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DO MICRO-LEVEL TUTORIAL DECISIONS MATTER: APPLYING

REINFORCEMENT LEARNING TO INDUCE PEDAGOGICAL TUTORIAL

TACTICS

Min Chi, PhD

University of Pittsburgh, 2009

In this dissertation, I investigated applying a form of machine learning, reinforcement learn-

ing, to induce tutorial tactics from pre-existing data collected from real subjects. Tutorial

tactics are policies as to how the tutor should select the next action when there are multiple

ones available at each step. In order to investigate whether micro-level tutorial decisions

would impact students’ learning, we induced two sets of tutorial tactics: the “Normalized

Gain” tutorial tactics were derived with the goal of enhancing the tutorial decisions that

contribute to the students’ learning while the “Inverse Normalized Gain” ones were derived

with the goal of enhancing those decisions that contribute less or even nothing to the stu-

dents’ learning. The two sets of tutorial tactics were compared on real human participants.

Results showed that when the contents were controlled so as to be the same, different tutorial

tactics would indeed make a difference in students’ learning gains. The “Normalized Gain”

students out-performed their “Inverse Normalized Gain” peers. This dissertation sheds some

light on how to apply reinforcement learning to induce tutorial tactics in natural language

tutoring systems.
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1.0 INTRODUCTION

Human one-on-one tutoring is one of the most effective educational interventions. Tutored

students often perform significantly better than students in classroom settings [Bloom, 1984,

Cohen et al., 1982]. Computer learning environments that mimic aspects of human tutors

have also been highly successful. Intelligent Tutoring Systems (ITSs) have been shown to

be highly effective in improving students’ learning in real classrooms [Anderson et al., 1995,

Koedinger et al., 1997, VanLehn, 2006].

The development of ITSs has enabled schools and universities to reach out and educate

students who otherwise would be unable to take advantage of one-on-one tutoring due to

cost and time constraints [Koedinger et al., 1997]. Despite the high payoffs provided by

ITSs, significant barriers remain. High development costs and the challenges of knowledge

engineering have prevented widespread deployment.

In order to design an effective ITS, developers must form the basic core of the sys-

tem, determine what is taught, and how. Moreover, in order to increase ITSs’ deploy-

ments, individual instructors should have the ability to alter the ITSs to fit their pre-

ferred teaching style and fill in with their preferred domain contents. Authoring tools

[Murray et al., 2003, Aleven et al., 2006, Aleven et al., 2005, Ainsworth and Fleming, 2005]

that provide support for the software-engineering aspects of development, and thus enable

non-developers to implement a system, are one promising approach to this problem. These

software tools allow each individual to build customized ITSs to meet his or her own needs.

Generally speaking, users of authoring tools face challenges not only in developing the con-

tent to be taught, but also in determining how to interact with the students.

Most authoring tools are built with a predefined pedagogical strategy and allow domain

experts to configure parameters such as the amount of help the tutor will provide. One
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potential problem is that this approach assumes all students learn best using the same set

of teaching strategies. However, there are no well-established domain-general pedagogical

strategies in the learning and cognitive literature, and thus, the effectiveness of these prede-

fined pedagogical strategies is often not clear. Additionally, instructors are domain experts

not learning scientists. Therefore, determining how to interact with students is a challenging

task for them, because they do not necessarily have a good understanding as to how these

parameters will impact student performance or subsequent behaviors [Chi et al., 2004]. In

order to improve their effectiveness, the authoring tools should provide more, and more

effective, methods, to help instructors decide how to interact with students.

On the other hand, it is still an open question as to whether the decisions on how to

interact with students would impact learning. For any form of tutoring, the tutor’s be-

havior can be viewed as a sequential decision process wherein, at each discrete step, the

tutor is responsible for selecting the next action to take. That is, the tutor’s main task

can be seen as deciding what action to take at each turn. Each of these tutorial deci-

sions affects successive actions. One preferred assumption as to the effectiveness of hu-

man one-on-one tutoring has been that the human tutors are good at making such types

of tutorial decisions; moreover, these decisions are responsible for students’ learning gains

[Chi et al., 2001, Collins and Stevens, 1982, McArthur et al., 1982, Merrill et al., 1992]. In

the learning literature, the skills used to making such tutorial decisions are often referred to

as pedagogical skills. More formally, Chi, Siler, and Jeong [Chi et al., 2004] define these ped-

agogical skills as those that “involve skillful execution of tactics, such as giving explanations

and feedback, or selecting the appropriate problems or questions to ask the students.”

However, little evidence has shown that either human tutors have effective pedagogi-

cal skills, or pedagogical skills were the reason the students learned. In fact, many previ-

ous studies indicated that human tutors rarely employ any pedagogical skills when tutor-

ing [Cade et al., 2008, Chi et al., 2004, Cho et al., 2000, Core et al., 2003, Katz et al., 2007,

Evens and Michael, 2006, Merrill et al., 1995, Merrill et al., 1992, VanLehn, 1999], see also

[VanLehn et al., 2003]. Additionally, skillful execution of these pedagogical skills may require

that tutors adapt their actions to tutorial context, which includes each student’s current

knowledge level and general aptitude, the subject matter under discussion, the institutional
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context in which the tutoring takes place, and so on. But little evidence has been found either

that human tutors are able to monitor students’ understanding accurately [Chi et al., 2004],

or that tutors really adapt their decisions based on the tutorial context [Putnam, 1987]. For

instance, Chi, Siler, and Jeong [Chi et al., 2004] found that human tutors do not seem to

process an accurate model of students’ knowledge levels during the tutoring. In fact, Put-

nam [Putnam, 1987] found that experienced tutors did not attempt to form highly-detailed

models of their students’ knowledge before attempting remedial instruction; rather, each

teacher appeared to move through a curriculum script to teach the individual students.

If it was not superior pedagogical skills that enabled students to learn in these previous

studies [Bloom, 1984, Cohen et al., 1982], then what did cause students to learn? One indis-

putable explanation is instructional content and practice opportunities. For example, previ-

ous research repeatedly showed that students working with a tutor often learned significantly

more than those without one [Anderson et al., 1995, Chi et al., 2008b, Koedinger et al., 1997,

Lane and VanLehn, 2005, VanLehn et al., 2007a, VanLehn et al., 2005]. However, once con-

tent was controlled to be the same across all conditions, little evidence was found that there

was any difference among students under different learning treatments. Several techniques

have been employed to control for content. For example, in some previous studies the do-

main content was controlled by ensuring students worked on the same training problems with

the same human tutors or on a computer tutor that was scripted by the same human tu-

tors [Evens and Michael, 2006, VanLehn et al., 2007a, Reif and Scott, 1999]. Additionally,

the content can be controlled to be equivalent by running a human tutoring condition first,

videotaping the tutoring sessions, and then having another group of students watch those

videotapes [Chi et al., 2008b]. Though it is often assumed that human tutors possess more

effective pedagogical skills than ITSs, previous research has shown that students who were

tutored under human expert tutors were no more effective than those who were tutored

under ITSs [Evens and Michael, 2006, VanLehn et al., 2007a, Reif and Scott, 1999]. There-

fore, it seems the large benefit of tutoring over no-tutoring found in previous studies, may

be due to a difference in instructional content rather than a difference in pedagogical skills.

Until recently, there have been rising doubts in cognitive science regarding the impact of

pedagogical skills on students’ learning [Chi et al., 2008b, Chi et al., 2004, Chi et al., 2001,
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VanLehn et al., 2007a].

However, absence of evidence is not evidence of absence. The lack of evidence supporting

the impact of pedagogical skills on learning does not mean these skills are irrelevant or not

important. In the studies underlying this thesis, I applied and evaluated a general data-driven

methodology to learn how to make these tutorial decisions from pre-existing interactivity

data rather than, as is presently common, implementing a priori pedagogical theories drawn

from experts.

In order to investigate the effect of pedagogical skills on learning, it was necessary to

separate tutorial decisions from instructional content, strictly controlling content so that it

is equivalent for all students. It is generally difficult to control tutoring content with human

tutors. Computer tutors, on the other hand, permits much greater control over, and tracking

of, the tutorial content than human tutors [Evens and Michael, 2006, VanLehn et al., 2007a,

Reif and Scott, 1999]. In this thesis, Cordillera, a Natural Language (NL) tutoring system

was implemented to teach college students introductory physics.

Tutoring in domains like math and science is often structured as a two-loop procedure.

An outer loop selects the problem or task the student should work on next, while the inner

loop governs step/level decisions during problem solving [VanLehn, 2006]. In this structure,

there are two main sources of content variation: selection of different problems, and guid-

ing students along a different solution path. In order to minimize content variation, all

participants in this thesis solved the same problems and followed the same major problem-

solving steps for each problem. In educational literature, the term “step” often refers to

the application of a major domain principle or equation such as Newton’s Third Law of

Thermodynamics during problem solving. However, in this thesis a step generally consists

of multiple micro-level steps. For example, one of the training problems, P4, is defined in

Figure 1.1.

In order to solve P4, students need to apply several domain principles, and some principles

need to be applied more than once. For instance, one of the domain principles the students

need to apply to solve for P4 is the definition of Kinetic Energy (KE = 1
2
mv2). More

specifically, they need to apply the definition of Kinetic Energy to the rock at T0. In order

to do so, the tutor takes the following four micro-level steps: selecting the principle to apply,
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A 0.6kg rock in space has a velocity of magnitude 2.0m/s at point A and kinetic energy
of 7.50J at point B. What is the net work done on the rock as it moves from A to B? We
define:
T0: the time point when the rock is at point A.
T1: the time point when the rock is at point B.

Figure 1.1: A Training Problem: P4

writing the corresponding equation, solving the equation, and engaging in some qualitative

discussion about the principle. At each micro-level step, at least one tutorial decision needs

to be made as to how to carry out the step. As a result, this study focused on pedagogical

skills that govern low-level tutorial interaction decisions on a single micro-level step: for

example, whether the student is told what principle to apply, or if the system elicits it from

him or her with a prompt; and whether or not the student is asked to justify the answer,

once he or she has completed a step.

Figure 1.2 shows a sample dialog for how student-tutor interactions would look for car-

rying out the four micro-steps. In Figure 1.2, each numbered line represents a dialog turn.

The labels T and S designate tutor and student turns respectively. In the example shown

in Figure 1.2 the tutor and student complete a single principle application, the application

of the definition of Kinetic Energy to solve for KE0 (the rock’s kinetic energy at T0) and

begin to solve for v1 (the rock’s instantaneous magnitude of velocity at T1). The tutor and

student first selected a principle to apply (lines 2 and 3), wrote the corresponding equation

(4), then solved it (5), and finally, discussed the principle (6-8).

Some of the tutor turns in Figure 1.2 are labeled {ELICIT} or {TELL}. This label

designates a tutorial decision step wherein the tutor has to make a tutorial action decision

deciding whether to tell the student the information or to elicit the requisite information

with a question. For example, in line 2, the targeted principle is the definition of Kinetic

Energy, labeled as KC20, and the tutor chooses to elicit the answer from the student by

asking the question, “Which principle will help you calculate the rock’s kinetic energy at

5



1. T: So let’s start with determining the value of KE0.

2. T: Which principle will help you calculate the rock’s kinetic energy at T0? Please

provide the name of the principle, not an equation. {ELICIT}, KC20

3. S: Definition of kinetic energy

4. T: Yes, I agree. Now I will write the equation for applying the definition of kinetic

energy to the rock at T0: KE0 = 1/2*m*v0ˆ2 {TELL}, KC20

5. T: I calculate the value for KE0 = 0.5*0.6kg*2.0 m/sˆ2 = 1.2 J {TELL}, KC23

6. T: We do not know the direction of the rock’s velocity at T0 from the problem

statement. Would the direction of v0 affect the rock’s kinetic energy at T0?

{ELICIT}, KC20

7. S: No, it would not affect

8. T: Yes, I agree. This is because the kinetic energy only depends on the rock’s mass

and magnitude of velocity, not the direction of the rock’s velocity. {TELL}, KC20

9. T: We’ve calculated KE0, recall that our plan is to calculate v1 next.

Figure 1.2: An example Dialog with Cordillera

T0? Please provide the name of the principle, not an equation.” By contrast, if the tutor

elected to tell the students, then he or she would have stated, “To calculate the rock’s kinetic

energy at T0, let’s apply the definition of Kinetic Energy.” Both steps cover the same target

knowledge.

For the purposes of this thesis the term “pedagogical tutorial tactics” will be used to

refer to the policies for selecting the tutorial action at each micro-step level when there

are multiple actions available. The primary research question in this thesis is whether ped-

agogical tutorial tactics focused on individual interaction decisions impact students’ learning.

Existing ITSs typically employ hand-coded pedagogical rules that seek to implement
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existing cognitive or instructional theories. These theories may or may not have been well-

evaluated. For example, in both the CTAT [Anderson et al., 1995, Koedinger et al., 1997]

and Andes systems [VanLehn et al., 2005], help is provided upon request because it is as-

sumed that students know when they need help and will only process help when they desire

it. Research on gaming, however, has raised some doubts about this, by showing that stu-

dents sometimes exploit these mechanisms for shallow gains thus voiding the help value

[Baker et al., 2004b, Baker et al., 2004a]. It is often difficult to evaluate hand-coded rules in

a tutoring system as their performance depends upon a number of factors, such as the content

difficulty, the student’s incoming competence, the system’s usability, and so on. Previous

researchers have largely treated the specification of tutorial tactics as a design problem: sev-

eral versions of a system are created, the only difference among them being the pedagogical

model employed. Data is then collected from human subjects interacting with each version

of the system, and the students’ performance is then statistically compared. Due to cost

limitations, typically, only a handful of alternative tutorial tactics are explored.

Recent work on ITSs has shifted focus from hand-coded tutoring designs to more data-

driven methodologies. For example, ITSs researchers have used decision theory to guide the

tutoring system in lieu of hand–crafted rules [Murray and VanLehn, 2006]. In this thesis,

the approach adopted does not have to rely upon a priori belief about how the tutor should

teach. Instead, it proposes to “learn” how to make tutorial decisions from pre-existing

student-computer interactivity corpora. The machine-learning technique chosen for this

task is reinforcement learning (RL). The methodology reported in this thesis is heavily

motivated by previous research in non-tutoring dialog systems. In these previous studies

RL has been successfully applied to improve the effectiveness of non-tutoring dialog systems

[Williams et al., 2005, Walker, 2000, Singh et al., 2002]. The system employed in this thesis

is a NL tutoring system named Cordillera [Jordan et al., 2007, Jordan et al., 2006]. While

NL tutoring systems can be seen as complex dialogue systems, applying RL to NL tutoring

systems raises certain challenges in that the research is focused on a more complex task –

instruction – than most dialogue systems. Thus it is still an open question whether RL-

derived policies will prove effective in an educational context. In the following paragraphs,

I will describe a general methodology showing how RL was applied to derive tutorial tactics
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from computer-student interactivity data. The secondary research question is: Will RL

provides a feasible method to induce pedagogical tutorial tactics?

1.1 RESEARCH QUESTIONS

1.1.1 Question 1: Do Micro-level Pedagogical Tutorial Decisions Affect Stu-

dents’ Learning?

1.1.1.1 Background on Pedagogical Tutorial Tactics Many studies of one-on-one

tutoring show that tutors tend to dominate the tutoring sessions. For instance, they take

more initiative. The tutor’s primary task can be seen as deciding what action to take on each

turn [Chi et al., 2001, Graesser et al., 1995]. Much of this research takes an implicitly tutor-

centric perspective. It assumes that the tutors’ actions are primarily responsible for tutoring

effectiveness based upon the way they craft and adapt their actions to the students’ needs

[Collins and Stevens, 1982]. Even though students can benefit from being tutored by novice

tutors [Cohen et al., 1982], expert human tutors seemingly produce better learning outcomes

[Lu et al., 2007, Eugenio et al., 2006]. Here both expert and novice tutors are domain ex-

perts who differ only in terms of their tutoring experience. Similar, but less significant, results

were found by Chae et al. [Chae et al., 2005] and Kim, Chae and Glass [Kim et al., 2005].

In their work students’ learning gains under expert tutors were larger than learning gains

under novice tutors; however, their results were only marginally significant. On the other

hand, it has also been shown that expert human tutors employ different tutorial tactics than

novice tutors [Hume et al., 1995, Kim et al., 2005, Lu et al., 2007]. In short, these results

suggest that expert tutors may be more effective than novice tutors because they make more

effective tutorial decisions.

On the other hand, the majority of previous research studies have shown that human

tutors may not be very effective when selecting tutorial actions and the tutors’ pedagog-

ical skills may not determine students’ learning. For example, Clark, Snow, and Shavel-

son [Clark et al., 1976] found that human tutors’ educational effectiveness was not necessar-
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ily correlated with their level of training or prior experience. They conducted a comparison

study between trained human tutors and rank novices in the domain of physics. Partic-

ipants were tutored for five one-hour sessions that were completed in one week. Results

showed that the trained tutors were no more effective than the inexperienced tutors. Chi et

al. investigated three hypotheses regarding tutor effectiveness: a tutor-centered hypothesis

assuming that tutoring effectiveness arises from the tutors’ pedagogical skills; a student-

centered hypothesis assuming it arises from the students’ active generation; and an interac-

tive hypothesis assuming that it arises from the joint effort of both the tutors and students

[Chi et al., 2001, Chi et al., 2004, Chi et al., 2008b]. They found evidence supporting the

latter two hypotheses, but not the tutor-centric hypothesis.

