain Exploratory Diff Stats Comparison
1 | KCo** 0.23 0.54 DG < EXP | t(99) = —4.40, p = 0.0000
2 | KOy ** 0.69 0.48 DG > EXP | t(99) = 3.44, p = 0.0009
3 | KCy** 0.42 0.51 DG < EXP | t(99) = —4.24, p = 0.0001
4 | KCy ** 0.46 0.56 DG < EXP | t(99) = —4.27, p = 0.0000
5 | KCoy 0.63 0.61 t(99) = 0.25, p = 0.8043
6 | KCy** 0.54 0.78 DG < EXP | t(99) = —6.72, p = 0.0000
7T | KOy ** 0.33 0.57 DG < EXP | t(99) = —8.58, p = 0.0000
8 | KCy** 0.84 0.60 DG > EXP | t(99) = 3.68,p = 0.0004
9 | KCy** 0.63 0.51 DG > EXP | t(99) =2.49,p =0.0143
10 | KOy** 0.36 0.54 DG < EXP | t(99) = —3.99, p = 0.0001

ploratory Corpus respectively. The fifth column gives the direction of the difference in which
“DG > EX” demonstrates that DichGain Corpus got justification steps more frequently
than the Exploratory Corpus on corresponding KC, while “DG < EX” means the reverse is
true. If this column is blank, it means that there were no significant differences between the
corpora on the justification ratio on the KC. The last column shows the statistical results
between the two corpora with one-tailed paired t-tests. If the difference is significant, the KC

“x7 In Table 5.9. There was no significant difference

name in column 2 was labeled with
in terms of the number of justifications between the two corpora on KCs. While on six
(KC1s, KCy, KCy1, KCs3, KCyy, and KCss) the DichGain group were more likely to skip
a justification step than the Exploratory group. There were only three instances for two KCs

(row: KChy, KCy, and KCy;) in which the DichGain group was more likely to receive tells
than the Exploratory group.

Thus, although no significant learning differences were found between the two groups
for time on task or learning performance, significant differences were found between the two

corpora. The DichGain corpus was significantly less interactive and included less justification
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steps than the exploratory corpus.

5.4 DISCUSSION

The goals in Study 2 were to investigate how to apply RL to induce tutorial tactics from a
training corpus and then to test whether the induced tutorial tactics would result in more
effective learning performance than making random decisions. This was to be accomplished
without running a full-scale comparison. Results showed that following the DichGain tutorial
tactics generated significantly less elicits and included fewer justification steps than following
the random decisions in the Exploratory group. A more detailed analysis, however, showed
that this difference varied from KC to KC. While applying RL did induce tutorial tactics
from the Exploratory corpus and the induced tutorial tactics were subtle, they did not seems
to be more effective. Despite of the lack of random assignment, no significant difference was
found between the two groups on either the pre-test, post-test, adjusted post-test or the
NLG.

There were at least three potential reasons for lack of difference in learning performance
between the DichGain and Exploratory groups. First, a full comparison of the DichGain
and Exploratory groups was not run by assigning students randomly into the two groups.
Second, the hypothesis may simply be incorrect, that micro-level policies covering interac-
tive decisions like ET and JS do not affect students’ learning. The decisions may be too
“fine-grained” to have a real impact on learning, no matter how optimal the policy. Ini-
tial analysis based on the comparison of the DichGain and Exploratory groups appears to
support previous research. That research suggests that given that content is controlled to
be same, pedagogical tutorial tactics may not result in different learning. Third, it is also
possible that lack of a difference in learning performance may be caused by limitations in
the RL approach.

In other words, applying RL to induce tutorial tactics may not be a simple task for
which we can plug a toolkit into the training corpus and induce effective tutorial tactics. As

demonstrated in Study 2, tutorial tactics depend on many factors, such as feature choices,
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feature selection, feature discretization and so on. Their effectiveness might also depend on
how we implement them back into Cordillera. For example, how we deal with conflicting
policies. It can be argued that in Study 2, exploration of these factors was limited. For
example, only eighteen features were included in our search space, but no more than four
appeared in the final induced tutorial tactics. It is possible that the selected features were
insufficient to adequately represent the state space. Moreover our greedy-like feature selec-
tion process and the discretization procedure of using simple median splits may also have
limited our success.

Study 3 was designed to address these reasons in hopes of producing more effective
pedagogical tutorial tactics. In it the approach to RL-related issues was modified. For
example, the training dataset was expanded to include both the Exploratory Corpus and the
DichGain Corpus in the induction process. Also, more features were included in the feature
states. To address the more weighty issue of learning performance, one set of tutorial tactics,
like the policies in the present study, was derived with the goal of enhancing the tutorial
decisions that contribute to the students’ learning; while the other was derived with the goal
of enhancing those decisions that contribute less or even none to the students’ learning. To
summarize, in contrast to Study 2, Study 3 included multiple datasets, a larger feature set,
induction of policies based on multiple corpora, and random assignment of subjects to two
comparable groups. The methods and outcomes of Study 3 are discussed in the next two

chapters.
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6.0 APPLYING RL TO INDUCE NORMALIZED GAIN (NORMGAIN)
AND INVERSE NORMALIZED GAIN (INVNORMGAIN) TUTORING
TACTICS

The conclusion of Chapter 5 identified three potential problems with Study 2 that might
explain the absence of a learning difference in the two groups’ performance. The earlier
study did not run a full comparison by randomly assigning students into the two groups.
The feature space selection may have been inadequate. The lack of a learning difference
may also suggest that decisions on the level of elicit/tell (ET) and justify /skip-justify (JS),
however well timed, cannot significantly affect the students’ performance. Many previous
studies showed that after solving the same training problems with the tutorial scripts written
by the same authors, no significant difference was found among students’ learning by means
of different learning treatments [VanLehn et al., 2007a]. In this study, the content was con-
trolled to be equivalent even at a much lower level than in these previous studies. Therefore,
it is possible that these micro-decisions would not make a difference in students’ learning.
As shown in Studies 1 and 2, both the Exploratory and DichGain groups gained signifi-
cantly. However, no signifciant difference was found between the two groups in a post-hoc
comparison.

On the other hand, even if there was an impact by tutorial decisions on learning, random
selection might have a good chance (50% chance given that both decisions were binary) to
guess the “proper” decisions, and thus might have made enough effective decisions. If so,
the impact of the tutorial decisions on learning would be canceled out. Therefore, in order
to investigate whether micro-step decisions would make a difference in learning, the contrast
between the two conditions in Study 3 was sharpened. Instead of choosing “random” as the

control condition, the InvNormGain Group was selected.
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In short, in Study 3 two sets of tutorial policies were induced: the Normalized Gain
(NormGain) set induced by using the students’” NLG as rewards and the Inverse Normalized
Gain (InvNormGain) set was induced by specifically using students” (1-NLG) as rewards.
In other words, the NormGain tutorial tactics were derived with the goal of enhancing the
tutorial decisions that contribute to the students’ learning, while the InvNormGain tutorial
tactics were derived with the goal of enhancing those decisions that contribute less, or not
at all, to the students’ learning. If RL did live up to its promise, then it is expected that
the NormGain students would out-perform their InvNormGain peers. This would occur if
the micro-level decisions on ET and JS do impact learning.

Apart from the reward functions, the tactics were induced using the same general pro-
cedure. In this chapter, the main focus is on describing how RL was applied to induce these
two sets of tutorial tactics. The experimental comparison of these two sets will be presented
in Chapter 7. While the previous two studies were implemented by the I'TR research group,
Study 3 was designed, executed and evaluated by the author.

In order to induce tutorial tactics in Study 3, the same general learning procedure de-
scribed in Chapter 3 and again in Chapter 5 was employed. As in the proceeding chapter the

five major RL issues are addressed in Study 3 and changes made from Study 2 are explained.

6.1 TRAINING CORPUS

In Study 2, the only corpus available was the Exploratory Corpus. At this stage, three train-
ing corpora were available: the Exploratory Corpus collected in Study 1, the DichGain corpus
from Study 2, and a combined corpus from both sets. The Exploratory Corpus consisted
of 64 students’ super-dialogues, the DichGain-Corpus consisted of 37 super-dialogues. The
combined set contained 101. Each super-dialogue covered one student’s entire interaction
with the Cordillera system including all seven training problems.

The choice of Training Corpus is a complex one. As explained previously, the Exploratory
Corpus was collected for RL and designed to explore the feature space evenly and without

bias. The DichGain Corpus, by contrast, is similar to many other pre-existing corpora.
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Inducing a successful policy from it would show the potential for applying RL to induce
effective tutorial policies from most pre-existing data. The combined corpus, in theory, offers
the benefits of both as well as an increased dataset. In this study, rather than selecting one
corpus a priori, all three were used. More specifically, tutorial tactics were derived from each

corpus separately, and then the best policies from all the sets were selected by ECR.

6.2 KNOWLEDGE COMPONENTS

Study 2 opted to induce tutorial policies for as many KCs as possible, covering every KC that
was involved in at least one tutorial step. However, these KCs were not equally important.
For example, in a domain such as physics, the domain principles are more challenging and

important than other KCs. Consider, for example, KCs 23 and 20:

K Cs3: The unit for energy is the Joule (J).

1

imv?, where m is the

KCy: If an object is moving, then its kinetic energy at a time is

objects mass and v is the magnitude of the object’s instantaneous velocity.