Research in computer learning environments has found a similar lack of evidence for the

tutor-centric view of tutoring effectiveness. Evens and Michael conducted a series of studies

comparing four learning treatments in cardiovascular physiology [Evens and Michael, 2006].

The no-tutoring condition studied a text that included examples of the correct reasoning

for solving a pacemaker problem. The CIRCSIM condition solved one training problem on

a tutoring system, CIRCSIM, which presented a short text passage for each incorrect step.

The CIRCSIM-tutor condition solved the same training problem on a sophisticated natural

language tutoring system, CIRCSIM-tutor, which replaced the text passages in CIRCSIM

with typed natural language dialogue. The human tutor condition also solved the same

training problem with expert human tutors. Results showed that the latter three conditions

out-performed the no-tutoring condition, but the three treatments, CIRCSIM, CIRCSIM-

tutor and expert human tutors, tied with each other.

While ITSs generally support students both in the selection of problems to work on and

the solving of those problems, computer-aided instructional (CAI) environments generally

support only the outer loop, the problem-selection loop. Previous studies have shown that

when students study the same materials and solve the same problems, a CAI will be as effec-

tive as an ITS [Sleeman et al., 1989]. More recently VanLehn et al. [VanLehn et al., 2007a]

compared students who studied the same material and then studied the same training prob-

lems under a variety of conditions, including expert human tutors and a variety of ITSs. All

students in the study showed learning gains but no significant difference was found among
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the groups. In a subsequent review of studies of human tutors, VanLehn [VanLehn, 2009]

noted that human tutors were seldom more effective than moderately interactive forms of

tutoring, such as step-based tutoring systems [VanLehn et al., 2007a].

In sum, previous research has suggested that tutorial content is indisputably an important

source that contributes to the effectiveness of one-on-one tutoring. The effectiveness of the

pedagogical tutorial tactics, however, is still an open question. In order to investigate whether

pedagogical tutorial tactics alone will make a difference in learning, it is necessary to control

such factors as the tutoring content.

In this thesis, all students studied the same subject matter, the same training problems

using the same tutorial scripts, and interacted with the computer tutors using the same user

interface. For each training problem, all students experienced the identical information for

all of the non-tutorial decision steps, and the variance among the students was on tutorial

decision steps. For any given tutorial decision step, once tutorial action was taken, the same

domain content would be carried out for all students. The following example will illustrate

this.

The example used here is P4 (shown in Figure 1.1), one of the seven training problems

used in this dissertation. For each training problem all participants followed a two-phase

strategy which consists of collaborative solution wherein the student and tutor solve the

problem together (phase 1 ), followed by post-problem discussion where the student reflects

upon the solution (phase 2 ).

During phase 1, the student and the tutor solve the problem together. One important

characteristic of this phase is that the tutor guides the student by applying one principle at

a time. For example, solving training problem P4 (shown in Figure 1.1) involves applying

three major domain principles with some principles needing to be applied twice. The three

domain principles are: the definition of Kinetic Energy (KE: KE = 1
2
mv2), the definition

of Total Mechanical Energy (TME: TME = KE + GPE + SPE), and the Change of Total

Mechanical Energy for Non-isolated Systems (NetW = TME2− TME1). The solution path

for P4 students followed in this dissertation was: 1) applying the definition of Kinetic Energy

to solve for the rock’s kinetic energy at T0, 2) applying the definition of Kinetic Energy to

the rock’s magnitude of velocity at T1, 3) applying the definition of Total Mechanical Energy
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to solve for rock-system’s Total Mechanical Energy at T0, 4) applying the definition of Total

Mechanical Energy to solve for rock-system’s Total Mechanical Energy at T1, and 5) applying

the Change of Total Mechanical Energy for Non-isolated Systems to solve for the work done

on the rock-system from T0 to T1. All of the students applied one domain principle at a time

and followed the same solution path in the same order of 1-5. For each domain principle

application, the tutor generally would make 3-5 micro-level tutorial decisions as shown in

Figure 1.2.

During phase 2 the tutor highlights the solution’s main steps, reviews any confusion that

students may have had during the solution, and considers how the solution varies when the

problem statement is varied in certain ways. For example, in the post-problem discussion for

training problem P4 (shown in Figure 1.1), the tutor would cover eight main topics, generally

one topic for each domain principle. These eight topics include the discussion about whether

there are any extra steps in the solution path during the problem solving, the definition

of potential energy, how changing the mass of the rock would affect the final result, and

so on. In this dissertation, all four groups of students went through all main topics in the

post-problem discussion in the same order (shown in Appendix I). Similar to the problem

solving, the difference is how these discussions were carried out. For example, in the domain

of work and energy, potential energy always involves two objects, such as potential energy

of block-earth pair or potential energy of block-spring pair. However, students often focus

on only one object such as the block. One of the eight topics in the post-problem discussion

for P4 is regarding potential energy and there were two versions of discussion: elicit version

vs. tell version. An example of the elicit version of post-problem discussion in P4 looks like:

Tutor: In this problem, we have selected the rock as the system. Is it possible to define
potential energy for the rock system?
Student: No, it is not possible.

The tell version of the same point is:

Tutor: In this problem, we have selected the rock as the system and we *cannot* define a
potential energy for the rock system.

This project employed four types of tutorial tactics: Exploratory, Dichotic Gain (Dich-
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Gain), Normalized Gain (NormGain), and Inverse Normalized Gain (InvNormGain). All

four groups of participants covered the same material using the same procedure and were

trained on four versions of the same tutoring system. The only difference among the different

versions employed by the four groups was the policy that each tutoring system followed to

make tutorial decisions.

The primary research question is: “Will pedagogical tutorial tactics focused on individ-

ual interaction decisions impact students’ learning?” For the purposes of this thesis, two

types of interaction decisions, Elicit/Tell and Justify/Skip-Justify, have been made the focus

of this research. For each Elicit/Tell decision step, some students would be told the informa-

tion, while others would be asked to provide the information. For each Justify/Skip-Justify

decision step, the tutor sometimes would execute the justification for some students and

at other times the tutor would skip the justification. Each type of interaction decision is

described in detail below.

1.1.1.2 Elicit/Tell During the course of one-on-one tutoring, the tutor often faces a

simple decision, should he or she elicit the next step information from the student, or should

he or she tell the student the next step directly? We refer to such tutorial decisions as

elicit/tell (ET) decisions. While a lecture can be viewed as a monologue consisting of an

unbroken series of tells, individual tutoring is characterized by a great deal of give and take

and is thus a mixture of elicits and tells. Generally speaking, eliciting more information from

the student during tutoring will result in a more interactive tutorial dialogue.

Figure 1.3 presents a pair of sample dialogues comparing elicit and tell versions of a single

tutorial dialogue extracted from a log file collected in this project. Both dialogues begin and

end with the same tutor turns (lines 1 and 6 in (a) and 1 and 4 in (b)). In dialogue (a) the

tutor chooses to elicit twice (lines 2-3 and 4-5 respectively). In contrast, dialogue (b) covers

the same domain content with two tell actions (lines 2 and 3). As a consequence, tutorial

dialogue (a) is more interactive than (b).

For the purposes of this dissertation interactivity is quantified in terms of Interactivity

ratio (I-ratio), which is defined as the number of elicit decisions a student received divided
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(a) Elicit Version

1. T: So let’s start with determining the value of v1.

2. T: Which principle will help you calculate the rock’s instantaneous magnitude of

velocity at T1? {ELICIT}, KC20

3. S: definition of kinetic energy

4. T: Please write the equation for how the definition of kinetic energy applies to this

problem at T1 {ELICIT}, KC20

5. S: ke1 =0.5*m*v1ˆ2

6. T: From KE1 = 0.5*m*v1ˆ2, we get v1ˆ2=KE1/(0.5*m). We substitute KE1 with 7.5

J and m with 0.6 kg. The equation now becomes: v1ˆ2=7.5 J/(0.5*0.6 kg). The

magnitude of velocity is always positive, therefore, v1= 5.0 m/s. {TELL}, KC31

(b) Tell Version

1. T: So let’s start with determining the value of v1.

2. T: To calculate the rockś instantaneous magnitude of velocity at T1, we will apply the

definition of kinetic energy again. {TELL}, KC20

3. T: Let me just write the equation for you: KE1 = 0.5*m*v1ˆ2. {TELL}, KC20

4. T: From KE1 = 0.5*m*v1ˆ2, we get v1ˆ2=KE1/(0.5*m). We substitute KE1 with 7.5

J and m with 0.6 kg. The equation now becomes: v1ˆ2=7.5 J/(0.5*0.6 kg). The

magnitude of velocity is always positive, therefore, v1= 5.0 m/s. {TELL}, KC31

Figure 1.3: Elicit vs. Tell

by the total number of ET decisions received in a given dialogue and can be expressed in:

I− ratio =
NElicit

NElicit + NTell

(1.1)
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The higher this value, the more interactive the dialogue. If I − ratio = 0.5 means that

students were given elicitation prompts as often as they were simply told the information

while I − ratio > 0.5 means that they were more likely to be prompted for information, and

I − ratio < 0.5 means that the conversation was more didactic.

A key characteristic of one-on-one tutoring, whether from human tutors or computer sup-

port, is high interactivity. A common assumption, often referred as the monotonic interaction

hypothesis [VanLehn et al., 2007a] is that greater interactivity leads to greater learning. But

Chi et al. [Chi et al., 2001, Chi et al., 2008b] and Rose [Rose et al., 2001] found no difference

in learning between students tutored on an interactive tutor and those tutored on a more

didactic one. A detailed review of the literature [VanLehn et al., 2005, VanLehn, 2009] (sub-

mitted) distinguished between the widely-accepted, monotonic interactivity hypotheses and

the better supported interaction plateau hypothesis. The former states that an increase in

interactivity causes consistent increases in learning gains, while the latter states that beyond

a given threshold point, increasing interactivity will yield diminishing educational returns.

In this dissertation, it will be argued that it may not be the absolute volume of interactivity

that is at issue, but rather how the interactivity is guided.

Some existing theories of learning suggest that when deciding whether to elicit or tell,

a tutor should take into account several factors including the students’ current knowledge

model. Vygotsky [Vygotsky, 1971] coined the term “zone of proximal development” (ZPD)

to describe the space between abilities that a student may display independently and those

that they may display with support. He hypothesized that the most learning occurs when

students are assigned tasks within their ZPD. In other words, the task should neither be

so simple that students can achieve it independently or trivially, nor so difficult that they

simply cannot make progress even with assistance. We expect, based upon this theory, that

if students are somewhat competent at a given step, the tutor should elicit, and provide help

only if the students fail, so that they can practice their knowledge. If students are completely

unfamiliar with the step, however, then the tutor should tell them directly. Collins, Brown

and Newman [Collins et al., 1989] describe a progression from tells to elicits following their

“model, scaffold & fade” rubric. Koedinger and Aleven [Koedinger and Aleven, 2007] by

contrast defined an “assistance dimension”, which includes elicits and tells. The level of
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assistance a tutor should provide may be resolved differently for different students and should

be adapted to: the learning environment, the domain materials used, the students’ knowledge

level, their affect state, and so on.

1.1.1.3 Justify/Skip-Justify The second tutorial decision investigated was to execute

or to skip a justification step. During the tutoring process, human tutors sometimes ask

students to justify a step they have taken or an entry they have made. We refer to such

tutorial decisions as justify/skip-justify (JS) decisions. Their apparent goal appears to be

to help students understand domain knowledge in a deeper way. The open question is

when should tutors conduct an elaborate discussion of a problem solving step when this

discussion is not necessary for the solution? Some authors including [Chi et al., 1994],

[Conati and VanLehn, 2000], [Aleven et al., 2004] and others have found that asking stu-

dents to justify their solution steps improves learning. However, eliciting such a discussion

may not always be desirable if, for example, the student is well aware of the rationale. If

so, typing in a justification can be slow, frustrating, and distracting. Katz, O’Donnell, and

Kay [Katz et al., 2000] found that in some cases it may be better to delay discussion of the

justifications until after the problem has been solved, especially if the justification is abstract,

plan-based, or lengthy.

After a JS decision is made and the tutor has decided to execute a justification step, the

tutor sometimes needs to make an ET decision immediately. Thus, there are three possible

decisions for these decision steps. Figure 1.4 presents three dialogue examples. Among them,

parts in (a) and (b) justification is employed to guide the student. More specifically, in parts

(a) and (b), the tutor first made a JS decision and decided to execute the justification step.

Then the tutor needed to make another decision about whether to elicit the information from

the students or to tell the students the justification directly. Examples (a) and (b) shows

what a tutorial dialogue may look like if the tutor decides to execute an elicit justification

and a tell justification respectively. In part (c), the justification is skipped. As before, all

three examples start and end with the same tutor turns (lines 1 and 5 in part (a) and lines

1 and 4 in part (b) and (c)). In part (a) the tutor asked the student to justify his or her

answer (lines 3-4); in part (b) the tutor told the student the justification directly (line 3),
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while in part (c) the tutor skipped the justification (line 3).

Similar to I-ratio, justification can be quantified in terms of Justification ratio (J-ratio),

which is defined as the number of times the tutor does not skip a justification step divided

by the total number of JS decisions the tutor made and can be expressed in:

J− ratio =
NJustify

NJustify + NSkipJustify

(1.2)

The higher this value, the deeper and more elaborate the dialogue might be. In addition

to J-ratio, justification can also be quantified by the number of justification steps students

receive. The more justification steps in a student’s tutorial dialogue, the more deep learning

the student may gain.

Neither the ET (elicit/tell) nor JS (justify/skip-justify) steps are well-understood, and

there is no widespread consensus on how or when they should be used. This is why one

research objective is to derive tutorial tactics for them from empirical data. Given that

expert human tutors do not always make optimal, or effective, tutorial decisions, hand-

crafting rules based upon human data may be a suboptimal strategy. Inducing data directly

from interaction data may be the most suitable method.

16



(a) Justify Version & Elicit

1. T:Can we infer the direction of the velocity of the rock at T1 from the rock’s kinetic

energy at T1? {ELICIT}, KC20

2. S:nope.

3. T:Excellent! Please explain why. {JUSTIFY, ELICIT}, KC20

4. S:Only the magnitude of the velocity and not the direction of it is part of the definition

of kinetic energy.

5. T:Excellent! Now that we know v1, we will concentrate on the sought quantity for this

problem, that is, the net work done on the rock system from A to B.

(b) Justify Version & TELL

1. T:Can we infer the direction of the velocity of the rock at T1 from the rock’s kinetic

energy at T1? {ELICIT}, KC20

2. S:nope.

3. T:Excellent! This is because the kinetic energy only depends on mass and the magnitude

of velocity, not the direction of velocity.{JUSTIFY, TELL}, KC20

4. T:Now that we know v1, we will concentrate on the sought quantity for this problem,

that is, the net work done on the rock system from A to B.

(c) Skip-justify Version

1. T:Can we infer the direction of the velocity of the rock at T1 from the rock’s kinetic

energy at T1? {ELICIT}, KC20

2. S:no, we cannot

3. T:Excellent! {Skip-JUSTIFY}, KC20

4. T:Now that we know v1, we will concentrate on the sought quantity for this problem,

that is, the net work done on the rock system from A to B.

Figure 1.4: Justify vs. Skip-justify
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1.1.2 Question 2: Is Reinforcement Learning a Feasible Method to Induce Tu-

torial Tactics?

1.1.2.1 Previous research about applying RL in ITSs RL has been applied to

conventional ITSs and used successfully to improve system behavior. In [Beck et al., 2000]

the authors applied RL to develop a tutorial policy that would minimize the time students

take to complete a problem. In Beck et al.’s study, the resulting policy caused the students

to spend significantly less time per problem than their peers who did not follow the policy.

However, the authors used simulated data for the training datasets, making it possible to

accurately model time on task. As a consequence, they faced no problems of data sparsity.

In this dissertation, given that the cause of student learning is still an open question, it would

be difficult to accurately simulate students’ responses to the tutor and simulate how students

would learn. Therefore, we used a training corpus collected from real human subjects and,

due to the high cost of collecting educational data, the training corpus is comparatively

small.