In domains such as physics, solving a problem requires producing an argument, proof
or derivation consisting of one or more inference steps; each step is the result of applying a
domain principle, operator or rule. Here K (Y is one of the major domain principles, i.e.
the definition of Kinetic Energy, while K Cs3 is not a major principle. Therefore, KCs is
more important than the latter in that the student’s overall learning performance depends
more on learning a domain principle such as K Cyq and less so on K Cy3. Additionally, clearly
Ky is a complex principle with a non-trivial cognitive load while K Cy3 is an atomic fact
and thus much simpler to convey and apply.

In Study 2 the ECRs of the KC-based tutorial tactics for K Cy3 are 42.45 on ET decisions
and 47.22 on JS decisions. Either ECR is much higher than the corresponding ECR of the
tutorial tactics on KCy: 4.81 on ET decisions and 4.29 on JS decisions respectively. So
when KCs; and Ky co-occurred in a tutorial decision step, the dialogue manager would

follow the policy for KCs3 even though Ky is a domain principle and learning it is more

101



important for students to learn the domain. Therefore, in Study 3, the decision was made
to focus only on the eight primary KCs: KC;, KC4, KCs, KCs1, KCy, KCoy, KCo &
K Csg, each of which represent a major domain principle shown in Table 4.1.

Table 6.1 compares the frequency and ratio of various tutorial decisions on the eight main
KCs among the three corpora; the last row presents the comparison over all KCs across the
three corpora. Columns 3 and 4 list the average number of ET and JS decisions per KC in
each corpus. Column 5 shows the average number of tutorial overall decisions (regardless
of whether it is ET or JS). Columns 6 and 7 present the I-ratio and J-ratio respectively.
The last column presents a t-test comparison of the students’ KC-based pre- and post-test
scores. In the last column, if students’ KC-based post-test scores were significantly greater
than their corresponding pre-test scores, then the results of the t-test were listed in the last
column. There were no cases in which students’ post-test scores on a KC were significantly
lower than their corresponding pre-test scores.

From Table 6.1, it can seen that the average number of tutorial decisions (column 5)
varies significantly across KCs: from as few as four on K'C; to more than 80 on KCy. The
average number of tutorial decisions on elicit/tell (ET) (column 3) and justify/skip-justifys
(JS) (column 4) also varies across KCs. There are only 4.05 ET decisions on KC} and more
than 70 on KCy. Similarly, there are only 3.34-3.97 JS decisions for KCs on average and
more than 16 for KCy. Overall, the ET tutorial decisions were much more frequent than

the JS ones.

6.3 KC-BASED REWARD

In Study 2, the student’s final reward was based upon his/her KC-based NLG. More specif-
ically, for each KC}, the students were divided into two groups, low learners and high
learners, according to a median split of the students’ KC-based NLGs. The high learners
were assigned a final reward of +100 while the low learners were assigned a final reward of
—100.

However, there were at least two limitations from doing this. First, there was little to
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Table 6.1: Compare Three Corpus on Eight Primary KCs

ET JS  overall I-ratio J-ratio pre-post
KO Exp 4.05 4.05 1.16 t(126) = 3.28, p = 0.0013
Dich 4.16 4.16 2.37 t(72) = 2.80, p = 0.0066
Comb | 4.09 4.09 1.33 £(200) = 4.30, p = 0.0000

KCy Exp | 795 200 9 136 0.74  ¢(126) = 1.076, p = 0.284
Dich | 838 2 900 744 095  #(72) =2.03,p = 0.0462
Comb | 811 2 9.00 349  0.80 #(200) = 2.04, p = 0.0422

KOy Exp 72.59 1536 81.53 1.04 1.21  ¢(126) = 5.38,p = 0.0000
Dich 7243 1643 82.84  0.33 0.78 t(72) = 4.45, p = 0.0000
Comb | 72.53 15.75 82.01 0.78 1.05  #(200) = 6.94, p = 0.0000

KCy Exp 33.63  16.92  60.75 1.01 1.45  ¢(124) = 3.93,p = 0.0001
Dich 49.00 16.86 59.05 1.90 0.99 t(72) = 4.30, p = 0.0001
Comb | 39.26 16.9 60.13 1.77 1.28  t(198) = 5.73,p = 0.0000

KCy Exp 30.7 334 32.06 1.02 1.34  ¢(126) = 2.39,p = 0.0184
Dich 31.32 397 3278 097 1.73 t(72) = 2.41,p = 0.0185
Comb | 30.93 3.57 32.33 1.00 1.50  #(200) = 3.30, p = 0.0011

KCyy Exp 02.7 1548 60.45 1.05 1.52  ¢(124) = 3.92,p = 0.0001
Dich 4897 15.89 60.24 0.40 0.58 t(72) = 3.11, p = 0.0027
Comb | 51.34 15.63 60.38 0.81 1.18  ¢(198) = 4.99, p = 0.0000

KCy Exp 2145 483  23.89 1.10 1.32  (126) = 4.52,p = 0.0000

Comb | 21.62 4.75  23.83 1.02 1.47  t(200) = 4.67,p = 0.0000

)=
)=
Dich | 21.92 462 23.73 089 175  t(72) =1.99,p = 0.051
)=
)=

KCy Exp 142 406 16.58 1.06 1.58  ¢(126) = 1.911,p = 0.058
Dich 1419 5.14  18.32 3.58 0.69 t(72) = 1.82,p = 0.07
Comb | 14.20 4.46  17.22 1.98 1.24  t(200) = 2.61,p = 0.0099

Overall Exp 273.89 56.61 305.48 0.99 1.19  ¢(126) = 3.32,p = 0.0012
Dich | 270.54 58.43 307.57 0.79 0.77 t(72) = 2.92,p = 0.0046
Comb | 272.66 57.28 306.25 0.92 1.03  (200) = 4.40, p = 0.0000
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no differentiation between the students who learned much more than the median split and
those who were merely above the median and between those who were just below the median
and those who achieved a much lower score than the median. Additionally, the difference
between the high and low learners rewards were always 200 across all KCs, but the actually
NLG difference between the high learners and low learners varied across KCs: for example it
was 0.30 on K Cyy but 0.49 on K Cs3. It is actually difficult to compare the induced KC-based
tutorial tactics across KCs (when there were conflicting policies in multi-KC steps) in this
way, because it also depends how much difference existed between the high and low learners
on that KC. So in Study 3, instead of using a median split, the final rewards were made

directly proportional to the real NLG scores.

As described above, one primary goal in this study was to compare the NormGain tu-
toring tactics with the InvNormGain ones. For inducing NormGain policies the final reward
value was set for each d; on KCj, as: NLG k¢, x 100. That is, the student’s KC-based nor-
malized learning gain for the given KC multiplied by 100. For the KC-general policies, the
final reward for each super-dialogue d; was cumulative KC-based NLG x 100 where NLG
was the students’ learning gain as calculated based on his/her cumulative KC scores. Be-
cause NLG € (—o0, 1], the maximum final reward was +100 and the minimum was —oo for
enhancing learning tutorial tactics. Therefore, the NormGain tutoring tactics were expected

to enhance students’ learning.

For inducing InvNormGain policies, the inverted final rewards were used. More specifi-
cally, for KC-specific policies the reward was set for each d; as (1 — NLG k¢, ) x 100. For the
KC-general tutorial tactics, the reward was set for each d; was: (1 — NLG) x 100. Because
(1 - NLG) € [0,+00), the maximum final reward was +oo and the minimum was 0. So
the induced InvNormGain tutoring tactics were expected to enhance the reward for tutorial

actions that contributed less or nothing to the students’ learning.
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6.4 STATE REPRESENTATION

As described in Chapter 3, the issue of state representation can be divided into four sub-
issues. They are 1) defining the potential feature choices in state representation; 2) capping
the number of features included in each policy; 3) discretizing the features appropriately;
and 4) determining feature selection procedures. Compared to Study 2, several changes were
made in state representation. The number of features was expanded, and the maximum
number of features that could be included in a policy were also increased. In addition, a
different method on feature discretization was adopted, and more general feature selection
approaches were explored. How these four sub-issues were addressed in Study 3 is discussed

below.

6.4.1 Sub-issues 1: Feature Choices

In Study 2, 18 features were defined in four categories. One of major concern in Study 2
was that the 18 feature choices might not represent the state well enough. For example,
all three autonomy features were based on the number of elicits or tells the tutor gave to
that point in the session. However, the number may also depend on how much a student
said so far rather than the number of times the student input. Two tutorial dialogues can
have the same number of elicit/tells, but a student who generated a lot of words in his/her
entry generally did more work than another student who only generated one or two words
per turn. Therefore, the first motivation in Study 3 was to include more features in each
category so that it would represent the dialogue states better.

The second motivation was to expand the number of categories. In addition to the four
categories proposed in [Moore et al., 2004], two other categories were included that had been
suggested by the previous literature. For example, previous research indicated that there
was the learning difference between genders [Coley, 2001, Gallagher, 2001, Quek et al., 2002].
Additionally, we have shown that other background information such as MathSat score can
predict a student’s learning in math and science [Chi and VanLehn, 2008]. Therefore, a new

category of features that included certain background information was added. The category
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was named Background Features.

Additionally, previous analyses by Litman’s group have shown that simple linguistic
features computed from the students’ contributions to the tutorial dialogue are correlated
with learning. Forbes-Riley et al. [Forbes-Riley et al., 2007], for example, discovered that the
number of times a student mentioned a physics concept and the number of physics concepts
involved in a student’s dialogue were significantly correlated with learning. Additionally, in
[Purandare and Litman, 2008] the authors identified several additional features that can be
used to predict learning gains. These include the number of physics concepts mentioned in the
student’s turn, the concept-to-word ratio, the number of student turns with physics concepts,
and so on. Therefore, a new feature category was added that describes the characteristics of
dialogue generated by students. This category was named Student Dialogue Features.