Barnes and Stamper [Barnes and Stamper, 2008, Stamper et al., 2007] have applied RL

to automatically construct problem solutions for an ITS called Proofs Tutorial, which teaches

college-level discrete mathematics. In their work, each student’s solution is defined as a

diagraph with a series of states connected by actions. A state is represented by the list

of premises generated in the solution so far and the actions are axiom, principle, or rules

applications taken at each step. The authors collected and merged all of the student solutions

into a single super-graph by taking the union of all possible states and transitions. Once the

super-graph was constructed, it included all previously examined paths taken by students in

solving the problem. The authors then applied MDP to induce an optimal solution using the

super-graph as the search space. More specifically, they assigned scores of 100 to the goal

state and -10 to each incorrect state, and a cost of 1 for each action taken. They then used

value iteration to calculate the value for each state in this single graph, which was then used

to generate hints for new students. They found that the extracted MDPs and the proposed

hint-generating functions were able to provide hints over 80% of the time.

The work described in [Tetreault et al., 2007, Tetreault and Litman, 2006a] used RL to
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learn tutorial tactics governing whether or not the system should provide feedback and what

type of questions it should ask. They used a previously collected corpus of physics tutorial

dialogues. Their state representation consisted of five feature vectors: Certainty, Correctness,

Percent Correct, Concept Repetition, and Frustration; and they defined four possible tutor

actions: ask a simple answer question, a complex answer question, a combination of the

two, or none at all. As with the present work, they used students’ final normalized learning

gains as reward. Their work is close to that of this thesis because both seek to apply RL

to derive effective pedagogical tutorial tactics. However, their dataset was not collected

with the goal of exploring the full range of tutorial tactics in that the tutor often executed

only one type of action in many dialogue states. Additionally, manually annotated features

such as Certainty and Frustration were used in their work while only features that could

be computed automatically or evaluated objectively, such as gender, were included in this

thesis and their feature space is also substantially smaller than the one explored in this

thesis. Moreover, the learned policies in their work were not tested on real students and thus

their predicted success was not verified empirically. In this dissertation, the research is based

on both an exploratory corpus designed to test the range of tutor actions and conducting

empirical tests of the resulting KC-based strategies using real human subjects.

In this dissertation, RL was applied to induce pedagogical tutorial tactics from student-

computer interactivity data. The studies tackled two challenges: the high cost of collecting

a training corpus and the lack of prior knowledge as to what information to include in the

state representations. Previous research on applying RL in ITSs focused on some, but not

both, issues addressed here. While there have been other methods for deriving effective

pedagogical tutorial tactics, they have typically involved other machine-learning methods.

Murray and VanLehn [Murray and VanLehn, 2006], for instance, applied decision theory

to determine the type of hints and feedbacks the tutor should give. In their work, a Dynamic

Decision Network was applied in an ITS that would decide the best actions. Their approach

showed that human tutors would agree with the ITS’s actions more frequently than a random

tutor. However, a Dynamic Decision Network requires knowing the utility function for each

state and deriving it is not trivial. The goal of this thesis research is to improve students’

learning gains and thus the utility function is only available for the last state. A Dynamic
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Decision Network would be required to perform look-ahead search, like a chess program,

all the way to the end before it could select a single move. Consequently, it would not be

straightforward to apply Dynamic Decision Networks to the current research.

As mentioned before, this research is chiefly motivated by the previous work on applying

RL to non-tutoring dialogue systems. However, Natural Language (NL) tutoring systems

differ from the non-tutoring dialogue system and thus it is not clear that RL is a feasible

approach here.

1.1.2.2 Applying RL to Dialogue Systems vs. Natural Language Tutoring Sys-

tems Dialogue Systems is a field of Computer Science that focuses on the construction of

computer systems that interact with human users via natural-language dialogues. Much of

the work in this area is focused on systems that obtain information or search databases such

as querying bus schedules [Raux et al., 2005], booking airline tickets [Rudnicky et al., 1999],

and accessing train schedules [Swerts et al., 2000]. NL tutoring systems can be seen as sys-

tems that use natural dialogue for instructional purposes such as helping students to learn a

subject by engaging in a natural language conversation. Auto-tutor [Graesser et al., 2001],

WHY-Atlas [VanLehn et al., 2002], and ITSPOKE [Litman and Silliman, 2004] for exam-

ple, are all NL tutoring systems that teach students conceptual physics. For both general

dialogue systems and NL tutoring systems the central component is the dialogue manager.

At each point in the dialogue, it decides which action to take. In recent years, work on the

design of dialogue systems has involved an increasing number of data-driven methodologies.

Among these, Reinforcement Learning (RL) has been widely applied [Williams et al., 2005,

Walker, 2000, Singh et al., 2002].

RL is a machine learning method that centers on the maximization of expected rewards.

RL has many features well-suited to the problem of designing the dialogue manager such

as unobservable states, delayed rewards, and so on. Its primary advantage is its ability

to compute an optimal policy within a much larger search space, using a relatively small

training corpus. It is data-efficient because it evaluates actions as a function of states.

Much of the previous research on the use of RL to improve dialogue systems such as

[Levin and Pieraccini, 1997, Singh et al., 1999] has used Markov Decision Processes (MDPs)
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[Sutton and Barto, 1998] to model the dialogue data and then optimize the policies from

the training corpus. An MDP formally corresponds to a 4-tuple (S, A, T,R), in which:

S = {S1, . . . , Sn} is a state space; A = {A1, . . . , Am} is an action space represented by a

set of action variables; T is a set of transition probabilities between states that describe the

dynamics of the modeled system; and R = r(si, sj, ak) denotes a reward model that assigns

rewards to state transitions and models payoffs associated with such transitions. The goal

of RL is to find an optimal policy π∗ that maps each state to the proper actions that would

generate the maximum rewards. The dialogue management problem can be naturally cast

into the MDP formalism: the states {S1, . . . , Sn} in the MDP correspond to the dialogue

states (or an abstraction thereof); the actions {A1, . . . , Am} correspond to the particular

actions the dialogue manager might take; and the rewards r(si, sj, ak) are defined to reflect

a dialog performance metric, such as learning gains. Once the MDP structure has been

defined, the transition probabilities between states T are estimated from a training corpus of

dialogues, and, based on them, the policy which maximizes the expected cumulative reward

is computed.

An MDP describes a stochastic control process and the state transitions possess the

Markov property, which assumes that only the present state gives any information about

the future behavior of a process and knowledge of the history of a process does not add

any new information. However, in many real-world applications, including this thesis, the

Markov property does not always hold. For example, in order to construct the MDP model,

one needs to simplify the sample dialogue data, reducing it to a set of computable features.

In doing so, we cannot avoid losing information some of which may be relevant. Given

that these defined features do not represent the whole state, the state representations in

this research do not have the Markov property. However, previous studies have shown

some theories which apply to cases exhibiting the Markov property, can also be applied to

many problems that do not, such as the task domain of this thesis [Williams et al., 2005,

Walker, 2000, Singh et al., 1999, Singh et al., 2002]. This is because the induced policies

may not be optimal, but they can still improve the effectiveness of the system and in most

of these previous studies, the baseline policy is making random decisions.

While most previous work on using MDPs to train dialogue systems has been successful
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[Walker, 2000, Henderson et al., 2005], whether it can be used to improve the effectiveness

of NL tutoring systems is still an open question. One major source of uncertainty comes

from the fact that the rewards used in RL are much more delayed in NL tutoring systems

than those in non-tutoring dialogue systems. Non-tutoring dialogue systems often use user

satisfaction or task completion as the rewards, while the most preferable rewards for NL

tutoring systems are students’ learning gains. More immediate rewards are more effective

than more delayed rewards for RL induction. This is because the issue of assigning credit

for a decision, attributing responsibility to the relevant decision is substantially easier in the

former case. The more we delay success measures from individual decisions, the more difficult

it becomes to identify the decision(s) responsible for our success or failure. Even though the

rewards in both types of systems will not be available until the conversation is over, NL

tutoring systems are more complex than the database-access dialogue systems described

above. In dialogue systems like the train scheduler, the interaction time is much shorter,

often less than 20 minutes, and the number of interactions within user-dialogue systems is

generally less than 20 turns [Singh et al., 1999, Singh et al., 2002]. In NL tutoring systems,

on the other hand, the preparatory training materials and testing typically exceed these

timeframes significantly. In the studies reported here, it took students roughly 4-9 hours

using the tutoring system itself, with around 280 interactions between a human subject and

the NL tutoring system during the entire training sequence.

Additionally, compared with non-tutoring dialogue systems, there are two major chal-

lenges in applying RL to NL tutoring systems. Each of these will be discussed in the following

section.

1.1.2.3 Whether RL Is Able To Induce Effective Tutorial Tactics Is Still An

Open Question. The first main challenge is that it is difficult to determine which fea-

tures of the learning environment are relevant, and thus, should be included in the state

representation. Ideally the state should include all of the relevant dialogue history necessary

to determine which action is taken next. One obvious but impractical choice is to use a com-

plete record of the dialogue to the present point; however, in practice we need to compress

the dialogue history to make the space tractable. The challenge lies in identifying the useful
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features. Increasing the size of the state space may make the learning problem intractable,

while the alternative may make the available data a much sparser sampling of the domain.

While most of the work on the use of MDPs to improve dialogues has focused on developing

the best policy given a set of features [Walker, 2000, Henderson et al., 2005], there has been

relatively little work done on feature selection.

Early work on RL and MDP in non-tutoring dialogue systems focused largely on relatively

simple task domains and used slot-based state representations. NJFun, for example, is a

real-time spoken dialogue system that provides users with information about things to do in

New Jersey. In applying RL to improve NJFun, Singh et al [Singh et al., 1999] used seven

features for the state representation, such as whether the system has greeted the user, how

many times a given piece of information has been asked for, and so on. However, as RL

and MDP have been applied to more complex domains [Frampton and Lemon, 2006], the

state space representations have increased in size and complexity, which creates a danger of

making the learning problem intractable or the decision space too large to sample effectively.

Some of the previous studies in this area have focused on domain-specific features

that should be included in the state-space. Singh et al. [Singh et al., 1999] showed that

dialogue length was useful, while Frampton and colleagues [Frampton and Lemon, 2005,

Frampton and Lemon, 2006] showed that incrementally adding high-level contextual infor-

mation (such as the user’s last dialogue act and the last system move) into a state model,

was also beneficial for building a better dialogue manager.

Previous research on applying RL in non-tutoring dialogue systems also investigated an

effective feature selection procedure. Paek and Chickering’s work, for example, showed how a

state-space can be reduced by only selecting features that are parents of the local immediate

reward performs just as well as a more complicated model with other variables that are

not parents [Paek and Chickering, 2005]. Recently, [Rieser and Lemon, 2006] used logistic

regression to select the best state features for a multi-modal dialogue system and showed

marked improvement over the baseline and some supervised learning methods. Most recently,

Tetreault, et al [Tetreault and Litman, 2008] tackled the feature selection issue by exploring

three evaluation metrics for assessing the utility of adding a particular state feature to a

model of user state. The feature selection procedure employed in this dissertation is based
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upon work by them. [Tetreault and Litman, 2008]. However, this thesis is fundamentally

different than Tetrault et al’s work because they explored three evaluation metrics and

used a relatively simple feature selection procedure. This thesis explored several different

feature selection procedures, but used only one evaluation metric, the Expected Cumulative

Reward (ECR). Specifically, Study 2 explored four categories of features suggested by the

previous learning literature and a “greedy-like” feature selection method. Study 3 explored

six categories of features and eleven more domain-general feature selection approaches.

The second main challenge is obtaining a training corpus. In order to use RL to induce

an effective policy, it is necessary to collect an exploratory dataset that explores the relevant

space of possible decision sequences. A common problem in RL is finding a balance between

exploration (attempting to discover more about the world) and exploitation (using what we

already know about the world to get the best results we can). A tutor in the real world must

often choose between maximizing its expected utility according to its current knowledge

about the world and trying to learn more about the world, since the latter may improve its

future gains. This problem is known as the trade-off between exploitation and exploration.

Balancing exploration and exploitation is particularly important in educational contexts

as data collection is generally very expensive. On one hand, without exploration, the tutor

might not find an effective policy at all. On the other hand, if the tutor explores too

much, it cannot stick to a path; in fact, it is not really learning as it cannot exploit its

knowledge, and so acts as though it knows nothing. Thus, it is important to find a good

balance between the two, to ensure that the tutor is really learning to take effective actions.

It is often unclear how much exploration should be done in order to induce an effective

policy. Ideally, of course, the training dataset should be as large as possible. One way to

speed the process would be to use simulated student data [Beck, 2001, Beck et al., 2000,

Ai and Litman, 2009]. Accurate simulations, however are difficult because the requirements

for and causes of students’ learning are still open questions. An alternative approach is to use

pre-existing data that was collected for other purposes. This route, however, is complicated

by the fact that pre-existing systems often explore a small space and number of the actions

and thus may yield biased or limited information.

In this dissertation, a different approach was taken. Instead of collecting a large ex-
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ploratory training corpus at once, the corpus was accumulated over several stages. An

initial exploratory dataset was collected that was large enough to apply RL to derive some

tutorial policies. Once derived, those policies were used to train a new group of students and

collect a new dataset. The new dataset was added to the original exploratory data to derive

additional policies since the new group of students experienced the identical procedure as

the original exploratory group. Such a process can be repeated until the learned policies

either become stable or reach the desired results. It will be argued that this incremental

improvement is the only practical method for continued improvement of an ITS. One would

not want to continue using a poor quality tutoring system semester after semester when a

better one could be available at the end of each semester. In this dissertation the process

was repeated twice to determine if it resulted in an improved ITS. All data was collected

before using the RL to adjust the tutoring system. In all, this dissertation includes three

studies.

In Study 1, an initial NL dialogue system, called Cordillera, was built, in which the

tutorial decisions on ET (elicit/tell) and JS (justify/skip-justify) were randomly made. This

was used to collect an exploratory corpus by training a set of real students using the system.

In Study 2, RL was used on the exploratory corpus to derive tutorial tactics, incorporate

them back into Cordillera, train another group of students on the new version of system,

and collect a new corpus. In Study 3, RL was applied to both the exploratory corpus from

Study 1 and the new corpus from Study 2, individually and again on a single merged dataset

combining students’ corpus from both studies.

1.2 GENERAL APPROACH

As described above, there are two primary research questions in this thesis:

Question 1: Given content controlled among conditions, will micro-level pedagogical tu-
torial decisions affect student learning?

Question 2: Is RL a feasible method to induce tutorial tactics?
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Each question represents a potential contribution to a field of research. Question 1 is

relevant to the fields of learning and cognitive science; Question 2 is relevant to the fields of

Intelligent Tutoring Systems, AI in Education, and Educational Data mining.

In order to investigate these two questions, Cordillera, a NL tutoring system was built

which teaches students introduction to physics. Since Fall, 2007, three studies have been

run [Jordan et al., 2007]. All three studies followed the same procedure: completing a back-

ground survey, reading a textbook, taking a pre-test, training on Cordillera, and finally,

taking a post-test. All three studies used the same training problems and instructional ma-

terials but on different versions of Cordillera. The versions differed only in terms of the

pedagogical tutorial tactics employed for micro-step level interactive decisions.

In Study 1, the Cordillera made interactive decisions randomly. This allowed us to

collect an exploratory corpus that examined the consequences of each tutorial decision with

real students. The student group for this study is referred to as the Exploratory Group. In

order to differentiate this version of Cordillera from the ones used in subsequent studies, this

version is referred to as Random-Cordillera.

In Study 2, RL was applied to the Exploratory corpus to induce a set of tutorial tac-

tics named Dichotic Gain (DichGain) tutorial tactics. This version of Cordillera was named

DichGain-Cordillera. DichGain-Cordillera employed the new policies to guide its interactive

decisions. As before, this version of the system was used to train students in a complete

study. The resulting corpus was named the DichGain corpus and the student group was

named the the Dichotic Gain (DichGain) group. A preliminary analysis of these tactics,

presented in Chapter 5, showed that they were no more effective than simple random deci-

sions. In Study 3, RL was applied to induce tutorial tactics from both the Exploratory and

DichGain corpora, both individually and again as a merged set. Two sets of tutoring tactics

were derived from the three corpora, Normalized Gain (NormGain) and Inverse Normal-

ized Gain (InvNormGain). The NormGain set was derived with the goal of enhancing the

tutorial decisions that contribute to the students’ learning; while the InvNormGain set was

derived with the goal of enhancing those decisions that contribute less or even none to the

students’ learning. We then ran a comparison study using the same educational materials

as those in Studies 1 and 2. In Study 3 students were randomly assigned to one of two con-

26



ditions. One condition, the NormGain condition, was assigned to use a version of Cordillera

which implemented the NormGain policies, named NormGain-Cordillera while another con-

dition, the InvNormGain condition, was assigned to a another version of Cordillera with the

InvNormGain policies, named InvNormGain-Cordillera.

Our primary hypothesis is:

The Normalized Gain (NormGain) group will out-perform

the Inverse Normalized Gain (InvNormGain) group.

The following thesis chapters will expand upon processes and outcomes from the studies

summarized in Chapter 1. Chapter 2 provides a more detailed description of Cordillera,

the Natural Language Tutoring System used in this thesis. Chapter 3 presents the detailed

methodology for using the Reinforcement Learning toolkit to induce the dialogue manage-

ment policies in this thesis. Chapters 4 through 7 present the three empirical studies. Chap-

ter 4 focuses on collecting the Exploratory corpus. Study 2, collecting the DichGain corpus,

is described in Chapter 5. Chapter 6 discusses the process for deriving the NormGain and

the InvNormGain tutorial tactics for Study 3. Chapter 7 presents an experimental com-

parison of the induced NormGain and InvNormGain tutorial tactics in Study 3. Chapter 8

presents a general comparison across three studies and summarizes the conclusions. Chapter

9 discusses contributions to the fields of Cognitive and Learning Science, and to the fields

of Artificial Intelligence and Education, Intelligent Tutoring Systems, and Educational Data

Mining. Finally, this chapter considers future research initiatives that may evolve from this

work.
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2.0 CORDILLERA

This dissertation made use of the Cordillera system [VanLehn et al., 2007b]. Cordillera

is a Natural Language (NL) based Tutoring System for introductory physics. The word

“cordillera” is defined as an extensive range of mountains along a coastline, often consisting

of a number of parallel chains. The Andes mountain range in South America is an example

which includes the Cordillera Oriental and the Cordillera Occidental. As noted in Chapter

1, four different versions of the system were constructed, each of which differed only in terms

of the tutoring tactics employed. Random-Cordillera, used in Study 1, made elicit/tell

(ET) and justify/skip-justify (JS) decisions randomly; Dichotic Gain (DichGain) Cordillera,

used in Study 2, followed DichGain policies induced from the exploratory corpus; while

the Normalized Gain (NormGain) and Inverse Normalized Gain (InvNormGain) Cordillera

systems, used in Study 3, followed the NormGain and InvNormGain policies induced from the

Exploratory and DichGain corpora, individually or combined. The remaining components

of the system, including the GUI interface, were identical for all participants.

Cordillera is based upon the TuTalk NL tutorial dialogue toolkit [Jordan et al., 2006,

Jordan et al., 2007]. TuTalk is an authoring tool which enables domain experts to construct

natural language tutoring systems without programming. Instead, the domain experts focus

on defining the tutoring content through scripts, which are then used for automating inter-

action. TuTalk supports dialogues in which the tutor tries to elicit a line of reasoning from a

student via a series of questions. This style of dialogue was inspired by the CIRCSIM-Tutor’s

directed lines of reasoning [Evens and Michael, 2006]. In addition, TuTalk is modular, so

that core modules, such as NL understanding, can be replaced or supplemented as needed.

To reduce confounds due to imperfect NL understanding in our experiments, the NL un-

derstanding module was replaced with a human interpreter called the language understanding
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Figure 2.1: Student Interface

wizard [Bernsen and Dybkjaer, 1997]. In this format, Cordillera works as a communications

framework that connects a student interface to a wizard interface. The student interface is

used by students to read the tutor’s tutorial instructions, to answer his or her questions, and

to respond to them by means of natural language entries. The wizard interface is used to

match students’ answers to a list of potential responses. These two interfaces are discussed

in detail below.

2.1 STUDENT INTERFACE

Figure 2.1 shows a screen shot of the student interface. The Message Window, located in the

bottom-left corner is where the dialogue interaction takes place. The remaining four panes
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are the Dialogue History Pane (upper-left), Problem Statement pane (upper-right), Variable

Pane (lower-right) and the Equation Pane (not shown). The tabs included on three of the

panels allow the student to select which four panels are visible and how where they will be

displayed. Brief descriptions of each pane follow.

The Message Window is the focus of interaction between the student and tutor. All

tutor messages appear here. Messages are displayed in this window, and students are then

able to enter a response below. In some cases the response is merely an acknowledgement,

i.e. clicking the [OK] button to proceed to the next action. In other cases, such as when the

tutor asks a question, the student can submit an answer by typing in a text field.

The Dialogue History Pane shows a record of the student-tutor dialogue thus far.

The Problem Statement Pane shows the problem statement and any accompanying fig-

ures if present.

The Variable Description Pane shows all the variables defined during problem solving.

The variables can be defined either by the student using a form interface or provided by the

tutor (elicit vs. tell).

Finally, the Equation Pane displays the equations that have been input either by students

or by tutors up to that point in the problem solving. An equation is presented as a two-

column table where each row consists of a formula and its description. A description consists

of the name of the principle and its arguments.

2.2 WIZARD INTERFACE

The Wizard Interface, shown in Figure 2.2, mirrors the student interface in all respects

with the exception of the Message Window. This is replaced by the Student Response

Classification Window, which displays the student’s most recent response along with a set of

check-boxes for classifying the response. In the example below, the student’s response was

classified as the third choice. Once the student’s response has classified, the system would

follow control scripts to decide what to do next, and the dialogue manager would decide how

to do it. If none of the choices match the student’s entry, then the wizard makes no selection
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Figure 2.2: Students’ Response Classification Window in Wizard Interface

and simply clicks the OK button.

2.3 AN EXAMPLE SCRIPT

Cordillera dialogues are governed by control scripts authored by domain experts. These

scripts control the dialogue messages as well as the content of each information panel. An

example script is shown in Table 2.1. In the example script, the highest level step is “define-

system” in Line 1. By name, it is about defining a system. This step consists of three

micro-steps listed in the order of Lines 2, 3, and 4.
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Table 2.1: A Sample Cordillera Script

1. g define-system

2. do choose-system SEM ELICIT/TELL

3. do system-justification SEM JUSTIFY; ELICIT/TELL

4. do isolated-system SEM ELICIT/TELL

5. g choose-system SEM ELICIT

6. say “What would be your choice of the system for this problem?”

7. if “truck-Earth.” true

8. if “truck and the Earth.” true

9. otherwise do bottom out choose-system

10. g bottom out choose-system

11. say “What are the object(s) in the problem?”

12. if “truck and the Earth” true

13. otherwise say “[cont]There are two objects here, the truck and the Earth.”

14. say “[cont]The best choice of the system here is to select both.”

15. g choose-system SEM TELL

16. say “[cont]There are two objects in the problem, the truck and the Earth. The

best choice of the system for this problem is to choose both. “

Line 2 shows that the tutor needs to make an Elicit/Tell (ET) decision for the micro-

step “choose-system” since it is labeled with “SEM ELICIT/TELL.” Here “SEM” stands

for the term “semantic”. This is a feature of Tutalk, which was meant to be used to mark

semantically similar turns and to allow the student model to make decisions relative to that

semantically similar content. Line 3 shows that the tutor needs to make two decisions on the
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micro-step “system-justification” since it is labelled with “SEM JUSTIFY; ELICIT/TELL”.

When a tutorial decision step involves both ET and JS decisions, the system always makes

the JS decision first. If it decides to skip the justification step, then the system does not

need to make the ET decision and goes to next micro-step “isolated-system” in Line 4. On

the other hand, if it decides not to skip the “system-justification”, the system would then

make the ET decision. Line 4 shows that the tutor needs to make the ET decision on the

micro-step “isolated-system”. The next paragraph describes how the elicit and tell versions

of the “choose-system ” are executed in Cordillera.

Executing the Elicit Version of “choose-system”: If the system decides to elicit on

the micro-step “choose-system ” in Line 2, then the scripts from Lines 5-14 will be executed,

because they are the elicit version of “choose-system. ” Lines beginning with the command

“say”, that is, lines 6, 11, 14, and 16, initiate a tutor message. For each “say” line, if the

content immediately following it is a normal sentence, as in lines 6 and 11, then the tu-

tor will send the text to the student as a question, requiring the student to respond. For

example, when TuTalk sends Line 6 to Cordillera, it will then display the question “What

would be your choice of the system for this problem?” in the Message Window on the stu-

dent’s interface along with a text field for the student’s answer. The question will also be

shown in the Student Response Classification Window on the Wizard Interface. Once the

student inputs an answer and clicks OK, that answer will be added to the Student Response

Classification Window in the Wizard Interface along with the set of possible choices as a

checklist. These choices are taken from the lines prefixed with if below the “say.” In the case

shown in Figure 2.1 the answer choices for the “say” in Line 6 are “truck-earth” in Line 7 or

“truck and the earth” in Line 8. The human wizard chooses from this list the answer that

is closest to the student’s answer and submits it. Unmatched answers are left blank. Both

the student’s answer and the wizard’s match are sent to the system to guide the next decision.

Executing the Tell Version of “choose-system”: On the other hand, if the system

decided to tell on “choose-system ”, then the tell version of “choose-system” in Lines 15-16

will be executed. If the contents after “say” is a sentence starting with [cont], which rep-
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resents “continue,” as in lines 14 and 16, then the tutor will tell the sentence following the

[cont]. For example, when line 16 is sent to Cordillera by TuTalk, the Message Window on

the student’s Interface will show the tutor’s message “There are two objects in the problem,

the truck and the Earth. The best choice of the system for this problem is to choose both.”

followed by an [OK] button. The student acknowledges the dialogue by clicking the OK

button at which point the dialogue will move on to the next topic.

Executing Justify/Skip-justify: For Justify/Skip-justify (JS) decisions, the scripts are

much simpler. An example of this is listed in Line 3. The label “JUSTIFY” in 3 indicates

that this is a JS tutorial decision step. If the dialogue manager decides to execute the micro-

step system-justification in Line3, the system will make the next ET decision on the step;

otherwise, the dialogue manager skips this micro-step and goes directly to execute the next

micro-step “isolated-system” in Line 4.

To summarize, the design of Cordillera allows domain experts to manage a natural-

language tutorial dialogue including GUI components such as variable listings and an equa-

tion display. The scripts allow variables and equations to be added or removed as needed as

well as for selected portions of the display to be highlighted. Alternative dialogue actions

such as elicits and tells, justify and skip-justify, are encoded in the dialogue for selection by

the dialogue manager. The script authors determine the flow of the dialogue within these

alternatives and the content of each question, including alternative choices. The NL tutor-

ing system or the wizards in the thesis study match these alternatives to student input at

runtime.

At present, the dialogue scripts can be written in XML or other more readable formats,

which are then compiled by the TuTalk system into executable script form or other textual

formats. TuTalk will be able to translate these human readable files into TuTalk- and

Cordillera-readable ones. Moreover, the reverse is also possible. As a result, the domain

experts can build an NL tutoring system by simply focusing only on the subject matter.

This chapter illustrated the Cordillera system. Chapter 3 will present a detailed descrip-

tion of the research methodology focusing on how to apply reinforcement learning to induce

the tutorial policies in this thesis.
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3.0 REINFORCEMENT LEARNING PROCEDURE

Chapter 3 further develops the previous discussion of RL and describes the general procedure

by which tutorial dialogue policies were induced from student interactivity data. The chapter

begins with a description of how a problem of inducing pedagogical tutorial tactics can be

fit into the general RL and MDP framework. In this thesis it is assumed that inducing

tutorial tactics specific to each Knowledge Component (KC) will be more effective than

inducing an overall KC-general policy. This chapter provides an overview of KCs (a more

detailed description of the identified KCs may be found in Chapter 4) and the approach

used to generate KC-based MDPs from the training corpus. It also describes the induction

toolkit employed and the assessment metrics used. Finally, the chapter discusses the issues

confronted when the induced policies were implemented back into Cordillera.

In this dissertation, a toolkit is used to calculate an optimal dialogue policy given a

suitable Markov Decision Process (MDP) model. The major challenge faced therefore was

the production of the MDP model, especially the KC-based MDPs. There were five distinct

issues that needed to be addressed. The list included collecting and/or selecting training

corpora from which the tutorial tactics will be derived, determining on which KCs the

tutorial tactics should be induced for, the reward function, the state representation, and how

to handle conflicting policies. These issues are discussed below. Additional details about

how these issues are addressed in Studies 2 and 3 and the resulting models are presented in

Chapters 5 and 6.
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3.1 REINFORCEMENT LEARNING FOR TUTORIAL TACTICS

Previous research on using RL to improve dialogue systems (e.g. [Levin and Pieraccini, 1997,

Singh et al., 1999]) has typically used MDP’s [Sutton and Barto, 1998] to model dialogue

data. The central idea behind this approach is to transform the problem of inducing effective

dialogue policies into computing an optimal policy for choosing actions in an MDP. An MDP

formally corresponds to a 4-tuple (S, A, T,R), in which:

S = {S1, · · · , Sn} is a state space.
A = {A1, · · · , Am} is an action space represented by a set of action variables;
T : S ×A× S → [0, 1] is a set of transition probabilities between states that describe the

dynamics of the modeled system; for example: P (Sj |Si, Ak) is the probability that the
model would transition from state Si to state Sj by taking action Ak.

R : S ×A× S → R denotes a reward model that assigns rewards to state transitions and
models payoffs associated with such transitions.

Additionally, π : S → A is defined as a policy or tutorial tactics.

Dialogue management can be easily represented using an MDP: the states are vector

representations composed of relevant student and dialogue characteristics; the transitions

are dialogue system acts; and the reward function is calculated from the dialogue system’s

success measures such as completion on task, and, in the present case, learning gains. More

formally, we can view each dialogue di as a trajectory in the chosen state space determined

by the system actions and user responses:
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dL

a2
dL
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dL−−−−→ · · · snL

dL
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Once the MDP structure S, A, R has been defined, the model parameters T are estimated

from the training corpus as: T = {p(Sj|Si, Ak)}k=1,··· ,m
i,j=1,··· ,n. More specifically, it is calculated

by taking the number of times that the system is in state Si, took step Ak, and arrived in

state Sj divided by the number of times the system was in Si and took Ak. The reliability

of these estimates clearly depends upon the size and structure of the training dataset. Once

a complete MDP is constructed, a dynamic programming approach can be used to learn the

optimal control policy π∗, i.e. the set of actions the model should take at each state, to

maximize its expected cumulative reward.

3.2 ISSUE 1: TRAINING CORPUS

One of the main characteristics that differentiate RL from other machine learning techniques

is exploration. In order to have confidence in the constructed MDP, the training corpus must

explore various possible actions from various possible states, and preferably, many times. In

other words, the training corpus must be exploratory with respect to the chosen states and

actions. If we never try an allowed action from a certain state, we cannot expect to know the

value of taking that action in that state. As a result, unexplored state transitions cannot be

estimated, and transitions that are explored infrequently will have poor or strongly biased

estimates. Even a large, but biased, corpus presents problems in that it may focus extensively

on one small subset of the domain. This is especially true with pre-existing tutoring corpora

where the data is gathered by using a system with a hand-tooled rule set. In that situation,

the existing policy and the subjects’ use of it may bias the dataset and prevent adequate

exploration. Some authors have proposed using simulated students to generate training data

[Levin and Pieraccini, 1997, Young, 1999]. It is still an open question, however, about what

causes students to learn and how they learn. As a result, constructing a valid simulation

that provides an accurate estimate of students’ responses and their learning is doubtful.

Therefore this thesis focused solely on real user data. Singh et al. suggest that authors avoid

using biased data by collecting “exploratory data,”, that is, data collected from a system

that makes tutorial decisions randomly, thus ensuring that the transitions are adequately
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explored [Singh et al., 2002].

In this research two approaches were adopted. In Study 1 students made use of Random-

Cordillera which made the crucial Elicit/Tell and Justify/Skip-justify decisions randomly.

In Study 2 students made use of Dichotic Gain (DichGain) Cordillera which made decisions

based upon a policy induced from the training corpus collected in Study 1. The former

random route is consistent with the exploration literature, while the latter route is consistent

with the task of gradually improving induced policies over time. As will be described in

Chapter 6, in preparation for Study 3 both corpora were used for policy induction.

3.3 ISSUE 2: KNOWLEDGE COMPONENTS

In tutoring literature, it is commonly assumed that relevant knowledge in domains such as

math and science is structured as a set of independent but co-occurring Knowledge Com-

ponents (KCs). A KC is “a generalization of everyday terms like concept, principle, fact,

or skill, and cognitive science terms like schema, production rule, misconception, or facet”

[VanLehn et al., 2007b]. For the purposes of tutoring systems, these are the atomic units of

knowledge. Problem solving in such domains typically involves complex problems consisting

of multiple steps, each of which involves a single or a combination of independent KCs. For

example, a simple algebraic equation, 2x + 5 = 21 can be solved via two steps: 1) subtract

the same term 5 from both sides of the equation; and 2) divide both sides by the non-zero

term 2. Here subtracting the same term from both sides of the equation is one KC and divid-

ing both sides of the equation by the non-zero term is another KC. As problems grow more

complex, the number of KC’s involved, and their combinations, can increase exponentially.

In the tutoring literature it is commonly assumed that KC’s are learned independently

of one another. A number of standardized tests, for example, are constructed based on this

assumed independence among KCs. Techniques exist to re-engineer the definition of KCs

so that they are independently learnable [Cen et al., 2006, Cen et al., 2007], thus improving

the overall effectiveness of the resulting tutoring system. When dealing with a specific KC,

the expectation is that the tutor’s interactive decision on that KC, elicit or tell, would
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be based upon the student’s mastery of the KC in question, its intrinsic difficulty, and

other relevant, but not necessarily known, factors specific to that KC. In other words, the

assumption is that an optimal policy for one KC might not be optimal for another. Therefore,

the assumption made in this dissertation is that inducing tutorial tactics specific to each

Knowledge Component (KC) would be more effective than inducing an overall KC-general

policy. The KCs identified by the domain experts for the domain are described below. In

order to derive KC-based tutorial tactics, KC-based MDPs needed to be generated from the

training corpus.