In a word, feature choices were expanded from four categories and eighteen features in
Study 2 to six categories and fifty features in Study 3. The categories are: amount of the
work that the tutor has let the student perform (Autonomy); time-related tutorial contex-
tual information (Temporal situation); contextual information about the solution process
( Problem Solving Contextual features); the student’s current performance (Performance);
background information about the student (Background); and semantic information about
the students’ tutorial dialogues (Student Dialogue). All of these features are static infor-
mation, or can be computed in real time as the student works. The individual features are

described below.

6.4.1.1 Autonomy — five features Autonomy Features relate to the amount of work
performed by the student in the dialogue. All five autonomy features end with an ‘A’ in their
name and are numeric. Three of the five were included in Study 2 while two of the features,
stuWordsToTuWordsA and stuWordsToTuWordsSessionA, are new. In the following, the
label “**” is used to represent that the feature is a new feature and was not included in the

state choice in Study 2.

1. tellsSinceElicitA: The number of tells the student has received since the last elicit
prompt, irrespective of the KC involved. This feature reflects how active a student is

right now.
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2. pctElicit A:The percentage of elicit/tell decision points compared to what the tutor has
opted to elicit during the dialogue, irrespective of KC. This feature reflects how active a
student is overall.

3. stuWordsToTuWordsA** : The ratio of student-generated words to tutor-generated
words over the entire tutoring history, regardless of KCs. This feature also reflects how
active a student is overall, but it uses the words ratio. This is because when two students
receive the same percentage of elicits, a student with higher stuWordsToTuWordsA is
assumed to be more active than the one with lower stuWordsToTuWordsA.

4. stuWordsToTuWordsSessionA**: The ratio of student-generated words to tutor-
generated words in this session regardless of KCs. This feature also reflects how active a
student is in this session by using the words ratio between the student and the tutor.

5. pctTellsKCSessionA: The percentage of tells received this session for the given KC,

K. This feature reflects how active a student is on a specific KC in this session.

6.4.1.2 Temporal Situation — three features Temporal Situation Features encode
time-related information about the problem-solving process. All three temporal situation

features end with a ‘T’ and are numeric. All three were included in Study 2.

1. durationKCBetweenDecisionT: Time since the last tutorial decision was made on
the current KC. This feature reflects how active a student’s knowledge of the current KC
is. If “durationKCBetweenDecisionT” is high, it means that the tutor has not mentioned
the KC recently so the student’s knowledge on the current KC may be still.

2. TimeInSessionT: The total time spent in the current session. This feature reflects a
student’s fatigue level.

3. TimeBetweenSessionT: The time elapsed between the end of the previous session and
the beginning of the current one. This feature reflects how likely a student has forgotten

what they learned in previous sessions.

6.4.1.3 Problem Solving Contextual — fifteen features Problem Solving Contex-
tual features encode information about the current problem-solving context. All fifteen

problem solving-related features end with ‘PS.” In Study 2, we included five features in this
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category (The first five features listed below — without “** ” in their names). However,
there are certain features that are important to describe the context of the tutorial decisions
which were not previously included. Thus, this category primarily consists of 10 new feature
choices that the author believes will represent the tutorial context. The selection of these fea-
tures was informed by prior research. For example, previous research suggests that whether
to tell or to elicit should depend on the student’s current competence and how difficult the
knowledge is. Therefore, a new feature was included, “conceptDifficultyPS”, to describe
the tutorial questions’ difficulty level. Moreover, [Purandare and Litman, 2008] found that
the number of concepts introduced by the tutor per-turn correlates with students’ learning,
so the features tutAverageConceptsPS** and tutAverageConceptsSessionPS** were in the

following list:

1. EarlyTrainingP$S: For the first three problems, the value is 0 and for the later four
problems, the value is 1. This feature reflects how well a student might get used to the

tutoring system.

2. SimpleProblemPS: The first three problems are categorized as simple problems since
solving them involves only one domain principle; the next two are medium; and the final
two are complex. This feature reflects the complexity of the training problems’ problem

solutions.

3. DuringWalkThroughPS: For each training problem, the tutorial dialogues followed a
two-stage procedure: first problem solving followed by a post-problem discussion. This
feature describes whether a tutorial decision occurred during the problem solving or

post-problem discussion.

4. nKCsPS: The number of times the present KC has occurred in the current tutorial

dialogue. This feature reflects overall how familiar the student is with the current KC.

5. nKCsSessionPS: The occurrences of the current KC in the tutorial dialogue in this
session so far. This feature reflects how many times the student has accessed the current

KC in this session.

6. newLevelDifficultyPS**: If the current problem is more complex than the prior prob-

lem (i.e. we have crossed a boundary from simple to medium or medium to complex).
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This value is 1 for P1, P4, and P6 and 0O for the rest. If a problem is much more difficult
than its predecessors, it might take a student long time to learn the problem.

. conceptDifficultyPS**: The current question’s difficulty level. This feature is roughly
estimated from the combined training corpus of Exploratory and DichGain Corpus. For
each tutorial decision step, we count the number of times the tutor decided to elicit the
answer from the students from the combined corpus and represent it as #elicit. Then
among all these occurrences, we count the number of occurrences of correct answers in
the corpus and represent it as #correct; the number of occurrences of incorrect answers
as #incorrect; the number of occurrences that students’ simply did not answer the
tutor’s question by input “I do not know” as #unknown, and finally, the number of
occurrences of partially correct answers as #partial. A partial correct answer refers to a
correct but incomplete answer; for example, to calculate the value of the Kinetic Energy
of the rock at Ty in P4, sometimes a student’s answer was “1.2” instead of “1.2J”. The

conceptDifficultyPS was calculated by

0.0 * #correct + 1.0 x (#incorrect + #unknown) + 0.5 x #partial
#elicit

concept Dif ficulty =
(6.1)
ConceptDifficulty is always in the range of [0, 1]. If conceptDifficulty =1, it means it is
a difficult question, whereas if it is close to 0, it means it is an easy question.
. QuantitativeDegreePS**: This feature measures how quantitative the tutorial action
is. When the value is 1, it indicates the tutorial action is purely quantitative; when it
is 0, it is purely qualitative. When it is in the middle, then it is mixed. For example,
Line 4 in Figure 1.2 is a quantitative step since the tutor asks about the name of the
principle to apply to solve for K Ej, while Line 6 in Figure 1.2 is a qualitative step since
the tutor asks the student “Would the direction of vy affect the rock’s kinetic energy at
To?”. For some decision steps, both types of discussion are involved. For example, in
a post-problem discussion, the tutorial decision step was about what physics quantities
the Kinetic Energy depends on. A correct answer should look like From KE:%mvz. We
can infer that the Kinetic Energy of an object at time point T is influenced by the mass

of the object and its magnitude of velocity at T. This is both a quantitative step in that
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11.

12.

13.

14.

15.

students need to know the formula of kinetic energy and it is also a qualitative step in
that they need to know what the variables represent here, especially that v only refers to
the object’s magnitude of the velocity at time T, which does not include the direction.

So for this tutorial decision step, the QuantativeDegreePS is 0.5.

. numPhysConceptsTutorDialogueSessionPS**: The number of tutor’s physics con-

1'in this session so far. These physics concepts were identified and generated by

cepts
the two domain experts and knowledge representations (not the author); these are the

key words and physics concepts in the domain of work and energy.

tut AverageConceptsPS**: The average number of a tutor’s physics concepts in each
turn. This feature reflects how many physics concepts the tutor has mentioned so far
and how important the tutor’s turns might be. The more frequently physics concepts
showed in tutor’s turns, the more likely students might learn from these previous tutor’s

turns.

tut AverageConceptsSessionPS**: The average number of physics concepts in each
tutor’s turn in this session. This feature reflects how important the tutor’s turns might

be in this session.

tutConceptsToWordsPS**: The ratio of physics concepts to the words that have been
used in the tutor’s turn. This feature also reflects how often the tutor has mentioned

physics concepts overall.

tutConceptsToWordsSessionPS**: The ratio of physics concepts to the words that
have been mentioned in the tutor’s turn in this session. This feature also reflects how

often the tutor has mentioned physics concepts in this session.

tut AverageWordsPS**: The average number of words in the tutor’s turn. This fea-

ture reflects how verbose the tutor is overall.

tut AverageWordsSessionPS**: The average number of words in the tutor’s turn in

this session. This feature reflects how verbose the tutor is in the current session.

L “Physics concepts:” A word is a physics concept if it is one of the following: ’scalar’, 'vector’, 'mass’,

‘displacement’, 'velocity’, ’acceleration’, ’gravitation’, ’gravity’, "force’, 'weight’, 'normal’; ’friction’, system’,

‘isolated’, 'non-isolated’; ’kinetic’, ’energy’, ’potential’, 'total mechanical’, ’gravitational’, ’spring’, 'tme’,

‘spe’, 'ke’, 'gpe’, 'conservation’, 'non-conservation’, 'work’, 'network’, 'net’, ’direction’, 'perpendicular’.

)
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6.4.1.4 Performance — twelve features Performance Features describe information
about the student’s performance during the training. All twelve performance-related features
end with “PM.” In Study 2, seven features were included (listed as the first seven in below).
Five of the twelve features in this category are new for Study 3. Most of the original seven
features defined here described a student’s overall performance to that point. However, a
more accurate description of his/her performance should be based upon a student’s more
recent capability or performance. Therefore, five performance features have been added

which measure students’ more recent performance — in the session so far.

1. pctCorrectPM: We compute this by assessing all of the correct KCs in students’ entries
divided by the total number of KCs in the students’ entries. This feature reflects the
student’s overall competence when only elicits are counted as learning opportunities.