3.3.1 Identified KCs in the Selected Domain

In order to learn a policy for each KC, the KCs in a domain need to be identified. The

domain chosen for this dissertation covers the work-energy chapter in college-level physics

textbook. Two domain experts (not the author) who are also knowledge representation

experts identified 32 KCs in the domain. For example, KC20 and KC21 are the two KCs that

were involved in the majority of the tutorial decisions on elicit/tell (ET) and justify/skip-

justify (JS) respectively.

Definition of Kinetic Energy (KE = 1
2
mv2) —KC20 : If an object is moving, then its

kinetic energy at a time is 1
2
mv2, where m is the object’s mass and v is the magnitude

of the object’s instantaneous velocity.

Definition of Gravitational Potential Energy (GPE = mgh) —KC21 : If an object

and a planet are in a system (or equivalently, the gravitational force of the earth on the

object is an internal force), then their gravitational potential energy is mgh, where m

is the mass of the object, g is the gravitational acceleration of the planet, and h is the

object’s height above a zero point. The zero point is arbitrary, but is often chosen to be

the planet’s surface.

Note that a complicated domain like physics can often be broken into many KCs. Here the

32 identified KCs are believed to cover the most important knowledge in the domain. There

are some other KCs shown in the tutorial decision steps that are not among 32 identified

KCs. After identifying the KCs involved in the domain, we needed to decide which KCs are
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needed in order to induce KC-based policies. Intuitively, it should depend on the relative

importance of these KCs and also on the frequency of their appearances in the training

corpus, and so on. To determine which KCs were required to induce the KC-based tutorial

tactics, the training tutorial dialogues were annotated with the tutorial action decisions

based on the KCs involved.

3.3.2 Tutorial Dialogue Annotation

A group of five individuals (including the author) annotated each of the tutoring dialogues

and action decisions with the relevant KCs. The KCs were drawn from the set of 32 KCs

described in Appendix A. Each tutorial dialogue consists of one human participant’s inter-

action with Cordillera to solve 7 problems. For each of seven problems, there were at least

two annotators. For each of 32 identified KCs, the final kappa was ≥ 0.77 which is fairly

high given the complexity of the task.

Table 3.1 shows an example. Here lines 1, 5, 6, 7, 9 and 11 are tutor turns with the

action decisions and their target KCs listed on the right. Next, various labels in Table 3.1

will be explained.

Line 1 was labelled “(ELICIT, KC22)”. This indicates that this is an ET decision step

on KC22 and the tutor decided to elicit.

Line 2 was labelled “(+KC22)”. It shows that the student answered the question cor-

rectly, so a +KC22 was added to the student’s turn. Or it is a correct entry generated by

the student. Alternatively, a −KC22 would represent that it is an incorrect entry input by

the student on KC22.

Line 5 was labelled “(TELL, ∗KC22)”. It indicates that the tutor made an ET decision

on KC22 and decided to tell the student directly. Here “∗KC22” indicates that this piece of

information is about KC22, and it was generated by the tutor. By contrast, ones that were

generated by the students are labelled with “+” and “-” to represent correct and incorrect

entries respectively.

Line 6 was labelled with a simple “(TELL)”. It indicated that the tutor made an ET

decision, but this step does not involve any identified KCs.
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Table 3.1: Example of Tutorial Dialogue with KC Labels

1. T: At T2 we also know the spring is uncompressed. So, what type of energy can we

easily find now? (ELICIT, KC22)

2. S: spe (+KC22)

3. T: Yes, I agree.

4. T: At this point we know the values for KE2 and GPE2. It is time to compute the value

for SPE2.

5. T: It is important to remember that we cannot find the SPE of an OBJECT. We need

to find the spring potential energy of a pair: object-spring. (TELL, ∗KC22)

6. T: It is possible to compute the spring potential energy at T2 because we know the

spring is uncompressed. That is, d2=0 m.(TELL)

7. T: Using this information we can infer that the spring potential energy of the block-

spring pair at T2 is SPE2=0 J. (TELL, {∗KC22 ∗KC23)}

8. T: Now we have all we need to find the value for the system’s total mechanical energy

at T2.

9. T: TME of the system at T2 is the sum of the block‘s KE and the block-Earth pair‘s

GPE because the value for the spring potential energy is zero. In this case TME2=11.88

J+1.62 J =13.5 J. (TELL, {∗KC23 ∗KC24)})

10. T: At this point we have found the value for TME2. We can now easily find the system‘s

TME at all other time points since the system is isolated.

11. T: What principle gives us the system‘s total mechanical energy at every time point,

knowing its value at T2 and also given that the system is isolated? (ELICIT, {KC27)})

12. S: student conservation of energy (+KC27)

Line 9 was labelled with “(TELL, {∗KC23 ∗KC24)})”. It indicated that the tutor made

an ET decision and that this step involves two KCs: {KC23 KC24)}). Because the tutor

told the information, both KCs are labeled with “*”.
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The last tutor turn in the example is Line 11, labelled “(ELICIT, {KC27)})”. This

indicates that the tutor made an ET decision on KC27 and decided to elicit the information

from the student.

Finally, Line 12 was labelled “(+KC27)”. It indicated that it was a student turn and

the student input a correct entry for KC27.

For a training dialogue di, one dialogue trajectory can be constructed for each KC. More

specifically, we use ndi,KCk
to represent the number of turns on KCk in the dialogue di and

we expect different ndi,KCk
for different KCk because the number of tutorial actions on each

KC varies in the di. Thus, we have:

s1
di,KC1

a1
di,KC1

,r1
di,KC1−−−−−−−−−→ s2

di,KC1
· · · sni,KC1

di,KC1

a
ni,KC1
di,KC1

,r
ni,KC1
di,KC1−−−−−−−−−→

· · ·

s1
di,KCk

a1
di,KCk

,r1
di,KCk−−−−−−−−−→ s2

di,KCk
· · · sni,KCk

di,KCk

a
ni,KCk
di,KCk

,r
ni,KCk
di,KCk−−−−−−−−−→

· · ·

s1
di,KCP

a1
di,KCP

,r1
di,KCP−−−−−−−−−−→ s2

di,KCP
· · · sni,KCP

di,KCP

a
ni,KCP
di,KCP

,r
ni,KCP
di,KCP−−−−−−−−−−→

Here P is the number of the KCs used to induce policies, and they are represented as:

KC1, · · · , KCP . And sj
di,KCk

aj
di,KCk

,rj
di,KCk−−−−−−−−−→ sj+1

di,KCk
indicated that in the jth turn in the

dialogue di for KCk , the system was in state sj
di,KCk

, executed action aj
di,KCk

, received

reward rj
di,KCk

, and then transferred into state sj+1
di,KCk

.

For each KCk, all of the dialogue trajectories on KCk from each tutorial dialogue were

combined in the training corpus and used to generate the training corpus for KCk. From that

training corpus, an MDPKCk
could be constructed and a dynamic programming approach

could be used to learn the optimal control policy π∗
KCk

. In the next section, the procedure

is described in detail.
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3.4 KC-BASED MDPS

In order to induce KC-based tutorial tactics, an MDP model was constructed for each KC.

For example, for KC KCk, the corresponding MDPKCk
is defined as:

SKCk
= {SKCk,1, · · · , SKCk,n} correspond to the dialogue states related with KCk

AKCk
= {AKCk,1, · · · , AKCk,m} correspond to the tutorial actions involving KCk only.

TKCk
: SKCk

×AKCk
× SKCk

→ [0, 1] is a set of transition probabilities between KCk

related states and action AKCk
on KCk. Once the MDPKCk

structure has been
defined, they are estimated from the corresponding annotated training corpus on KCk.

RKCk
: S ×AKCk

× SKCk
→ RKCk

are defined to reflect dialog performance metric on KCk

only.
Additionally, π∗

KCk
: SKCk

→ AKCk
is defined as a KC-based policy or tutorial tactics for

KCk.

The general approach for defining KC-based state representation, action choice space,

and reward function is described in the next subsection of this dissertation.

3.4.1 Issue 3: State Representation

For RL, as with all machine learning tasks, success is dependent upon choosing an appropriate

set of features to represent dialogue states. An ideal state representation should include all

of the tutorial dialogue information that is relevant and necessary to determine what action

the system should take next. Ideally this would include a complete record of the tutoring

interaction thus far–both for the present problem and preceding problems–as well as derived

features such as gender, MSAT, detailed pre-test scores, and so on. However, the high cost

of obtaining human tutorial dialogues makes it crucial to limit the size of the state space.

Nevertheless, even a state based on a handful of features can yield an enormous state space.

In order to obtain an effective representation that both minimizes data sparsity while

retaining sufficient information, a small but carefully selected feature space is preferable.

Using a small state representation to approximate the true state reduces the amount of data

required. The disadvantage of doing so is that it increases the risk that educationally relevant

features will be missed, resulting in a non-representative state space. To this end this thesis

began with a large set of features to which a series of feature-selection methods were applied
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to reduce them to a tractable subset. Because of this, the state representation issue can be

divided into four sub-issues for discussion purposes.

3.4.1.1 Sub-Issue 1: Feature Choices This sub-issue concerned what types of relevant

information can be included in the state space. For this dissertation only features that

could be computed automatically or evaluated objectively, such as gender, were included.

Hand-annotated dialogue features were omitted as the tutor would require the features to

be available in real time when the learned policies are employed. Moreover, in order to

induce KC-based tutorial tactics, the state representations were also KC-based. For example,

“pctCorrectKCPM” is a feature choice in Study 2. It is defined as the students’ performance

on the specific KC. In MDP(KC20) it refers to the students’ performance on KC20, while in

MDP(KC21) it refers to the students’ performance on MDP(KC21).

3.4.1.2 Sub-Issue 2: Feature Discretization An MDP model generally requires all

the state features in the model to be discrete variables. Most of the features of interest

here, such as “pctCorrectKCPM”, are continuous. It is thus necessary to choose an effective

method for feature discretization.

3.4.1.3 Sub-Issue 3: Feature Selection One of the main challenges in this dissertation

was feature selection. For Study 2, a greedy-like search strategy for feature selection was

employed, while in Study 3 more extensive feature selection methods were employed. These

will be discussed in more detail in Chapters 5 and 6 respectively.

3.4.1.4 Sub-Issue 4: Maximum Number of Features The last major sub-issue re-

lated to state representation is the maximum number of features to be included in the state

space. The number should be small so that we have enough training data to cover each

state, yet large enough to would include enough features to represent states without losing

information necessary to make good tutorial decisions.
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3.4.2 KC-based Action

In the present studies there are two types of choices in the action space: Elicit/Tell (ET)

and Justify/Skip-justify (JS). These are available to the tutor at different times for different

KCs in the tutoring process. In each MDP(KCk), the tutorial action choices were those that

involved the specific KCk only.

3.4.3 Issue 4: KC-based Reward

Based on previous research by [Tetreault and Litman, 2008, Tetreault and Litman, 2006b,

Tetreault and Litman, 2006a] Normalized Learning Gain (NLG) was selected as a reward

function because it measures students’ gain irrespective of their incoming competence. In

addition to mapping the training problems to KCs, a domain expert also mapped the pre-

/post test problems to the sets of relevant KCs. This resulted in a KC-specific NLG score

for each student. The reward function is defined as follows:

NLGKCk
=

posttestKCk
− pretestKCk

1− pretestKCk

(3.1)

Here post− testKCk
and pre− testKCk

refer to the KC-specific pre- and post-test scores on

KCk for each student.

In this dissertation, only terminal dialogue states have non-zero rewards because a stu-

dent’s NLG will not be available until the entire of his/her tutorial dialogue is completed.

Thus for a tutorial dialogue di, r1
di,KCk

· · · , r
ndi,KCk

−1

di,KCk
are all equal to 0 and only the final

reward r
ndi,KCk
di,KCk

equals to non-zero rewards. The final reward in this thesis is determined by

the student’s NLG on the corresponding KC. Here ndi,KCk
represents the number of turns

that tutorial dialogue di had made decisions on KCk.

3.5 INDUCE KC-GENERAL POLICIES

To this point, the dissertation has focused on inducing KC-based tutorial tactics. However,

certain tutorial decision steps do not involve any identified KCs. Line 6 in Table 3.1 is
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such an example. Next we need to decide how the dialogue manager should perform in this

instance. In this dissertation, the issue was resolved by inducing a KC-general tutorial tactic.

In both Study 2 and Study 3, we induced one KC-general policy for ET and one for JS.

This was done by using the same general approach as inducing KC-based policies except that

the state representation, action, and choice are no longer based on any particular KC. For

KC-general policies, the final rewards are calculated based upon the student’s cumulative

KC-based NLGs. When a tutorial decision step does not involve any KCs, the dialogue

manager would follow the KC-general policies.

Once an MDP model has been completed, calculation of an optimal policy is straight-

forward. This dissertation work employed an RL toolkit developed by Tetreault and Litman

[Tetreault and Litman, 2008, Tetreault and Litman, 2006b, Tetreault and Litman, 2006a].

3.6 TETREAULT AND LITMAN’S RL TOOLKIT

Tetreault, & Litman’s toolkit [Tetreault and Litman, 2008, Tetreault and Litman, 2006b,

Tetreault and Litman, 2006a] uses a dynamic programming algorithm for policy iteration

[Sutton and Barto, 1998]. The code was originally built on the MDP toolkit written in Mat-

lab [Chades et al., 2005]. The purpose of this algorithm is to handle the problem of reward

propagation. As noted above, rewards, in this case learning gains, are not assigned until the

end of the tutoring process, long after any action has occurred. The dynamic programming

algorithm propagates the rewards back to the internal states weighting the V-value of each

state, s via the following recursive equation:

V (s) = max
a′

R(s, a) +
∑

s′

P (s′|s, a)γV (s′) (3.2)

Here P (s′|s, a) is the estimated transition model from the training corpus, R(s, a) is

the estimated reward model, and 0 ≤ γ ≤ 1 is a discount factor. If γ is less than 1,

then it will discount rewards obtained later. For all the studies reported here, a discount

factor of 0.9 was used, which is common in other RL models [Tetreault and Litman, 2008,

Tetreault and Litman, 2006b, Tetreault and Litman, 2006a].

46



The V-values, as defined by Equation 3.2, can be estimated to within a desired threshold

using policy iteration [Sutton and Barto, 1998]. Here an estimated v-value and a best pos-

sible action to take for each state are recorded. These are then iteratively updated based on

the values of its neighboring states. This iteration stops when each update yields a difference

below some threshold ε. Once the policy iteration process is complete, the optimal dialogue

policy π∗ is obtained by selecting the action that produces the highest expected reward (or

V-value) for that state. At this time we also compute the Expected Cumulative Reward

(ECR) and a 95% confidence interval for the ECR (hereafter, 95%CI) for the optimal policy.

3.6.1 Expected Cumulative Reward (ECR)

The Expected Cumulative Reward (ECR) of a policy is derived from a side calculation in

the policy iteration algorithm: the V-values of each state, the expected reward of starting

from that state and finishing at one of the final states. More specifically, the ECR of a policy

π can by calculate as follows:

ECRπ =
m∑

i=1

Ni

N1 + · · ·+ Nm

× V (si) (3.3)

Where s1, · · · , sm is the set of all starting states and v(si) is the V-values for state si; Ni

is the number of times that si appears as a start state in the model and it is normalized by

dividing Ni

N1+···+Nm
. In other words, the ECR of a policy π is calculated by summing over all

the initial start states in the model space and weighting them by the frequency each state

appears as a start state.

In Tetreault and Litman’s work [Tetreault and Litman, 2008], the authors used ECR

as a evaluation metric for feature selection. Additionally, ECR has been widely used as

the criteria for evaluating the policy in the area of inducing policy from simulated corpus

[Janarthanam and Lemon, 2009, Williams and Young, 2007b, Williams and Young, 2007a].

More specifically, given two MDP structures: MDP1 = {S1, A,R} and MDP2 = {S2, A,R},

which have the same action choices A and reward function R but different state represen-

tation, the transition probability T1 and T2 were estimated from the same training corpus.

Two different policies, π1 and π2, were derived based on MDP1 and MDP2 respectively.
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The higher the ECR value of a policy, the better the policy is supposed to perform.

3.6.2 Confidence Interval

Tetreault and Litman pointed out one limitation of using the ECR as an evaluation metric

for a policy: it assumes that there was sufficient collected data to derive a reliable policy

[Tetreault and Litman, 2008, Tetreault and Litman, 2006b, Tetreault and Litman, 2006a].

However, in practice researchers frequently have to deal with issues of data sparsity. They

proposed a novel approach by taking into account the reliability of the transition probability

estimates from the training data and constructing a confidence interval for the ECR for the

learned policy.