2. pctOverallCorrectPM: We compute this by assessing all of the correct KCs in stu-
dent’s entries divided by the total number of KCs shown in both the tutor’s entries and
the student’s entries. This feature reflects the student’s overall competence, when both
elicits and tells are counted as learning opportunities.

3. nCorrect KCPM: The absolute number of correct responses on the current KC in the
student’s entries. This feature reflects the student’s overall competence on the current
KC' by measuring how many times the student have given correct responses on the KC.

4. pctCorrect KCPM: We compute this by assessing all of the correct cases on the present
KC in the student’s entries divided by the total number of cases the present KC showed
in the student’s entries. This feature reflects the student’s overall competence on the
current KC when only elicits on the KC are counted as learning opportunities.

5. pctOverallCorrect KCPM: We compute this by assessing all of the correct cases on the
present KC in the student’s entries divided by the total number of cases on the present
KC in both the tutor’s and the student’s entries. This feature reflects the student’s
overall competence on the current KC when both elicits and tells that involve the KC
are counted as learning opportunities.

6. pctCorrect KCSessionPM: We compute this by assessing all of the correct cases on
the present KC in the student’s entries in this session divided by the total number of

cases on the present KC in the student’s entries in this session. This feature reflects the
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11.

12.

student’s competence on the current KC in this session when only elicits on the KC in

this session are counted as learning opportunities.

. nIncorrect KCPM: The number of incorrect student responses on the current KC since

the start point. This feature reflects the student’s overall incompetence on the current

KC.

. nCorrectKCSessionPM**: The absolute number of correct responses on the current

KC in the student’s entries in this session. This feature reflects the student’s incompe-

tence on the current KC in this session.

. pctCorrectSessionPM**: We compute this by assessing all of the correct KCs in the

student’s entries in this session divided by the total number of KCs in the student’s
entries in this session. This feature reflects the student’s overall competence across all
KCs in this session when only elicits in this session are counted as learning opportunities.
pctOverallCorrectSessionPM**: We compute this by assessing all of the correct
KCs in the student’s entries in this session divided by the total number of KCs shown in
both the tutor’s entries and the student’s entries in this session. This feature reflects the
student’s overall competence across all KCs in this session, when both elicits and tells in
this session are counted as learning opportunities.

pctOverallCorrect KCSessionPM**: We compute this by assessing all of the correct
cases of the present KC in the student’s entries in this session divided by the total number
of cases of the present KC in both the tutor’s and the student’s entries in this session.
This feature reflects the student’s overall competence on the current KC in this session
when both elicits and tells that involve the current KC in this session, are counted as
learning opportunities.

nIncorrect KCSessionPM**: The number of incorrect student responses on the cur-
rent KC in this session. This feature reflects the student’s overall incompetence on the

current KC in this session.

6.4.1.5 Background — five features As described above, previous research has shown

that certain background features describe general information about the student’s ability to

learn. Five Background Features, such as the student’s pre-test scores, have been included.
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None of these features change during problem solving. All five background features end with
“BG.” All features in this category are new features which were not incorporated into Study
2. One important note was that for DichGain group, the following features, genderBG,
ageBG, MathSatBG, and VerbalSatBG, were not available because of the administrative

error.

1. genderBG**: The student’s gender. It may be the case that the effectiveness of tutorial
policies depends upon differences in gender. For example, male students might learn
better by answering the questions, while female ones might learn better by reading the

information.

2. ageBG**: The student’s age. This feature reflects how much school experience the

participant might have.

3. MathSatBG**: The student’s math SAT scores. This feature reflects the participant’s

math skill since the physics domain is a math-related domain.

4. VerbalSatBG**: The student’s verbal SAT scores. This feature reflects the partici-

pant’s reading skill since the selected domain also has a lot qualitative discussions.

5. pretestBG**: The student’s pre-test scores. This feature reflects the participant’s

competence in physics before he/she starts the training session.

6.4.1.6 Student Dialogue — ten features This is also a new category. It describes
the characteristics of the entries input by students. These are simple linguistic features that
are computed from the student’s part of the tutorial dialogues. These features were inspired
by previous work on tutoring. Forbes-Riley et al., for example, discovered that the number of
times a student mentioned a physics concept and the number of physics concepts involved in
the students’ dialogue were significantly correlated with learning [Forbes-Riley et al., 2007].
Additionally, Purandare and Litman, identified several additional features that can be used
to predict learning gains: the number of physics concepts mentioned in the students’ turn,
the concept-to-word ratio, the number of the student’s turns with physics concepts, and so

on [Purandare and Litman, 2008].
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. averagePhysConceptsStudentDialogueSD**: The average number of physics con-

cepts mentioned per student turn since the training started. This feature reflects how

physics-like the student-generated answers have been since the beginning of the training.

. numStudentConceptualDialogueSD**: The number of the student’s turns that in-

cludes at least one physics concept. This feature reflects how many times the student-

generated answers included at least one physics concept.

. stuConceptToWordRatioSD**: The ratio of physics concept words to total words

in the student’s turns. This feature also reflects how physics-like the student-generated

answers have been since the beginning of the training.

. stuAverageWordsSD**: The average number of words per student turn. This feature

also reflects how verbose the student was overall. It might also reflect how active the

student was.

. stuAverageConceptSD**: The average number of the student turns that involve at

least one physics concept. This feature reflects how often the student’s answers involved

at least one physics concepts since the start of the training.

. averagePhysConceptsStudentDialogueSessionSD**: The average number of physics

concepts mentioned per student turn in this session. This feature reflects how physics-like

the student-generated answers are in this session.

. numStudentConceptualDialogueSessonSD**: The number of the student turns

that mention physics concepts in this session. This feature reflects how many times the

student- generated answers included at least one physics concept in this session.

. stuConceptToWordRatioSessionSD**: The physics concepts to words ratio per

student’s turn in this session. This feature also reflects how physics-like the student-

generated answers are in this session.

. stuAverageWordsSessionSD**: The average length of student turns in this session.

This feature reflects how verbose the student was in this session, and it might also reflect

how active the student was in this session so far.

stuAverageConceptSessionSD**: The average number of student turns which in-

volve at least one physics concept over all the student turns in this session. This feature
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reflects how often the student’s answers involved at least one physics concepts in this

session.

6.4.1.7 Simplified Example of Deriving Fifty Features from Log Files. Similar
to Chapter 5, the same sample tutorial dialogue in Table 5.1 were transformed into fifty
features for inducing tutorial tactics on K Cy. I attach how the 50 features were updated as

the sample dialogue in Table 5.1 goes on in the Appendix L.

6.4.2 Sub-issues 2: Maximum Number of Features

In Study 2, the maximum number of features was capped at four because of the four cate-
gories. The effect of this was that the maximum number of features involved in the induced
tutorial tactics was limited to only one. It is quite possible, however, that for some KCs
there was more than one feature from one category that should have been included in the
state representation. Therefore, in Study 3, no limit was set for the number of features that
each category could contain, nor was a requirement set that there needed to be a feature

from each category.

In order to determine the maximum number of features in the induced policy, it is
necessary to consider the amount of available data and available computational power. In
the worst case scenario, there were only 2 JS tutorial decision steps in the DichGain training
corpus for KCq4. In order to learn effective tutoring tactics, we should have a corpus that
covers each of these states at least once. Therefore, based on the minimum data available
from the three training corpus for KC'4, we capped the number of features in each policy at
six, which means that there are at least 2° = 64 states in the learned policy. Alternatively,
we could have used a flexible number for different KCs. However, given that six features
would already result in very subtle policies, as shown in Table 6.5, it is not the case that
learned tutorial tactics with six features were most effective. Instead the final induced policies
primarily have 3-5 features in their state representation, and only two of 34 final tactics have

six features. So it appears that six is a reasonable number for this study.
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6.4.3 Sub-issues 3: Feature Discretization

Five of the fifty features, EarlyTrainingPS, SimpleProblemPS, DuringWalkThroughPS, gen-
derBG, and newLevelDifficultyPS are discrete. The remaining forty-five features are numeric
and must be discretized before a suitable MDP can be constructed. Previously, in Study 2
a median split was implemented. For the present study, a more complicated procedure was
adopted. The discretization procedure in Study 3 used two clustering procedures, one based
upon bounding the number of clusters, and the other based upon identifying the optimal

cluster means.

For each of the continuous valued features, the ideal number of clusters was identified
using a TwoStep package embedded in SPSS. TwoStep clustering is a scalable cluster analysis
algorithm designed to handle very large datasets. It is capable of handling both continuous
and categorical variables and attributes. Its key advantage is that it can find the optimal
number of clusters when the ideal value is unknown. Once the proper number of clusters
has been determined, it is possible to apply more traditional K-mean methods to identify
the contents of each cluster. After the clusters and their mean values were identified, the
clusters were ranked by value, assigned the student values, and discretized according to

cluster membership.

Although the median split in study 2 may not have been optimal, it capped the number
of possible values for each state feature at two. By using the automatic procedure, it is highly
likely that each feature it would have been discretized into many clusters. Increasing the
number of possible values in a state would increase the number exponentially. For example,
the application of the TwoStep package to stuAverageConceptSD from the Exploratory
training corpus on K Cy resulted in seven clusters. If each feature has seven possible values,
for a six-feature policy, it would have 75. In order to control the number of possible values,
the maximum number of discrete values for each feature was set at four. However, this
procedure is still risky in that it can generate small clusters containing at most a handful of
data points. This can then lead to problems of data sparsity during the RL phase. These
two problems were addressed by adding a reduction loop to the procedure. If any given

cluster within a set contained less than 20% of the total cases after K-means clustering took
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place, then the number of clusters was reduced by one and the K-means algorithm was run
again. This process was repeated until all clusters exceeded the 20% threshold.
If this requirement could not be met, then the feature was discretized through a median

split. A Pseudo-code representation of the algorithm is shown below:

1. for each feature choice f;:

2 Step 1: Count the clusters numCluster by applying two-step clustering approach
3 Step 2: Via k-means clustering, discretize the feature f; into num Cluster clusters.
4 Step 3: if one cluster has less than 20% cases:
5. Step 4: if numCluster =2:
6 Step 5: median split

7 Step 6: else:

8 Step 7: numCluster = numCluster — 1
9 Step 8: Go to Step 2.

For example, by running this procedure, the system performed a median split on “stu-
AverageConceptSD” so that values in the range of 0 to 0.228395 is 0 and values in the range
of 0.228395 to 1 is 1 (The feature choices were normalized in this dissertation). Finally, the
number of clusters for each feature ranged from, at minimum, two clusters to as many as

four.

6.4.4 Sub-issues 4: Feature Selection

In Study 2 a simple greedy-feature selection method was used. The procedure was repeated
later, using the same Exploratory Corpus, the same 18 features and the discretization pro-
cedure, rewards and so on. The only difference was that some new feature selection methods
were applied. Results showed that by simply changing the feature selection methods, the
induced policies had a much higher ECR than the ones used in Study 2. Recall that the
ECR was the criteria for picking the best policies [Chi et al., 2008a]. For example, the pol-
icy m(KCa, ET) used in study 2 previously had an ECR of 9.40. Under the new feature
selection methods, the policy (K Csy, ET)* had an ECR of 44.29, almost four times higher.

Therefore, in Study 3 a more complex set of eleven feature-selection approaches were
explored. The domain general feature selection methods were the main ones explored, and by
doing so, the relationships among the features were neglected. For example, a domain-specific

feature selection approach could only select features that correlated with NLG. However, by
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doing so, most of the problem-solving contextual features would never be considered such as
DuringWalkThroughPS, EarlyTrainingPS, and so on.

Almost every approach described below involved inducing single-feature policies first.
That is, for each of the fifty feature choices, the RL package was used to induce a single-
feature-policy. Because generating single-feature policies does not involve any feature se-
lection procedure, such policies were labelled as “single”. In the following, the focus is on
using feature selection to select at least two features in a policy. To differentiate from the
single-feature policies, the policies induced through feature selection were labelled as non-
single-feature policies. In short, Study 3 explored eleven feature-selection methods to induce
non-single-feature policies. Four of the approaches were based upon RL (Upper_Bound,
Lower_Bound, ECR, and Hedge) used in the previous studies [Chi et al., 2008a] ; one was
based on Principal Component Analysis (PCA) (PCA-only); four were combinations of PCA
and RL (PCA-Upper_Bound, PCA-Lower_Bound, PCA-ECR, and PCA-Hedge); while the fi-
nal pair were based upon stochastic selection (Random and PCA-random).

In the following, (K C;, D;, NormGain) and 7(KC;, D;j, InvNormGain), are used to
represent a NormGain and an InvNormGain KC-based policy on KC; for tutorial decisions
D; respectively. Here D; € {ET, JS}, KC* is used to represent KC-general policies, and
KC; € {KCy, KChy, KCo, KCy1, KCa, KCyy, KCo7, KCos, KC*}.

6.4.4.1 RL-based Feature Selection As described in Chapter 3, after being given
a complete MDP structure, the Tetreault and Litman’s toolkit would calculate a policy
together with the policy’s ECR and 95% CI [Tetreault and Litman, 2008]. Lower-Bound
and Upper-Bound were used to refer to the 95% confidence bounds calculated for the
ECR. For example, a final tutorial tactic in Study 3 7(KCi4, ET, NormGain) was based
on feature: durationBetweenDecisionT alone which is derived from the combined corpus.
(K Chy, ET, NormGuain) states that “if the duration since last the tutorial decisions on
Ky is less than 160.07 sec, then the tutor should elicit.”; 7(KChy, ET, NormGain) has
ECR = 9.99 (range [—o0, 100]) with a 95% confidence interval= [9.85, 10.06], which means
there is a 95% chance that the ECR of the learned policy is between a lower-bound of
9.85 and an upper-bound of 10.06. Another 7(KChy, ET, NormGain)* was based on the
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feature conceptDifficultyPS and is derived from training the Exploratory Corpus; it states
that: “if the current tutorial decision step is easy (< 49.53%), then the tutor should elicit.”
7(KCy, ET, NormGain)* has ECR = 1.19 with a 95% confidence interval = [0.03, 3.39].
To this point ECR has always been used as the criteria for selecting the best poli-
cies. However, the policy’s Lower-Bound or Upper-Bound can also be used as the crite-
ria. More specifically, the former evaluates the performance of policies in the worst case,
while the latter describes how well the policy can perform. As in the example above,
7(KChy, ET, NormGain) is more effective than policy 7(KChy, ET, NormGain)* because
even its Lower-Bound is much higher than policy 7(K Cy4, ET, NormGain)*’s Upper-Bound.
Sometimes researchers encounter situations in which the ECR for Policy A is the same as
the ECR for Policy, B, but the confidence interval of A is much narrower than that of B.
In this case, a new criterion, Hedge, can be applied to compare the two policies. Hedge is

defined as a learned policy:

ECR

Hedge =
cage Upper Bound — Lower Bound

(6.2)

By applying Hedge, policy A is shown to be more effective than policy B. Any of these
criteria, ECR, Lower-Bound, Upper-Bound, or Hedge can be used to evaluate policies, and
thus they are used as four different criteria for feature selection. These feature-selection
methods are fairly straightforward and use the same general procedure, described below.

For each ranking metric in [ECR, Lower-Bound, Upper-Bound, Hedge]

1. For each of the 50 feature choices, use the RL package to induce a single-feature-policy.
2. Rank the policies in descending order based upon the ranking metric.
3. Fori=2to6

Pick the top i features from the ranked list and construct an MDP using them for the

state representation.
Induce a policy for that MDP and set it aside.

These feature-selection metrics based upon the sorting criteria used: ECR, Lower-Bound,
Upper-Bound, and Hedge respectively. These are RL-based methods as the feature selection
procedures all use the policy ECR to identify optimal feature choices. For each of the ranking

metrics, the above procedure resulted in five lists of policies and resulted in twenty policies
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that involved at least two features in the state representation for each KC on each type of
tutorial action decision from each corpus.

Here is an example which applies the Upper-Bound feature selection for deriving poli-
cies on K (4 for the ET decision from the Exploratory Corpus. First, from the fifty fea-
tures fifty single-feature policies were learned: 7, ---, m5. Then the fifty single features
were sorted based on the upper-bound of its corresponding single-feature policy. Then the
first six features were selected for which the corresponding single-feature policies had the
highest upper-bounds. In this example, the six selected features are in the order of fre-
quency: {durationBetweenDecisionT, numPhysConceptsTutorDialogueSessionPS, nKCsPS,
nKCsSessionPS, nIncorrectKCSessionPM, tutAverageWordsSessionPS}. For the first fea-
ture, “durationBetweenDecisionT” a single-feature policy has already been learned, so the
process begins with the second one. The process used is to learn a two-feature policy based
on the first two features: “durationBetweenDecisionT, numPhysConceptsTutorDialogueSes-
sionPS”, and then a three-feature policy based on the first three features: “durationBetween-
DecisionT, numPhysConceptsTutorDialogueSessionPS, nKCsPS”, and so on. The most com-
plicated policy to be learned would be a six-feature policy which includes all six features in
the state. Therefore, for KCj4 on ET tutorial decisions, five non-single-feature tutorial

tactics were induced by following the Upper-Bound feature from each training corpus.

6.4.4.2 PCA-based Feature Selection Given the data sparsity problems that most
machine learning techniques face, an ideal state representation should have as few features
as possible while still being rich enough to represent the domain accurately. Unfortu-
nately, some of the features available in this study were highly correlated which reduced
their expressiveness when used together. For example, given nCorrectKCPM, the number
of correct responses on the current KC KC}, and nlncorrect KCPM, the number incorrect
responses on K (Y} generated by the student, pctCorrect KCPM, the percentage of correct
responses given by the student on KC} could easily be calculated as: pctCorrect KCPM =

nCorrect KCPM
nCorrect KCPM+nlIncorrect KCPM *

Therefore, it was necessary to apply an analysis procedure to
avoid redundant features. One such procedure explored in this thesis is Principal component

analysis (PCA) [Jolliffee, 2002].
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PCA is a mathematical procedure that transforms a large number of, possibly correlated,
variables into a smaller number of uncorrelated variables called principal components. It is
a popular dimensionality-reduction technique as it is simple, non-parametric, unsupervised,
and has been applied successfully in a number of domains. More formally, given a list of
n — dimension variables, PCA extracts a reduced set of p (p < n) principal components or

factors that account for most of the variance present in the original set.

This is done by first extracting n principal components from the original n variables. Each
component is a linear combination of the variables. Formally, it results in a set of n linear
equations with n unknown variables. In other words, PCA repackages the original variables
into an equal number of uncorrelated principal components. The first of these components
accounts for the largest possible amount of variance. The second component, which attempts
to explain the variance remaining after the first component has been extracted, accounts for
the second largest amount of variance, and so on. As the components are extracted they are
restricted to be orthogonal. Geometrically, they may be viewed as defining an n-dimensional

space.