As described earlier, an estimate for the ECR was computed by using the transition prob-

abilities derived from the training corpus. Note that these transition probabilities are simply

estimates which are more or less accurate, depending on how much data is available. As an

illustration, Tetreault and Litman used the following example [Tetreault and Litman, 2008]:

In an MDP model, we have S = {S1, S2, S3}, A = {A1, A2}. From a training corpus, there

were ten cases that an action A1 was taken from state S1. Out of these, three times the

system transitioned back to state S1, two times it transitioned to state S2, and five times to

state S3. Thus we have

P (S1|S1, A1) =
3

10
= 0.3 (3.4)

P (S2|S1, A1) =
2

10
= 0.2 (3.5)

P (S3|S1, A1) =
5

10
= 0.5 (3.6)

From the same corpus, there were 1000 times that action A2 was taken from state S2.

In 300 of those cases it transitioned to state S1; in 200 cases to state S2; and the remaining
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500 times to state S3. Thus,

P (S1|S2, A2) =
300

1000
= 0.3 (3.7)

P (S2|S2, A2) =
200

1000
= 0.2 (3.8)

P (S3|S2, A2) =
500

1000
= 0.5 (3.9)

While both sets of transition parameters have the same value, the second set is more

reliable. In order to take this lack of reliability into account, Tetreault and Litman pro-

posed a CI estimate based upon the available data in [Tetreault and Litman, 2008], see also

[Tetreault and Litman, 2006b, Tetreault and Litman, 2006a]. It is done by taking transition

matrix T for slice and sample from each row using Dirichlet distribution for q times. As a

result, it generates a large number of new transition metrics T1, T2, · · · , Tq that are all very

similar to T . They then run MDP on all q transition matrices to get a range of ECR’s (in

this dissertation m=1000 was used, which is also used in [Tetreault and Litman, 2008]).

Their algorithm looks like this:

1. Compute transition probability matrix T from from the training data.
2. Use Policy iteration to compute an optimal policy π∗ for S,A,T,R.
3. Sample q transition metrics T1, T2, · · · , Tq by sampling from the Dirichlet

distributions corresponding to the counts observed in the training data;
4. Compute the value of the optimal policy π∗ in each of these m models.
5. Numerically build the 95% confidence interval for the policy π∗ based on the

resulting value estimates: the bounds for the confidence interval are set at the lowest
and highest 2.5 percentile of the resulting distributions.

3.6.3 An Example to Illustrate ECR and CI

This section illustrates ECR and CI with an example. In [Tetreault et al., 2007] the authors

employed five feature choices to represent the state space: Certainty, Correctness, Percent

Correct, Concept Repetition, and Frustration. Their system employed four possible tutor

actions: ask a simple answer question; ask a complex answer question; ask a combination of

the two; or do nothing. They estimated the reward value based upon the students’ NLG.

For the purpose of strategy induction, they assigned a reward of +100 if the students’ NLG
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π1 :

Features: Certainty, Correctness, and Concept Repetition.

ECR: 42.56

95%CI: [28.37, 59.29]

Interval Width: 23.52

π2 :

Features: Certainty, Correctness, and Percent Correctness

ECR: 28.50

95%CI: [−5.89, 57.82]

Interval Width: 63.71

Figure 3.1: ECR and CI Sample Learned policies

was above the median value. NLG scores below the median value were assigned a score of

−100. Two of the learned policies are summarized in Figure 3.1.

According to this assessment, π1 will be both more effective and more reliable than π2

because the former has a higher ECR, but a narrower CI than the latter. In Study 3, both

the ECR and 95%CI were employed as feature selection criteria. More specifically, the

upper and lower bounds of the CI were used, and are referred to as the lower-bound and

upper-bound of the policy.

3.7 ISSUE 5: CONFLICTING POLICIES

Once the tutorial tactics were induced, in order to test their effectiveness on the real subjects

the researchers needed to implement them back to Cordillera. In order to execute these

tutorial tactics, the dialogue manager needed to keep a record of the student’s current states
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on each KC. Moreover, it should also retain a KC-based record on the tutorial decision

steps. So when a tutorial decision step occurred, the dialogue manager first looked up the

KC(s) involved in that step and then looked up the corresponding policies. When a tutorial

decision did not involve any specific KCs, the dialogue manager followed the KC-general

tutorial tactics. When it involved a specific KC, the dialogue manager followed the tutorial

tactics for that KC only. However, sometimes a tutorial decision involved multiple KCs,

which generated conflicting decisions. In this case, the researchers needed to decide how the

dialogue manager should deal with conflicting policies. This was the fifth and final issue

requiring a decision.

3.8 DISCUSSION

To summarize, the general procedure for RL applications in this thesis was to first select a

training corpus and then which KCs would be used to derive specific tutorial tactics for. For

each KCi, two types of tutorial decisions: < ET, JS > were derived and a KC-based reward

RKCi
for each student’s tutorial dialogue is defined. The KC-based reward was defined based

on the student’s KC-specific NLG scores on KCi. Then the KC-based feature choices were

defined and each feature choice was discretized into discrete variables. Finally, the procedure

described in Figure 3.2 was executed.

The five main RL-related issues addressed in this methodology are 1) selection of a

training corpus, 2) choosing knowledge components to derive specific tutorial tactics on,

3) determining the state representation, 4) defining the reward function, and finally, 5)

dealing with conflicting policies on multi-KC steps. State representation was divided into

four sub-issues: a) defining feature choices, b) identifying feature discretization procedure,

c) determining the feature selection procedure, and d) determining maximum number of

features included in a policy.

In Chapters 5 and 6, the procedure for applying RL to derive KC-based tutorial tactics

will be described, including how the five issues and four sub-issues were addressed. The rest

of the procedure in both Studies 2 and 3 follows the general methodology described above.
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1. Select representations for dialogue states SKCi
, AKCi

, and reward RKCi

2. FOR each subset of features S ′
KCi

selected from S by following a feature selection proce-

dure, do:

• Use a training corpus to building an MDP’ model based on S ′
KCi

, AKCi
and RKCi

.

The transition probability T ′
KCi

of this MDP’ is approximated based on the collected

exploratory corpus.

• Compute a policy from the learned MDP’ by Tetreault, & Litman’s toolkit.

3. Select a policy from all of induced policies that has the highest ECR.

Figure 3.2: General RL Procedure For Inducing KC-based Tutorial Tactics

This series of studies was designed to investigate two primary research questions: (1) Do

pedagogical tutorial tactics on Elicit/Tell and Justify/Skip-justify impact students’ learning?

And (2) Is reinforcement learning a feasible method to induce tutorial tactics?

In Study 1, an exploratory corpus was collected by training a set of real students in a

version of Cordillera that made random ET and JS decisions. In Study 2, we defined a set of

18 pedagogically relevant features, applied a greedy-like feature selection method to narrow

the list down to four and applied RL to induce KC-based pedagogical tutorial tactics from

the Exploratory corpus. The induced policies were then incorporated back into Cordillera

and a second group of students was trained with this new version of Cordillera.

Finally, in Study 3, a set of 50 features was defined and a variety of feature selection

methods were used to winnow them down to a set of six. More specifically, two sets of peda-

gogical tutorial tactics were induced: Normalized Gain (NormGain) and Inverse Normalized

Gain (InvNormGain). The NormGain set was derived with the goal of enhancing the tutorial

decisions that contribute to the students’ learning; while the InvNormGain set was derived

with the goal of enhancing those decisions that contribute less or even none to the students’

learning. Both sets were then incorporated back into Cordillera, and students were trained
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on the new versions of Cordillera with random assignments to conditions. The expectation

was that the NormGain group would out-perform the InvNormGain group.
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4.0 STUDY 1: EXPLORATORY CORPUS

The goal in Study 1 was to collect an exploratory corpus. The main advantage of collecting

an exploratory training corpus is to potentially compute an effective policy within a large

state space using a relatively small amount of training data. It addresses the situation in

which collecting real-world experience is highly costly, but computation is relatively cheap.

For example, it has been shown that this approach is effective at automatically learning the

effective action to take in any state in various dialogue systems where collecting data is even

less expensive than ITSs [Williams et al., 2005, Walker, 2000, Singh et al., 2002].

Study 1 used the Random-Cordillera on which the dialogue manager made random de-

cisions at each tutorial decision step. A set of real human participants interacted with

Random-Cordillera, from which an exploratory training corpus was collected for deriving

pedagogical tutorial tactics in Study 2 and Study 3. In the sections below this process will

be described in detail.

4.1 METHODS

4.1.1 Participants

Data was collected over four months during Fall 2007. Seventy college students were re-

cruited. They were required to have a basic knowledge of high-school algebra, but not to

have taken college-level physics courses. All subjects were paid for their time, regardless of

completion. Subjects who completed the study took from two to three weeks to complete

the study. In all, 64 students completed the experiment.
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4.1.2 Materials

As with the other studies in this thesis, Study 1 was done in the Physics work-energy domain,

a common component of introductory college physics courses.

4.1.2.1 32 Knowledge Components Two domain experts (not the author) who are

also knowledge representation experts, identified 32 KCs in the domain (see Appendix A).

They had experience identifying KCs for a series of previous studies involving college physics.

One example of their work is KC20 which is defined as:

Definition of Kinetic Energy (KE = 1
2
mv2) —KC20 : If an object is moving, then its

kinetic energy at a time is 1
2
mv2, where m is the object’s mass and v is the magnitude

of the object’s instantaneous velocity.

4.1.2.2 Physics Textbook The physics textbook used in this study is web-based. It was

written by a domain expert who is also a native English speaker (not the author). It includes

all the physics concepts that were needed for the domain. For each physics concept and

domain principle, a general description was presented together with some worked examples

(see Appendix D). For example, the description of KC20 in the textbook begins with “One

type of energy, called kinetic energy (KE), is associated with individual objects. It depends

only on an object’s mass and on the magnitude of its velocity...”. More information can be

found at section D.0.2.13 in Appendix D. The textbook was 27 pages long. When reading

the textbook, students were free to move forward and back. Appendix D shows the textbook

content.

4.1.2.3 Pre- and Posttest The pre- and post-tests were identical in Study 1. Both

contained a total of 33 problems selected from the Physics literature (see Appendix E) by two

domain experts (not the author). The tests were given online and consisted of both multiple-

choice and open-ended questions. The latter questions required the students to derive an

answer by writing or solving one or more equations. Once an answer was submitted, the

students automatically proceeded to the next question without receiving any feedback on the
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Table 4.1: Major Principles of Work and Energy

KC Descriptions of the principles Expressions

KC1 Weight Law (w) W = mg

KC14 Definition of Work (W) W = Fdcos(α)

KC20 Definition of Kinetic Energy (KE) KE = 1
2
mv2

KC21 Gravitational Potential Energy (GPE) GPE = mgh

KC22 Spring Potential Energy (SPE) SPE = 1
2
kd2

KC24 Total Mechanical Energy (TME) TME = KE + GPE + SPE

KC27 Conservation of Total Mechanical Energy

(CTME)

TME1 = TME2

KC28 Change of Total Mechanical Energy for Non-

isolated Systems (TMENC)

NetW = TME2 − TME1

correctness of a response. Students were not allowed to return to prior questions. Appendix

F listed the number of times each KC showed up in the tests. Except for KC7, all the rest

of the KCs appeared in at least one test item. For example: the first test problem is an

open-ended question involving KC20. It stated:

1. Enter the equation that defines the kinetic energy of an object (remember to use * for
multiplication and f̂or exponentiation, and be sure to include an = sign):

4.1.2.4 Domain Principles The eight major principles in the domain are shown in

Table 4.1. In Table 4.1, the first column lists its corresponding KC number. The second

column describes the name of the principle. The last column is the formula or mathematical

expression of the principle. To differentiate these KCs from the rest of 24 non-domain

principle KCs, the name the domain principle-related KCs were named as primary KCs. As

the table shows there are eight primary KCs in this domain. For example, the fourth row in

Table 4.1 is the definition of Kinetic Energy and its corresponding KC is KC20.

56



4.1.2.5 Seven Training Problems Participants solved a series of seven training prob-

lems. The problem statements are listed in Appendix G. The problems were arranged in

order of increasing complexity. Table 4.2 contains a list of the problems in the order they

were presented to the students and identifies which of the eight main KCs were relevant to

each problem. For example, P4 is an example used earlier in this dissertation. It is defined

as follows:

A 0.6kg rock in space has a velocity of magnitude 2.0m/s at point A and kinetic energy
of 7.50J at point B. What is the net work done on the rock as it moves from A to B? We
define:
T0: the time point when the rock is at point A.
T1: the time point when the rock is at point B.

As mentioned in an earlier chapter, solving training problem P4 involved applying three

major domain principles, with some principles needing to be applied twice. The three domain

principles are: the definition of Kinetic Energy (KE: KE = 1
2
mv2), the definition of Total

Mechanical Energy (TME: TME = KE+GPE+SPE), and the Change of Total Mechanical

Energy for Non-isolated Systems (NetW = TME2 − TME1). These were represented as

KC20, KC24, and KC28 respectively. Therefore, the fifth row in Table 4.2 shows that the

relevant KCs for the training problem P4 are KC20, KC24, and KC28.

Table 4.2: Seven Training Problems

Primary KCs
Problems: KC1 KC14 KC20 KC21 KC22 KC24 KC27 KC28

P1 X
P2 X
P3 X
P4 X X X
P5 X X X X
P6 X X X X X
P7 X X X X X

4.1.2.6 Training Scripts For each training problem, a tutorial script was written to

cover the relevant content. The content included how to solve the problem and the post-

problem discussions. The tutorial scripts were written collaboratively by a group of five
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authors (including this author). Four of the five were domain experts, while one was trained

in tutoring, specifically in the authoring of tutoring dialogues. Two of the domain experts

were native English speakers while the remainder were fluent in English. Appendix I provides

an example of the written tutorial script for training problem P4. Eventually each script

was checked by at least two out of five domain experts, who agreed upon the content of the

script.

4.1.2.7 Random-Cordillera The students in Study 1 trained on Random-Cordillera.

The dialogue manager on Random-Cordillera did not follow any tutorial tactics, but made

all the tutorial decisions randomly.

4.1.2.8 Human Wizards As described earlier, in order to reduce confounds due to

imperfect Natural Language understanding, human wizards were used. In Study 1, there

were a total of six human wizards. Their sole function was to map students’ entries to the

closest answer. They cannot control which tutorial actions the dialogue manager should take

next.

4.1.2.9 Some Clarification On The Number Of KCs Appearing In This Disser-

tation As mentioned before, for the Work and Energy domain, we have identified a total

of 32 KCs. Among them, 31 KCs were evaluated in the pre- and post-tests (KC7 was not).

Of these 31 KCs, 21 KCs were involved in the ET decisions while 10 KCs were involved in

the JS decisions. In Study 2, KC-specific tutorial tactics for all possible KCs were learned,

so 21 KC-specific ET tutorial tactics and 10 JS ones were induced. In Study 3, however, the

main focus was on the eight primary KCs that are also domain principles. Among the eight

primary KCs, KC1 did not show up in any JS tutorial decisions. Therefore, in Study 3, eight

KC-specific ET tutorial tactics and seven KC-specific JS tutorial tactics were induced.

4.1.3 Procedure

The study itself consisted of five standard phases: 1) background survey, 2) pre-training, 3)

pre-test, 4) training, and 5) post-test. In each phase, students were not restricted to any
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time limits. This was also true for Studies 2 and 3. The background survey asked students

for demographic information such as gender, age, SAT scores, high school GPA, experience

with algebra, calculus, physics, and other information (see Appendix C). Following the back-

ground survey, students read the physics textbook during the pre-training (see Appendix D)

and took the pre-test (see Appendix F). The physics textbook was only available during

phase 2, pre-training. This was also true for Studies 2 and 3.

In phase 4, students were first trained to solve a demonstration problem, which did not

include physics content, on Cordillera. The sole purpose of this step was to familiarize them

with the GUI interface. They then solved the seven training problems on Random-Cordillera.

Finally, students took the post-test which was identical to the pre-test. Students were given

the same set of questions in the same order.

4.1.4 Grading

All of the tests were graded in a double-blind manner by a single domain expert who was an

experienced grader (not the author). In a double-blind manner, neither the students nor the

grader know who belongs to which group. In this case, the grader was not familiar with the

hypotheses being tested. Each test question was assigned two grades: overall and KC-based

grade. The overall grade was a score in the range [0, 1] describing the correctness of an

answer as a whole. Since there were 33 test questions in all tests across the three studies,

the maximum overall score for each test was 33.

Under the KC-based grading criteria, the grader first identified all of the relevant KCs

for a test question, and then assigned a score in the range [0, 1] for each KC application.

Each of these scores was called the KC-based score. Except for KC7, all the remaining

31 KCs were present in at least one question of the tests. The maximum score for a test

question under the KC-based grading was the number of KCs involved in the question. A

KC cumulative score was calculated for each student by summing up all KC-based scores

across all of the test questions in the test. In this thesis, there were a total of 168 KCs in all

pre- and post-tests.