The variance in this correlation matrix is “repackaged” into a set of n eigenvalues, one
for each principal component. Each eigenvalue represents the amount of variance covered
by its associated component. Thus the first eigenvalue accounts for the largest share of
the variability with each one accounting recursively for the largest share of the remaining
variability once its predecessors are accounted for. Each of the n variables’ variance is
normalized to 1. Each component’s eigenvalue may be compared to this standard value to
determine how much more or less variance it accounts for than a single variable. With n
variables there is a total of n variance to distribute. The extracted components, like the set of
variables, account for all of this variance collectively. The proportion of variance accounted

for by one component equals its eigenvalue divided by n.

Typically, the goal was to derive a set of less than n components. When a set of p out
of the variables share a considerable amount of variance, then p < n components will have
relatively large eigenvalues, while the rest will have substantially smaller eigenvalues. In this
situation what needs to be determined is how many components will be retained and how

many will be discarded. One rule of thumb is to drop any component with an eigenvalue
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of less than 1, that is, any component that accounts for less variance than a single variable.
Having done that, the n — dimensional space defined by the original variables has been

reduced to a p — dimensional component space that still covers the bulk of the variance.

In this study, initially, all fifty feature choices were normalized. PCA was then applied
to the normalized features to generate fifty principal components and their correspond-
ing eigenvalues. These eigenvalues were arranged in descending order, and all components
whose eigenvalues were less than 1 were removed. For each eigenvalue, the feature that
was maximally correlated with the corresponding principal component was identified. The
resulting features were a subset of the original fifty feature choices that were designated the
PCA-feature subset. PCA-feature subset is an ordered list arranged by the eigenvalues of
its corresponding principal components. Results showed that the number of PCA-features

selected for each KC varied from eight to thirteen.

Once the PCA-feature subset was identified, the PCA-only feature selection procedure
was straightforward. It began with the first feature in PCA-feature subset and added one
feature at a time to the MDP and learned a new policy. This process was repeated five
times.

Here is an example. After running PCA on a list of 50 — dimension feature variables
exacted from the Exploratory Corpus for inducing KC-general tutorial tactics on elicit/tell,
a reduced set of thirteen principal components whose eigenvalues were bigger than 1 was ex-
tracted. They were ordered by their corresponding eigenvalues as shown in Table 6.2. In that
table, the second column shows the eigenvalues of the corresponding components arranged
in decreasing order. Specifically, eigenvalues decreased from 6.59 for the first component
to 1.11 for the 13th component. The third column represents the cumulative eigenvalues.
For example, the last row of the third column is 81.42%, which means these 13 principal
components have 81.42% of the total information provided by the original fifty variables.

For each principal component, one feature with the highest correlation with the com-
ponent was extracted. In this instance, “pretestBG” (the students’ pre-test score) is se-
lected for the first principal component, SimpleProblemPS (whether the current problem
students are working on is a simple problem or not) as the second principal component,

and so on. The corresponding correlation value is listed in the last column. So our PCA-
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Table 6.2: An Example PCA Feature Set from the Exploratory Corpus Induced for A KC-

general Tutorial Tactics

Order FEigenVals EigenCumulative EigenVar EigenCorr
1 6.589 13.179 pretestBG 0.962
2 4.858 22.894 SimpleProblemPS 0.933
3 4.746 32.387 nKCsSessionPS 0.939
4 4.416 41.218 stuAverageWordsSD 0.912
5 4.304 49.827 tut AverageConceptsSessionPS 0.859
6 3.626 57.08 pctCorrectSessionPM 0.882
7 3.601 64.283 stuConceptToWordRatioSessionSD 0.866
8 2.555 69.393 MathSatBG 0.914
9 1.357 72.107 newLevelDifficultyPS 0.871
10 1.205 74.516 pctElicit A 0.618
11 1.202 76.919 QuantativeDegreePS 0.868
12 1.141 79.202 conceptDifficultyPS 0.578
13 1.11 81.421 durationBetweenDecisionT 0.763

feature subset is simply the collection of the thirteen features in column 4, sorted by the
corresponding eigenvalues, which is pretestBG, SimpleProblemPS, nKCsSessionPS, stuAver-
ageWordsSD, tutAverageConceptsSessionPS, pctCorrectSessionPM, stuConcept ToWordRa-
tioSessionSD, MathSatBG, newLevelDifficultyPS, pctElicitA, QuantativeDegreePS, concept-
DifficultyPS, durationBetweenDecisionT.

For PCA-only feature selection, the researcher started with a single feature policy,the
first Eigen Variable pretestBG here, then a two-feature policy by using the first two Eigen
Variables: pretestBG, SimpleProblemPS, and so on. The most complicated policy would be
a six-feature policy (because the maximum number of features in a policy was capped at

six) by using the first six FEigen Variables: pretestBG, SimpleProblemPS, nKCsSessionPS,
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stuAverageWordsSD, tut AverageConceptsSessionPS, pctCorrectSessionPM, which included
one background feature “BG”, three problem state contextual features “PS”, one feature
about the student’s dialogue “SD”, and one feature about the student’s performance “PM”.

Therefore, for each KC for each type of tutorial action from each individual corpus, five

non-single-feature tutorial tactics were induced using the PCA-only feature selection.

6.4.4.3 PCA and RL-based Feature Selection Thus far, four RL-based feature se-
lection methods and a PCA-only feature selection method have been described. By simply
combining PCA-only feature selection with the four RL-based feature selection methods,
four new feature selection approaches are created. In this method, PCA is used to identify
the PCA-feature subset from the original fifty features, creating a set of available features
that have eigenvaluse greater than one. The four RL-based methods, PCA-Upper_Bound,
PCA-Lower_Bound, PCA-ECR, and PCA-Hedge are then applied as before. In effect these
combined feature selection methods are being used to winnow the set of available features,
not once, but multiple times.

Here is a summary of the procedure:

[Stage 1:] Select the PCA-feature Subset:
[Phase 1:] Apply PCA on fifty features.
[Phase 2:] Identify the set of principal components with its
eigenvalues greater than or equal to one.
[Phase 3:] For each component, identify the feature F that is most
correlated with the component.
The resulting features are the PCA-feature choices and are ranked in
the order of their eigenvalues.
[Stage 2:] Apply the RL-based approach:
For each ranking metric in [ECR, Lower-Bounds, Upper-Bounds, Hedge]
For each of PCA-feature choices, use the RL package to induce a
single-feature-policy.
Rank the policies in descending order based upon the ranking metric.

For i = 2 to 6:
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Pick the top i features from the ranked list and construct
an MDP using them for the state representation.

Induce a policy for that MDP and set it aside.

Based on the sort criteria in phase 2, four feature selection methods were named PCA-
ECR, PCA-Lower_Bound, PCA-Upper_Bound, and PCA-Hedge respectively. Similar to pre-
vious approaches, for each KC on each type of tutorial action from each individual corpus,
five non-single-feature tutorial tactics were induced by combining the PCA and RL-based

feature selection methods.

6.4.4.4 Random Feature Selections Thus far nine feature selection methods have
been introduced. In order to evaluate their relative effectiveness, a random feature selection
method was also introduced. The expectation was that the nine feature selection approaches
described above would be more effective than a random feature selection. In other words,
it was anticipated that the final tutorial tactics would be induced by the feature selection
methods introduced above rather than the random feature selection. Two random feature
selection procedures were employed: Random and PCA-Random. In the former case features
were randomly selected from all fifty feature choices. In the latter case PCA-based feature
reduction was applied to reduce the set of variables to those with high variance correlations,
and then features were randomly selected from the reduced set. Here is the summary of this

procedure:

Random-selection :

For j= 1 to 2
For i = 2 to 6
Randomly select i features from fifty features.

Induce a policy for that MDP and set it aside.
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PCA-Random:

[Stage 1:] Select the PCA-feature Subset:
[Phase 1:] Apply PCA on fifty features.
[Phase 2:] Identify the set of principal components with
eigenvalues greater than or equal than one.
[Phase 3:] For each component, identify the feature F
that is most correlated with the component.
The resulting features are the PCA-feature choices and
are ranked in the order of their eigenvalues.
[Stage 2:] Random Selection:
For j= 1 to 2
For i = 2 to 6
Randomly Select i features from the PCA-feature Subset.

Induce a policy for that MDP and set it aside.

For each KC for each type of tutorial action from each individual corpus, 10 non-single-
feature tutorial tactics were induced by following either random or PCA-random feature

selection.

To summarize, for each KC; and decision (ET or JS) < KC;, D; >, three training
corpora, a space of fifty features, and eleven feature selection methods were explored. For
each K C; and decision pair one set of policy choices was collected for each training corpus.
For each corpus, there were fifty single-feature policies. Applying eleven feature selection
methods to them yielded 5 x 9 + 10 x 2 = 65 non-single-feature policies (the random and
PCA-random feature selection yielded 10 non-single-feature policies each and the remaining
nine methods yielded five non-single-feature ones each). A total of 115 potential tutorial
tactics were generated for a single KC and decision pair per training corpus. Taken together,
all three corppora resulted in a total of 115 x 3 = 445 policies for each pair < KCj;, D; >.
The best policy for < KC;, D; > was selected from this pool by ECR. For the purposes of
this study, the highest ECR irrespective of the confidence bounds or hedging was selected.
This is similar to Study 2.
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6.5 CONFLICTING POLICIES

In Study 2, a total of 21 KCs for elicit/tell decisions and 10 KCs for justify/skip-justify
decisions were considered. When faced with conflicting tutorial policies, the policy with
the highest ECR was chosen. However, in the selected domain, certain KCs are necessary
precursors for other KCs. KCyy, for example, is the definition of Total Mechanical Energy
: TME = KE+ GPE + SPE. In order to apply Ky, effectively, students need to know
the definition of Kinetic Energy, which is KCy KFE = %mv? Thus KCy is a necessary
precursor to KCyy. In Study 3, we have the ECR of 7(KCy, ET) = 14.25 while the ECR
of m(KCsy, ET) = 13.51. In some of the ET tutorial decisions that involve both KCb4 and
KCyy, KCyy, what would the major topic of discussion be, given this precursor relationship?
By following the old procedure on conflicting policies, the system would always choose the
policy with the highest ECR. In this case, the system would follow the w(K Cy, ET) because
its ECR is higher than n(KCy, ET)’s ECR, even though the KCsy, is the target topic.
Therefore, in Study 3 the focus was narrowed eight main KCs and a more complex conflict-
resolution approach was adopted. The KCs were first grouped according to three levels of
“priority” based upon the domain knowledge with “Top” being the highest and “Low” being
the lowest:

Top Level: KCy7, KCog.

Medium Level: KCyy, KChy.
Low Level: KCQO, KCQl, KCQQ, KOl.

This heuristic was built in such way that lower-level KCs are necessary precursors for the
higher level KCs. K (Cy; for example is conservation of total mechanical energy : TME1 =
TMEQO. In order to apply KCsy; effectively, students need to know about the definition of
Total Mechanical Energy, which is KCoyy TME = KE + GPE + SPE. Thus KCy is a
necessary precursor for KCy; and KCy; is not a necessary precursor for any other KCs in
the domain. Therefore we put K Cy; in the highest level: Top Level and K Cyy in the second
level: Medium Level. By always choosing the highest level KCs in a multiple-KC decision
step, we can pick the policy on the target KCs.
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When a tutorial decision involved multiple KCs, the system first collected the set of
policies at the highest level. If a tutorial decision step did not involve any of the eight major
KCs, then the system will follow the KC-general tactics. If, however, a decision step did
involve some of the eight primary KCs, then the system would poll the tutorial tactics for

KCs at the maximum rank, and will follow the policy with the highest ECR.

6.6 SUMMARY: INDUCTION OF TUTORIAL TACTICS IN STUDY 3

For Study 3 two sets of tutorial tactics were induced. The first is Normalized Gain or the
NormGain set. The second is Inverse Normalized Gain or the InvNormGain set. Both
sets were induced using the same RL procedures on the same corpora and differed only in
the reward function applied to the training corpora. The NormGain set used a positive
NLG-based reward and the InvNormGain set used an inverse of that same function.

Both the final NormGain and InvNormGain sets contained 17 policies. Thus, we have
a total of 34 policies. In each set, two out of the 17 are KC-general policies, one is an ET
policy and the other is a JS policy. The remaining 15 policies are KC-based and consist of
seven pairs of policies for seven of the eight main KCs and one policy for KC;. Each of the
seven pairs is associated with a single KC and contains one ET policy and one JS policy.
K1 does not arise in any JS decisions and thus only an ET policy was induced for it.

In order to examine a range of possible tactics for each KC; on either ET or JS tutorial
decisions < KCj;, D; >, three training corpora, a space of fifty features, and eleven feature
selection methods were used to yield 445 policies. As discussed above, the corpora were:
the Exploratory Corpus collected in Studies 1, the DichGain Corpus collected in Studies
2, and a combined corpus that merged both datasets. The fifty feature choices could be
divided into six categories as described in detail above, and eleven feature selection methods
could be applied to them. The best policy for each pair < KC;, D; > was selected from
445 policies by ECR. For the purposes of this study only the policy with the highest ECR
irrespective of the confidence bounds or hedging was selected. This selection process was

repeated for each of the 34 policies with the KC-general policies being chosen from models

128



that ignored the involved KCs. The full list of NormGain policies used in Study 3 are
shown in Appendix N and the full list of InvNormGain policies are shown in Appendix O.
They detail the policies themselves, the corpus from which they were drawn, the features
involved, their discretization ranges, the feature selection method used, the policy’s ECR
and its confidence bounds.

The resulting NormGain and InvNormGain policies were implemented back into Cordillera
yielding two new versions of the system, named NormGain-Cordillera and InvNormGain-
Cordillera respectively. Both systems applied the policies to guide tutorial decisions. KC-
based decisions were guided using the KC-based policies. Conflicts were resolved using the
ranking among the primary KCs discussed in Section 6.5. For steps that did not involve one
of the eight primary KCs, the system used the KC-general tutorial tactics.

Table 6.3 summarizes the major differences between the RL procedure used in Study 2
and that in Study 3. The RL procedures differed on all the major issues. In the next section
the discussion will focus on some general characteristics of the induced tutorial tactics.
Specifically, it will focus on the source corpus that each of 34 tutorial tactics was derived
from, the features that were involved, and which feature selection method yielded the most

tutorial tactics, and so on.
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Table 6.3: Issue-by-Issue Comparison of Studies 2 and 3

Study 2 Study 3
Aspects DichGain NormGain InvNormGain
Training Corpora Exploratory Exploratory, DichGain, & Combined
KCs: 31 KCs 8 main KCs

Features: 18 features 50 features
4 categories 6 categories
Discretization: Medium Split TwoStep first and then k-means

Feature Selection

Category-based

11 including Random; ECR; Hedge; & PCA

Max features /policy: 4 6
Reward: (NLG > median) NLG x 100 (100 — NLG) % 100
— +100;
(NLG < median)
— —100

Conflicting Policies:

Follow max ECR

Use KC ranking then ECR.

6.7 INDUCED POLICIES

In this section, the induced tutorial tactics will be described by identifying the training corpus

that each final tutorial tactic was derived from, which feature categories were most frequently

involved in the final tutorial tactics, and which feature selection method discovered the most

final tutorial tactics. The full list of policies used in Study 3 are shown in Appendix N

and Appendix O. The purpose of this section is to determine how RL-related decisions

described in the previous section had impacted the induced tutorial tactics. For example,

one decision was made to use all three training corpora, did the final induced policies come

from one corpus or from all three corpora? Moreover, which features appeared in the final




induced tutorial tactics? Which feature selection method(s) seemed to be more effective?
This section begins with a discussion of the training corpus involved in the final 34 tutorial

tactics.

6.7.1 Source Training Corpus

Table 6.4 shows which corpus was used to induce the corresponding tutorial tactics. The
second and third columns show the source training corpus used in deriving NormGain tutorial
tactics on ET and JS for corresponding KCs respectively. The fourth and fifth columns
show similar information for the InvNormGain tutorial tactics. The last three rows 10-12
summarize the number of tutorial tactics derived from each corresponding training corpus.
For example, Rows 10 and 11 show that the Exploratory Corpus and the DichGain Corpus
each generated sixteen final tutorial tactics. The Exploratory Corpus was used to generate
11 NormGain tutorial tactics (5 ET and 6 JS) and 5 InvNormGain ones (3 on ET and 2
on JS) while the DichGain Corpus was used to generate five NormGain tutorial tactics (3
ET and 2 JS) and eleven InvNormGain ones (6 on ET and 5 on JS). The combined corpus,
however, only generated one tutorial tactic each for NormGain and InvNormGain.

Table 6.4 also shows that both the Exploratory and DichGain Corpora were involved in
generating the final tutorial tactics. However, the majority of the NormGain tutorial tactics
were from the Exploratory Corpus, eleven out of seventeen, while most of the InvNormGain
tutorial tactics were from the DichGain Corpus, also eleven out of seventeen. This result
suggested that the choice of the training corpus is very important for deriving tutorial tactics.
However, it is not very intuitive to determine why most of the NormGain policies were from
Exploratory Corpus, while most InvNormGain ones were from DichGain Corpus. Future
work is needed to explore the characteristics of a training corpus and how to choose a

training corpus.
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Table 6.4: The Source Training Corpus Of the Inducing 34 Tutorial Tactics

NormGain InvNormGain

ET JS ET JS
1 KC, DichGain DichGain
2 KCi4 || Combined | Exploratory | DichGain Combined
3 KOy | Exploratory | Exploratory | Exploratory | DichGain
4 KCs | Exploratory | Exploratory | Exploratory | Exploratory
5 KCy || Exploratory | Exploratory | Exploratory | DichGain
6 KCy | DichGain | Exploratory | DichGain DichGain
7 KCs; | Exploratory | Exploratory | DichGain DichGain
8 KCy | DichGain DichGain DichGain | Exploratory
9 Overall || Exploratory | DichGain DichGain DichGain | Total
10 Exploratory ) 6 3 2 16
11 DichGain 3 2 6 5 16
12 Combined 1 0 0 1 2

6.7.2 Number of Features

Table 6.5 shows the number of the features involved in the thirty-four final tutorial tactics.
The second and third columns show the training corpus used in deriving NormGain tutorial
tactics on ET and JS for corresponding KCs respectively. The fourth and fifth columns
show the same information for the InvNormGain tutorial tactics.
distribution of sizes, that is, how many policies contained one feature, two, and so on. For
example, Row 12 in Table 6.6 shows that there were eight policies that involved three features,

four NormGain ones and four InvNormGain ones. To our surprise, only two tutorial tactics

Table 6.6 summarizes

involved six features and most of the policies involved three to five features.
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Table 6.5: The Complexity of the 34 Induced Tutorial Tactics

# KC

NormGain

ET

JS

InvNormGain

ET

JS

© o0 N O Ot = W N

KCO0
KCy
KCy,
KCy
KCyn
KCy
KCy
KCy

KOy

W

U = D W W = =

W == o Ot W ot =

W =D W O W =N Ot

4

[ S N S N G G

Table 6.6: Distribution of Policy Sizes.