For each KC, e.g. KCk, a KC-based score was calculated by simply summing over the
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KC-based scores on KCk across all 33 test questions divided by the number of test questions

problems that involves KCk in the test. The number of occurrences of each KC in the pre-

and post-tests in this dissertation is shown in the last row in Appendix F. It shows that the

frequencies of 31 KCs in the test vary from one to up to 16.

The following example illustrates these three grading scores. Figure 4.1 presents a stu-

dent’s answer to a test question 10. In this example, the question statement is listed first

and then the correct answer. The mapped KCs refer to the two KCs that needed to be

applied to solve the question: KC20 and KC23. Their corresponding descriptions are also

listed. The student’s answer is partially correct in that the number is correct but without

unit. So the overall score for this answer is 0.75 (maximum is 1 for each test question) and

the cumulative KC score is 1 (the maximum is 2 which is the number of KCs involved in

the test question 10). Additionally, the student also received two KC-based scores for this

problem: 1 for KC20 and 0 for KC23.

For comparison purposes all of the scores were normalized to fall in the range of [0,1].

Most of the analysis in the following sections is based upon the overall and cumulative KC

scores. The KC-based scores will be presented only for Study 1 and Study 2. This is because

the KC-based scores are used to describe the characteristics of the Exploratory and the

Dichotic Gain (DichGain) Corpora and the KC-based NLGs (calculated from the KC-based

pre- and post-test scores) were used to derive KC-based tutorial tactics in Studies 2 and 3.

4.1.5 Measures

The main purpose of Study 1 was to collect an Exploratory corpus. Therefore, the focus will

primarily be on two aspects: learning performance and the characteristics of the Exploratory

corpus. For the learning performance, students’ pre- and post-test scores were compared

under both grading criteria to determine whether the Exploratory group learned by training

on Random-Cordillera.

For the characteristics of the corpus, the average number of ET and JS decisions and

overall decisions across students’ tutorial logs were presented. The I-ratio and the J-ratio
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Question 10: A toy cart moves with a kinetic energy of 30 J. If the magnitude of its velocity

is doubled, what will its kinetic energy be?

Correct Answer:

1. Kinetic energy = 30J

2. KE = 1/2 ∗m ∗ v2

3. newv = 2 ∗ v

4. newKE = 1/2 ∗m ∗ (2v)2 = 4 ∗ (1/2 ∗m ∗ v2) = 4 ∗KE = 4 ∗ 30J = 120J

Mapped KCs:

KC20: definition of kinetic energy KE = 1/2 ∗m ∗ v2

KC23: The unit for energy is the Joule (J)

Student Answer: newKE = 1/2 ∗m ∗ (2v)2 = 4 ∗ (1/2 ∗m ∗ v2) = 120

Overall Score : 0.75 (maximum is 1 for this problem)

Mapped KC Score: {KC20: 1}; {KC23: 0}

Culmulative KC-based Score : 1 (maximum is 2 for this problem)

Figure 4.1: An Example of Three Grading Criteria

were also checked to determine whether the random decisions worked. Recall that previously

the I-ratio and J-ratio were defined as:

I− ratio =
NElicit

NElicit + NTell

(4.1)

J− ratio =
NJustify

NJustify + NSkipJustify

(4.2)

The higher the I-ratio is, the more interactive the dialogue might be. The higher the J-

ratio is, the more likely the students would be presented a justification step. Specifically, the

average number of justification steps each student received was also presented. Additionally,

because the Exploratory Corpus would be used to induce KC-specific tutorial tactics in
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Studies 2 and 3, the analysis will include discussion of the characteristics of the Exploratory

Corpus and the KC-based learning performance.

Study 1 was conducted as a part of an NSF ITR (Information Technology Research)1

project, for which this author acted as a script author developing tutorial scripts for the

training problems. This author was primarily responsible for the scripts associated with

training problems P4 and P5. The scripts were checked by other members of the group.

This author was also involved in annotating training problems with relevant KCs and acting

as a human wizard during the collection of the Exploratory Corpus.

4.2 RESULTS

4.2.1 Time

Each student took between six and fourteen hours (3-7 sessions) to finish the study. Each

session typically lasted about two hours. In general the students spent roughly five hours

(ranging from as low as four to as high as nine hours) training with Random-Cordillera.

For analysis purposes, each student’s training dialogues were concatenated into a single

consecutive dialogue resulting in a single “super-dialogue” for each student. These super-

dialogues, together with pre- and post-test KC-based scores were used to derive the KC-based

policies for use in Studies 2 and 3.

On average, it took each student M = 280.38 mins (SD = 66.88) to finish the seven

training problems. For each training problem, the average time spent by the Exploratory

Group varied. In Figure 4.2, the y-axis shows the time on task in minutes. It shows the

Exploratory students spent less than 30 minutes on each of the first three simple problems,

while on the last problem P7, the averaged 67 minutes, the longest average time per problem.

As the training problems became more complicated, the more time it took the Exploratory

students to finish it.

1Support for this research was provided by NSF grants #0325054
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Figure 4.2: Average Time Spent Per Training Problem By the Exploratory Group

4.2.2 Learning Results

A one-way ANOVA was used to test for performance preference differences between the pre-

and posttests. Regardless of grading criteria, participants made significant gains from pre-

test to post-test (Table 4.3), F (1, 126) = 18.76, p < .001,R2 = .73 under the overall grading

criteria and F (1, 126) = 11.01, p = .001,R2 = .69 under the cumulative KC-based grading

criteria. Table 4.3 also lists the overall NLG scores and the Cumulative KC-based NLG

scores. Since a student’s NLG is defined as his or her actual average learning gain divided

by his or her maximum possible actual gain, on average the Exploratory students made 29%

gains under the overall grading criteria and 25% of the possible gains under the cumulative

KC scoring rubric.

Figure 4.3 shows the Exploratory group’s pre- and post-test scores under the two grading

criteria. A double asterisk (**) shows that the difference is statistically significant (p < 0.05).

Table 4.3 summarizes the minimum, maximum, mean, and SD of each score.
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Figure 4.3: Learning Performance on Exploratory Group

Table 4.3: Exploratory Students’ Learning Performance

Grading Min Max Mean σ

Pre-test 0.14 0.94 0.48 0.20

Overall Post-test 0.21 1.00 0.62 0.18

NLG -0.08 1.00 0.29 0.21

Pre-test 0.13 0.96 0.46 0.20

Cumulative KC-based Post-test 0.11 1.00 0.58 0.20

NLG -0.38 1.00 0.25 0.26
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4.2.3 Exploratory Corpus

4.2.3.1 Overall Characteristics The total number of ET tutorial decisions, referred to

as ET decisions in this thesis, ranged from 250 to 332 (M = 273.89, SD = 12.46) and that

of JS tutorial decisions, referred to as JS decisions, ranged from 52 to 71 (M = 56.61, SD =

3.43). The total number of the tutorial decisions regardless of actions, referring to as overall

decisions, for each student ranged from 288 to 372 (M = 305.48, SD = 14.01) 2.

In the Exploratory Corpus, since all tutorial decisions were randomly decided, the di-

alogues’ I-ratio was expected to be around 0.5. An analysis of the log files showed that

the I-ratios ranged from 0.44 to 0.56 (M = 0.50, SD = 0.03). Similarly, it was expected

that the J-ratio would be roughly 0.5 as well. The analysis of the log files showed that

this value ranged from 0.39 to 0.68 (M = 0.53, SD = 0.06). The larger justification range

is unsurprising as there were fewer possible justification steps in the script. More specifi-

cally, the number of justification steps in a student’s tutorial dialogue ranged from 21 to 40

(M = 30.17, SD = 3.83).

Table 4.4 summarizes the overall characteristics of the tutorial decisions in the Ex-

ploratory Corpus.

Table 4.4: Overall Characteristics On Tutorial Decisions in Exploratory Corpus

Value Min Max Mean σ

ET Decisions 250 332 273.89 12.46

JS Decisions 52 71 56.61 3.43

Overall Decisions 288 372 305.48 14.01

I-ratio 0.44 0.56 0.50 0.03

J-ratio 0.39 0.68 0.53 0.06

Justify 21 40 30.17 3.83

2overall decisions < ET decisions+JS decisions because on certain tutorial decision steps, the tutor makes
both types of decisions: JS first and then ET. For instance: Line 3 in Figure 2.1. When we calculated the
overall decisions, such a step was counted as one decision step.
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4.2.3.2 KC-based Characteristics As described above, not all KCs appeared on tu-

torial decision steps in the authored scripts. In order for the tactic induction process to be

effective, a KC must be involved in the tutorial dialogues, the decision steps and the pre-

and post-tests. There were a total of 21 KCs that satisfied this requirement. All 21 KCs

appeared in at least one ET decision step. Only 10 out of 21 KCs appeared in at least one JS

decision step. The characteristics of the 21 KCs in the Exploratory Corpus will be discussed

next.

Table 4.5 presents KC-based scoring and breakdown for the KC-related information in the

corpus. More specifically, the second column lists the 21 KCs. The third and fourth columns

list the average number of ET and JS decisions for the corresponding KC respectively. The

last column presents the comparison of KC-based post-test and pre-test scores to show

whether students’ performance on the KC was improved after the seven training problems.

From columns 2, 3 and 4, we can see that the number of decision steps varies dramatically

across the KCs. Column 2 shows that the average number of ET decisions ranges from 1.5

for KC18 to 72.6 for KC20: the definition of kinetic energy (KE = 1
2
mv2); column 3 shows

that 10 KCs appeared in the JS decision steps and the average number of JS decisions ranges

from 2 for KC12, KC14, KC26 to 16.9 for KC21: definition of Gravitation Potential Energy

(GPE = mgh). The average number of overall decisions varies from 2 on KC18 to 81.5 for

KC20.

In Table 4.5, the last column shows that students learned significantly on 13 out of 21

KCs (labeled with “**”) and on the remaining KCs, no significant difference was found

between their pre- and post-test scores.

The eight primary KCs are underlined. The Exploratory Group scored significantly

higher on the posttest than on the pre-test for six of the eight KCs. The two exceptions

are KC14 and KC28. Among the eight primary KCs, KC1 never occurred in any of the JS

decisions. The remaining seven KCs appeared in both ET and JS decisions.
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Table 4.5: KC-based Exploratory Corpus

KC ET JS Overall Decisions Compare Pre- and Posttests

1 KC1 ∗ ∗ 4 4 t(126) = 3.280, p = 0.001

2 KC3 2.1 2.1 t(126) = 1.204, p = 0.231

3 KC5 6.9 6.9 t(126) = 1.257, p = 0.211

4 KC9 ∗ ∗ 2 2.5 t(126) = 3.527, p = 0.001

5 KC12 2.1 2 3 t(126) = 1.392, p = 0.166

6 KC13 3 3 t(126) = 1.560, p = 0.121

7 KC14 8 2 9 t(126) = 1.076, p = 0.284

8 KC15 ∗ ∗ 7.5 7.5 t(126) = 2.470, p = 0.015

9 KC17 3.8 4.4 t(126) = .880, p = 0.381

10 KC18 1.5 2 t(126) = 1.478, p = 0.142

11 KC20 ∗ ∗ 72.6 15.4 81.5 t(126) = 5.379, p = 0.000

12 KC21 ∗ ∗ 33.6 16.9 60.8 t(126) = 3.932, p = 0.000

13 KC22 ∗ ∗ 30.7 3.3 32.1 t(126) = 2.389, p = 0.018

14 KC23 ∗ ∗ 62.1 4 63 t(126) = 5.358, p = 0.000

15 KC24 ∗ ∗ 52.7 15.5 60.5 t(126) = 3.924, p = 0.000

16 KC25 ∗ ∗ 8.7 9.3 t(126) = 3.767, p = 0.000

17 KC26 ∗ ∗ 4.2 2 6.1 t(126) = 2.063, p = 0.041

18 KC27 ∗ ∗ 21.5 4.8 23.9 t(126) = 4.522, p = 0.000

19 KC28 14.2 4.1 16.6 t(126) = 1.911, p = 0.058

20 KC31 ∗ ∗ 18.6 19.2 t(126) = 2.446, p = 0.016

21 KC32 ∗ ∗ 14.4 14.4 t(126) = 3.888, p = 0.000
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4.3 DISCUSSION

The goal of Study 1 was to collect an Exploratory Corpus. Ideally, the Exploratory Corpus

should be collected by exploring all possible states and testing all possible actions from

each possible state, preferably for many times. But given the high cost of collecting these

educational data, it is not possible to do so. Therefore, in this thesis the Exploratory Corpus

was collected by choosing actions randomly. It was expected that viable, effective tutorial

tactics would be collected from the“Exploratory” training corpus. Our analysis of the corpus

showed that random decisions seemingly balanced the number of elicits and tells students got

during the tutoring (The mean of the I-ratio was 0.50). It was less so for JS decisions, but the

mean was off only slightly. (The mean of the J-ratio is 0.53). It also demonstrated that the

ET decisions were four times more frequent than the JS decisions. Moreover, 21 KC-based

ET tutorial tactics and 10 KC-based JS ones could be induces from the Exploratory Corpus.

While randomness may not be the best guide, the students made significant learning

gains in Study 1 as evidenced by their pre- and post-test scores. The results seemed to

confirm the previous view that content exposure might cause students to learn even from

tutors with non-optimal pedagogical skills.
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5.0 STUDY 2: DICHOTIC GAIN (DICHGAIN) GROUP

The main goal of Study 2 was to investigate whether the induced tutorial tactics from the

Exploratory Corpus would result in a more effective version of Cordillera. Ideally, in order to

investigate the effectiveness of the system, a full-scale comparison between the new system

and Random-Cordillera should be conducted by randomly assigning students to one of two

groups. However, given the cost of running a comparison, and the issues to be addressed

in order to apply the RL to induce tutorial tactics, Study 2 was treated as an engineering

project rather than a science project. A new group of subjects were tested on the new

system and the students’ results were compared with the Exploratory group. This type of

comparison is not rare and is used if the goal is to determine if a trend exists. For example,

in [Singh et al., 2002] the researchers tested the learned policy on a new group of users and

compared the new group’s results with the original training group.

If there was a trend showing the new system out-performing the initial Random-Cordillera,

a full- scale comparison would be conducted. However, a subsequent analysis suggested that

the learned policies may not be very effective. This led to the hypothesis that this trend

might be caused by the limited methodology used for applying RL to induce tutorial tactics.

For example, a greedy-like feature selection method was used to derive a set of pedagog-

ical tutorial tactics from the Exploratory Corpus collected in Study 1 (described below).

Nevertheless, an important contribution of Study 2 is that it generated a new corpus that

is similar to many other preexisting corpora and datasets in that it follows some types of

tutorial tactics, whether effective or not. This new corpus can be further used to induce new

tutorial tactics. If a successful policy can be induced from this corpus, then it will show the

potential for applying RL repeatedly to improve ITSs from pre-existing data.
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Based on the reward functions employed in Study 2, the induced tutorial tactics were

referred to as Dichotic Gain (DichGain) tutorial tactics and the new version of the system

was labelled DichGain-Cordillera. The new group of students who were trained on DichGain-

Cordillera was named the DichGain group, and the new corpus was labelled the DichGain

Corpus. This chapter will describe Study 2 in detail.

5.1 APPLY RL TO INDUCE DICHGAIN POLICIES

Recall that the tutorial actions which are the central focus of this thesis were elicit/tell

(ET) and justify/skip-justify (JS). Chapter 3 provided a general overview of Reinforcement

Learning (RL) and described the toolkit used to derive tutorial tactics in this dissertation.

It was assumed that KC-based tutorial tactics would be more effective than KC-general

ones. Five issues needed to be addressed to induce KC-based tutorial tactics for each type of

action. The issues described were: 1) obtaining a training corpus; 2) selecting the target KCs

for which the tactics will be induced; 3) defining the reward function, 4) determining state

representation; and finally, 5) selecting a conflict-resolution policy for multi-KC decision

steps. In this section, it will be shown how those issues were addressed in Study 2.

5.1.1 Training Corpus

This study made use of the Exploratory Corpus collected in Study 1. That corpus consisted

of sixty-four student tutorial dialogues, one for each participant. Each dialogue covered the

entire interaction between the student and the Random-Cordillera system over the seven

training problems.

5.1.2 Knowledge Components

In order for the tactic induction process to be effective, a KC must be involved in the tutorial

dialogues, the decision steps and the pre- and post-tests. Table 4.5 in Chapter 4 lists the

21 KCs that meet these criteria. For this study, the decision was to induce one policy for
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each relevant KC. Therefore, of the thirty-two KCs in the domain, a total of thirty-one KC-

based tutorial tactics were induced: 21 KC-based tutorial tactics on ET decisions and ten

KC-based tactics on JS decisions. Additionally, two KC-general tactics, one for ET decisions

and another for JS decisions were induced. The KC-general tutorial tactics were used in the

decision steps that did not involve any of the identified KCs. In short, this resulted in a total

of thirty-three tutorial tactics: twenty-two ET tactics and eleven JS tactics. In the following

discussion, the study uses π(KCi, ET ) and π(KCi, JS) to refer to KC-based tutorial tactics

for KCi for the ET and JS decisions respectively. For KC-general tutorial tactics, the study

uses π(KC∗, ET ) and π(KC∗, JS).