NormGain | InvNormGain
# Size | ET JS | ET JS Total
10 1 2 1 1 1 5)
11 2 1 0 2 1 4
12 3 2 2 3 1 8
13 4 3 1 1 2 7
14 5 1 3 1 3 8
15 6 0 1 1 0 2
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6.7.3 Feature Choices

The total number of feature occurrences across all thirty-four tutorial tactics was 117. For
each induced tutorial tactic, the number of features involved were counted and then totaled.
If a feature occurred in several induced tutorial tactics, then each occurrence was counted
as one. More specifically, the total number of feature occurrences across the NormGain and

InvNormGain tutorial tactics was fifty-nine and fifty-eight respectively.

6.7.3.1 Autonomy Features Autonomy Features relate to the amount of work done
by the student in the dialogue. Five Autonomy features were defined: tellsSinceElicitA,
pctElicitA, stuWordsToTuWordsA**, stuWordsToTuWordsSessionA**, and pctTellsKCSes-
sionA. As mentioned earlier, features with “**” were new ones added in Study 3. The five
autonomy features occurred thirteen times. Among the five features, with the exception of
tellsSinceElicitA, the remaining four features occurred only once in one final induced policy.
Feature tellsSinceElicit occurred in nine out of the thirty-four final tutorial tactics included
in the state representation: five for NormGain and four for InvNormGain. Table 6.7 sum-
marizes the occurrences of each feature in the induced NormGain and InvNormGain tutorial
tactics. The number in the parenthesis refers to the number of occurrences. For example,
NormGain(8) means there were eight occurrences of autonomy features in NormGain tuto-
rial tactics and pctElicitA (1) means that “pctElicitA” occurred once in the final tutorial

tactics. The two new features labelled with “**” occurred only twice.

Table 6.7: Occurrence of Autonomy Features in The Final Tutorial Tactics

NormGain (8) InvNormGain(5)
1 | tellsSinceElicitA (9) 5 4
2 | pctElicitA (1) 1 0
3 | stuWordsToTuWordsA** (1) 1 0
4 | stuWordsToTuWordsSessionA** (1) 1 0
5 | pctTellsKCSessionA (1) 0 1
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6.7.3.2 Temporal Situation Features Temporal Situation Features encode the time-
related information about the problem-solving process. Three features are defined: dura-
tionKCBetweenDecisionT, TimelnSessionT, and TimeBetweenSessionT. Table 6.8 summa-
rize the number of occurrences of each feature in the induced NormGain and InvNormGain
tutorial tactics. The three features occurred a total of fourteen times in the final thirty-four
policies. In Table 6.8, Row 1 shows that durationBetweenDecisionT showed up eight times,
more frequently than the other two features: four times in NormGain tutorial policies and

four times in InvNormGain ones.

Table 6.8: Occurrence of Temporal Situation Features in The Final Tutorial Tactics

NormGain (7) InvNormGain(7)
1 | durationBetweenDecisionT (8) 4 4
2 | TimeBetweenSessionT (2) 1 1
3 | TimelInSessionT (4) 2 2
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Table 6.9: Occurrence of Problem Solving Contextual Features in The Final Tutorial Tactics

NormGain (30) InvNormGain (28)
1 | EarlyTrainingPS (2) 1 1
2 | SimpleProblemPS (2) 1 1
3 | DuringWalkThroughPS (6) 2 4
4 | nKCsPS (4) 3 1
5 | nKCsSessionPS (3) 2 1
6 | newLevelDifficultyPS** (4) 2 2
7 | conceptDifficultyPS** (12) 7 5
8 | QuantativeDegreePS** (5) 0 5
9 | numPhysConceptsTutorDialogueSessionPS**(1) 1 0
10 | tutConceptsToWordsPS** (8) 5 3
11 | tutConceptsToWordsSessionPS** (4) 3 1
12 | tutAverageWordsPS** (5) 2 3
13 | tutAverageWordsSessionPS** (2) 1 1

6.7.3.3 Problem Solving Contextual Features Problem Solving Contextual features
encode information about the current problem-solving context. There are fifteen features
defined in this category. Table 6.9 summarizes the occurrences of each feature in the induced
NormGain and InvNormGain tutorial tactics. This category seems to be the most active.
There were fifty-eight occurrences in the final thirty-four tutorial tactics, which represents
approximately half of all of feature occurrences. In some of the tutorial tactics, more than

one feature from this category was involved.

Among the fifteen Problem Solving Contextual features, conceptDifficultyPS** (Row 7)
is the most frequently occurrences, occurring in twelve induced tutorial tactics: seven for

NormGain and five for InvNormGain. The next most frequently occurring feature is in Row
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ten: tutConceptsToWordsPS** which describes the ratio of the tutor’s physics concepts to
their words. Two features (tutAverageConceptsPS** and tutAverageConceptsSessionPS**,
which represent the average number of tutor’s physics concepts in each turn overall and in
this session specifically, did not appear in any of the final induced tutorial tactics. Among the
fifty-eight occurrences, new features added for Study 3 occurred forty-one times: twenty-one

for NormGain and twenty on InvNormGain ones.

6.7.3.4 Performance Features Performance Features describe information about the
student’s performance during problem solving. Twelve feature choices were defined in this
category. Table 6.10 summarizes the occurrences of each feature in the induced NormGain
and InvNormGain tutorial tactics. The features in this category occurred seventeen times.
Row eight shows that “nIncorrect KCPM” (the number of incorrect response in the student’s
dialogue so far) is the most frequently occurring feature in that it appeared in five final
tutorial tactics: two for NormGain and three for InvNormGain. A feature such as pctOver-
allCorrectPM did not appear in any of the final tutorial tactics, probably because the closely-
related feature, pctOverallCorrectSessionPM, better represents the state in that it measures
the student’s more recent performance. PctOverallCorrectSessionPM (Row two) occurred
three times: one for NormGain and two for InvNormGain. The new features occurred a total
of five times: “nCorrect KCSessionPM** (2)” in Row four, “pctCorrectKCSessionPM** (1)”

7

in Row seven, and “nlncorrectKCSessionPM** (2)” in Row nine.

6.7.3.5 Background Features Much to the author’s surprise, only one background
feature occurred in one final tutorial tactic: “ageBG**” (the age of the subject). The policy
involved “ageBG**” is on Ky and Justify /Skip-Justify. The remaining four background

features were not involved in any policy.

6.7.3.6 Student Dialogue Features Student Dialogue Features are simple linguistic
features that are computed from the student’s entries in the tutorial dialogue. Ten features
were defined in this category. Table 6.11 summarizes the occurrences of each feature in

the induced NormGain and InvNormGain tutorial tactics. The features in this category
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Table 6.10: Occurrence of Performance Features in The Final Tutorial Tactics

NormGain (5) InvNormGain (12)

—_

pctCorrectPM (1) 1
pctOverallCorrectSessionPM (3)
nCorrectKCPM (1)

nCorrect KCSessionPM** (2)
pctOverallCorrect KCPM (1)
pctCorrect KCPM (1)
pctCorrect KCSessionPM** (1)

nIncorrect KCPM (5)
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—_

nlncorrect KCSessionPM** (2)

occurred fourteen times. Among them, “stuAverageWordsSD**” (the average number of
words per student turn) occurred four times, while stuConceptToWordRatioSD** (the ra-
tio of physics concept words to total words in the student’s turns) occurred three times.
Three features: averagePhysConceptsStudentDialogueSD** stuAverageConceptSD**, av-
eragePhysConceptsStudentDialogueSessionSD** did not appear in any of the final tutorial

tactics.

To summarize, Problem Solving Contextual Features occurred most frequently, fifty-eight
times, in the final thirty-four induced tutorial tactics. Background Features occurred the
fewest number of times. The newly added features were involved in the final in a total of
2441+ 5+ 1+ 14 = 63 times, so it could be concluded that expanding feature choices to
include new features such as conceptDifficultyPS**, was a good decision given that it had

the most occurrences in the final tutorial tactics.
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Table 6.11: Occurrence of Student Dialogue Features in The Final Tutorial Tactics

NormGain (8) InvNormGain (6)

numStudentConceptualDialogueSD** (1)
stuConceptToWordRatioSD**(3)
stuAverageWordsSD** (4)

[ I O

numStudentConceptualDialogueSessonSD** (1)
stuConcept ToWordRatioSessionSD** (2)
stuAverageWordsSessionSD** (1)

N O Ot ke W NN =
S = = O NN O

NSO =

stuAverageConceptSessionSD** (2)

6.7.4 Feature Selection

In this study, I applied 11 feature selection methods. It would be interesting to see which of
them found the most final tutorial tactics. Table 6.12 lists all the feature selection methods
that were followed to get the final tutorial tactics for the corresponding KCs on the two types
of tutorial tactics: the NormGain and InvNormGain ones. Additionally, “single” means it
is a single feature policy.

It can be concluded that the three feature selection approaches: PCA-only, PCA-ECR,
and PCA-Upper_Bound did not elicit any of the final tutorial tactics. All other eight ap-
proaches resulted in at least one. Among them, the two RL-based feature selection methods
appeared to be most effective. The ECR-based method discovered four NormGain tutorial
tactics and six InvNormGain tutorial tactics. The Upper_Bound method found five Norm-
Gain tutorial tactics and four InvNormGain tutorial tactics. The feature selection may still
need to be improved because one of the final induced policies is from the random feature

selection — (K Cy, JS, InvNormGain).
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Table 6.12: Applying 11 Feature Selection Methods to Induce 34 Tutorial Tactics

NormGain InvNormGain

ET JS ET JS
KO, single Upper_Bound
KCyy single single single single
KOy ECR PCA-Hedge | PCA-Lower_Bound Random
KCy Upper_Bound | PCA-Hedge Hedge ECR
KCy Hed