5.1.3 KC-based Reward

As described in Chapter 3, for a tutorial dialogue di on KCk, there are a set of intermediate

rewards for each state and KC: r1
di,kck

. . ., r
ndi,kck

−1

di,kck
all of which are equal to 0. Only the final

reward, r
ndi,kck
di,kck

, has a non-zero value. Here ndi,kck
represents the number of dialogue turns

di in which the system made decisions regarding KCk.

In Study 2, a similar approach to reward function was used as [Tetreault and Litman, 2008].

The student’s final reward for each KCk in his/her superdialogue di was based upon his/her

KC-based NLG for KCk. More specifically, for each KCk, the students were divided into

two groups, low learners and high learners, according to a median split of the students’

KC-based NLGs.

The high learners were assigned a final reward of +100, while the low learners were

assigned a final reward of −100. These final reward values will be propagated to the internal

states via a dynamic programming algorithm for policy iteration [Sutton and Barto, 1998].

For inducing KC-general tutorial tactics, the reward functions were based on the cumulative

KC-based NLG instead of KC-based NLG on a specific KC. The rest of the procedure

remained the same.
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5.1.4 State Representation

As described in Chapter 3, the issue of the state representation can be divided into four sub-

issues. They are: 1) defining the potential feature choices in state representation; 2) capping

the number of features included in each policy; 3) discretizing the features appropriately; and

4) determining feature selection procedures. The next section describes how these sub-issues

were addressed in Study 2.

5.1.4.1 Feature Choices

Moore et al. identified four types of features that are relevant for human tutors when

making tutorial decisions: autonomy, temporal situation, problem-solving state, and perfor-

mance to model the dialogue and the student’s state [Moore et al., 2004]. For each category

three to seven features were defined. Note that in this dissertation only features that could

be both automatically computed and unambiguously evaluated were included. This was

because the tutor would require the features to be available in real time when the learned

policies were employed. In order to help readers to understand each feature better, at the

end of this subsection I will use a simplified example to illustrate how these features were

calculated in Study 2.

Autonomy — three features

Autonomy features are related to the amount of work performed by the student in the

dialog. All autonomy features end with an ‘A’ in their name and are numeric. They are

F1 tellsSinceElicitA: The number of tells the student has received since the last elicit
prompt, irrespective of the KC involved. For example, tellsSinceElicitA = 2 means that
two tell decisions have been made since the last elicit decision. This feature reflects
how active a student is currently, that is, how much work the student has performed
recently.

F2 pctElicitA: The percentage of elicit/tell decision points in which the tutor has opted
to elicit during the dialog, irrespective of KC. This feature describes how interactive
the overall tutorial dialogue is. If answering questions makes the student more active
and interactive than simply receiving information from the tutor, then the higher the
value of pctElicitA is the more active and interactive the tutorial dialogue is.

F3 pctTellsKCSessionA: The percentage of tells received in a session for a specific
KC, e.g.KC20. This feature describes how interactive the tutorial dialogue is for this
session. This feature measures the autonomy characteristics of the student’s tutorial
dialogue. It uses a longer timeframe than tellsSinceElicitA, but a smaller one than
pctElicitA.
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Of these features, pctTellsKCSessionA (F3) is KC-specific. The focus is on the value

specific to the current KC. For example, if a policy for KC21 is induced, this feature com-

putes the KC performance in terms of the tutorial actions on all previous instances of KC21

solely. In order to differentiate from other feature choices, a label “KC” was added to the

name for all KC-specific features.

Temporal Situation — 3 features

Temporal situation features cover temporal information such as time spent on the training

thus far. All three temporal situation features end with a ‘T’ and were numeric. Three

features were defined:

F4 durationKCT: Time duration since the last tutorial decision was made on the current
KC. e.g KC20. The feature reflects how active a student’s knowledge of the current KC
is. For example, if “durationKCT” is high, it means that the tutor has not mentioned
the KC recently, so the student’s knowledge on the current KC may be still.

F5 TimeInSessionT: The total time in the session so far. This feature can be used to
measure the student’s fatigue level.

F6 TimeBetweenSessionsT:The time elapsed between the end of the previous session
and the beginning of the current one. This feature reflects how likely it is that a student
has forgotten what was learned in previous sessions. The higher the value, the more
likely the student has forgotten what was previously learned. If TimeBetweenSessionsT
is high, then the tutor should probably remind the student of some domain knowledge
at the beginning of the session.

Among them, durationKCT is a KC-specific feature.

Problem Solving Context — 5 features

Problem solving features include state information, such as what phase the dialogue is in

(e.g. problem solving or post-problem discussion), the problem’s difficulty level, and so on.

All problem solving-related features end with “PS.” Five feature choices are defined below.

F7 EarlyTrainingPS: Problems P1, P2, P3 are categorized as early training problem
andthe rest four training problems are categorized as late ones For early training
problems, the tutor may ask students to practice certain entries to let them get used
to the tutor.

F8 ProblemComplexityPS: Problems P1, P2, P3 are simple; P4 and P5 are medium;
and P6 and P7 are complex. This feature reflects the increasing complexity of the
solutions for training problems. The feature is relevant because it is expected that
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fewer students will be able to solve a training problem on his/her own as the complexity
of the training problem increases.

F9 DuringWalkThroughPS: For each training problem the tutorial dialogues follow
a two-phase procedure: first problem solving, followed by a post-problem discussion.
This feature describes whether a tutorial decision was made during the problem solving
or during the post-problem discussion. It is probably relevant to learning because
certain tutor actions would be better to happen during the problem solving but not
post-problem discussion and vice versa. For example, qualitative discussions may
sometimes distract students from problem solving, and thus it would be better to
reserve qualitative discussion for the post-problem discussion rather than during the
problem solving itself.

F10 nKCsPS: The number of times the current KC has occurred in the current tutorial
dialogue. This feature reflects the student’s overall familiarity with the current KC.

F11 nKCsSessionPS: The number of occurrences of the KC, e.g. KC 20 in this session.
This feature reflects how many times the student has accessed the current KC in this
session.

Two features are KC-specific: nKCsPS(F10) and nKCsSessionPS (F11).

Performance — seven features

Performance features describe factors such as the quality of the student’s previous an-

swers and the student’s ability. All performance-related features end with “PM”. Seven have

been defined. These are described below:

F12 pctCorrectPM: Defined as: correct
correct+incorrect on all KCs. The number of correct

and incorrect entries calculated in the students’ logs that were labelled with + and −
respectively. This feature measures the student’s overall competence when only elicits
are counted as learning opportunities.

F13 pctOverallCorrectPM: Defined as correct
correct+incorrect+tells on all KCs. This feature is

probably relevant to learning in that it reflects the student’s overall competence when
both elicits and tells are counted as learning opportunities.

F14 nCorrectKCPM: The number of correct responses on the current KC, e.g. KC 20.
This feature reflects the student’s competence on the current KC.

F15 pctCorrectKCPM: Defined as correct
correct+incorrect on the current KC. e.g. KC20. This

feature is probably relevant to learning in that it reflects the student’s competence on
the current KC when only elicits are counted as learning opportunities.

F16 pctOverallCorrectKCPM: Defined as correct
correct+incorrect+tells on the current KC. e.g.

KC20. This feature reflects the student’s competence on the current KC when both
elicits and tells are counted as learning opportunities.

F17 nIncorrectKCPM: The number of incorrect responses on the current KC, e.g. KC
20. This feature reflects the student’s incompetence on the current KC.

F18 pctCorrectKCSessionPM: Defined as correct
correct+incorrect on the current KC. e.g.

KC20 in this session. This feature reflects the student’s lack of competence on the
current KC in this session.
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Five out of seven features are KC-specific. They are: nCorrectKCPM(F14), pctOver-

allCorrectKCPM(F15), pctCorrectKCPM(F16), nIncorrectKCPM(F17), pctCorrectKCSes-

sionPM(F18).

As mentioned above, a successful application of RL is heavily dependent upon choosing

an appropriate set of features to represent tutorial contextual states. In other words, the

state representation for RL should include all of the tutorial dialogue information that is

relevant and necessary to determine what action should be taken next. On the other hand,

user modeling focuses on developing cognitive models of human users, such as the modeling

of users’ skills, knowledge level, and so on. Therefore, the features included in the state rep-

resentation for the RL should include, but not be limited to, the features that model human

users. In this project, some features, especially performance-related features as defined in

Study 2 and Study 3 (described in Chapter 6) can be seen as modeling students’ knowledge

levels. One example of such a feature is “pctCorrectKCPM” which represents the percentage

of times a student had the correct answer on a specific KC.

Earlier an explanation was provided for how KC-specific features were calculated for

inducing specific KC tutorial tactics. However, when inducing KC-general tutorial tactics

on either ET or JS decisions, all the KC-specific features become KC-general features and

take into count all of the previous instances regardless of KC. For example, nCorrectKCPM

becomes the number of correct responses on all the KCs instead of on a specific KC.

This section explains how the eighteen features were calculated from the log files. The

following is an sample of a tutorial dialogue that was extracted from log files of a student

solving the training problem P4. The entire dialogue between the student and Random-

Cordillera is contained in Appendix H. All the tutor turns and the student turns are labelled

to the corresponding KCs in Appendix H. The sample dialogue shown here covers one step

applying KC20: the definition of Kinetic Energy, to solve the KE of the rock at T0.

The sample dialogue covers five micro-steps. They represent the first principle application

in solving the training problem P4. So EarlyTrainingPS = 0 and ProblemComplexityPS =

medium. The dialogue occurred during problem solving as opposed to post-problem discus-

sion so DuringWalkThroughPS = 1. The sample dialogue happened in the student’s first
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training session on Cordillera, so the time duration between his current session (start time of

the current session) and his last session (the end time of last session) TimeBetweenSessionsT

is 0. In fact, this is the student’s fourth training problem in the current session.

In Table 5.1, the first column refers to the relative order. For simplicity, it begins at

one. The second column lists the time the action happened. The third column lists the

dialogue between the tutor and the student. All the tutor turns start with “Tutor: ” while

the student’s turns start with “Student: ”. In the last column, each of the student’s and

tutor’s turns were mapped to the corresponding KCs. For example, in Line 2, the tutor

made an ET decision and decided to tell. The target KC is KC20. Because it is a tell, this

turn is labelled with ∗KC20 which means this is tutor-generated information in the dialogue

on KC20. Line 4 shows an example of an entry generated by the student, which is correct

and also targeted to KC20. So the turn is labelled with +KC20.

In Table 5.1, there are total of five micro-step decisions. They are labelled as “D+ line

number”, D2, D3, D5, D8, and D10 respectively. Among the five tutorial decisions, with

the exception of D5, all remaining tutorial decisions involved KC20. Therefore, to induce

a KC-specific tutorial tactics on KC20, only the tutorial decisions that involved KC20 were

taken into account.

What follows is a simplified illustration of how the sample tutorial dialogue was trans-

formed into one of eighteen features on KC20. In Table 5.1 the feature I picked to illustrate is

“tellsSinceElicitA”, one of three autonomy features. Initially the “tellsSinceElicitA”’s value

is two, which means that the tutor made two tell decisions since the last elicit decision before

this sample dialogue. For the decision D2, the tutor made another tell decision and now the

“tellsSinceElicitA” value is three. The dialogue continues to the next decision, D3, and this

time the tutor has made an elicit decision. So “tellsSinceElicitA”’s value goes back to 0.

The next micro-step decision involving KC20 is D8. Because the tutor did not make any

tell decisions between lines 3 and 8 the “tellsSinceElicitA” value is still 0. The tutor made

two decisions in D8: first on JS and then on ET. The tutor decided not to skip the justifi-

cation step and also decided to elicit the step from the student. So “tellsSinceElicitA” value

remains 0 until the tutor made the decision in D10. At D10, the tutor made a decision to

tell and thus “tellsSinceElicitA”’s value became 1 until the tutor was ready to make another
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decision.

Table 5.1: A Simplified Example of Part of Student Log on Training Problem P4

# Time String Label

1 14:56:08 Tutor:So let‘s start with determining the value of

KE0.

2 14:56:11 Tutor:To calculate the rock‘s kinetic energy at T0,

let‘s apply the definition of kinetic energy.

TELL *KC20, D2

3 14:56:27 Tutor:Please write the equation for applying the

definition of kinetic energy to the rock at T0.

ELICIT KC20, D3

4 14:56:31 Student:ke0 = 1/2 * M * V0ˆ2 +KC20

5 14:56:32 Tutor:Since all the variables in the equation are

known except for KE0, we can calculate KE0 easily.

What is the value of KE0?

ELICIT KC23, D5

6 14:56:47 Student:1.2J +KC23

7 14:56:48 Tutor:Okay.Before we go any further, let‘s discuss

this principle in a little more detail.

8 14:56:56 Tutor:Why does the rock have a non-zero kinetic

energy at T0?

JUSTIFY ELICIT

KC20, D8

9 14:57:17 Student: because it has a nonzero mass and a

nonzero magnitude of velocity

+KC20

10 14:57:18 Tutor: Yes. We do not know the direction of the

rock‘s velocity at T0 from the problem statement.

However, the direction of v0 does not affect the

rock‘s kinetic energy at T0.

TELL *KC20, D10
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Table 5.2 illustrates how the three autonomy features got updated as the sample dialogue

in Table 5.1 continues. In Table 5.2, the first row shows the corresponding values for the

three autonomy features when the tutor reaches D2 in Figure 5.1 and the last row shows

their values when the tutor reaches the decision D10 in Figure 5.1. The rest of the 18 features

were calculated in a similar manner. Appendix J show how the eighteen features varied as

the sample example dialogue in Table 5.1 goes on.

Table 5.2: Autonomy Features Updated

Decision tellsSinceElicitA pctElicitA pctTellsKCSessionA

D2 2 0.47 0.64

D3 3 0.47 0.65

D8 0 0.48 0.64

D10 0 0.49 0.63

5.1.4.2 Maximum Number of Features Previously I discussed the problems of data

sparsity for RL. In an RL model, the size of the state space increases exponentially as the

number of involved features increases. In order to learn effective tutoring tactics, a corpus

should cover each of these states at least once, which means at least 218 in our case. However,

it is almost impossible to do so due to the high cost of collecting educational data. On the

other hand, the learned policy may become too subtle to be necessary. Based on the size

of the Exploratory Corpus collected in Study 1 and the number of categories of features

defined in this study is four, the state representation was capped four features. Moreover,

as discussed in subsection 5.1.4.1, the maximum number of features within each of the four

categories was limited to one. This was done because it was anticipated that this would

better represent the relevant information.

5.1.4.3 Feature Discretization In Study 2, except for EarlyTrainingPS(F7, binary),

ProblemComplexityPS (F8, three), and DuringWalkThroughPS (F9, binary) which are dis-
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crete features, the remaining fifteen features are continuous features and need to be dis-

cretized. In Study 2, this was accomplished for each feature by turning each feature into a

binary feature via a median split. This was done in order to balance the number of cases

across clusters. Therefore, apart from ProblemComplexity, which has three categories, all

other features are binary.

5.1.4.4 Feature Selection In Study 2 a two-pass feature selection process was em-

ployed. For each KC and decision pair (e.g. KC1, ET) 18 single-feature MDPs were gener-

ated. Each MDP used one and only one of the 18 features to represent the state, and used the

relevant tutorial decisions to represent the actions. All other features were ignored. For each

of these MDPs, the Tetreault and Litman’s toolkit was applied [Tetreault and Litman, 2008]

to induce a single-feature policy together with its corresponding ECR.

In the second pass the four best features were selected. Using Moore’s categories and

the ECR, the policy with highest ECR from each of the categories was selected. The

process involved choosing one from among features 1-3 for the single autonomy feature;

one from among features 4-6 for the temporal situation feature, and so on. The criteria

used for the selection ECR, specifically the single-policy feature who had the highest ECR

relative to its’ peers is selected. Note that the policy’s Confidence Interval was ignored

because ECR was more widely used in RL community for evaluating the derived policies

[Williams and Young, 2007b, Williams and Young, 2007a, Janarthanam and Lemon, 2009].

An MDP was then defined for the KC and action decisions by using the four lead features

for the state representation, and induced a new four-feature policy from it. From all eigh-

teen single-feature policies and the four-feature policy, the policy with the highest ECR is

selected for each KC and action decision. Recall that the higher the ECR of a policy, the

more effective the policy is supposed to be.

However, a subsequent analysis of this feature selection method showed its limitations.

Notably, other feature selection methods were applied to the 18 features, which included

four RL-based feature selection methods (reviewed in Chapter 6) and a random feature

selection method, the induced policies had significantly higher ECR [Chi et al., 2008a]. For

example, Table 5.3 shows the ECR of the DichGain tutorial tactics and the tutorial tactics
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induced by applying new feature selection approaches to the eight primary KCs for the

ET decisions. The new tutorial tactics had higher ECRs than the DichGain ones across

all eight KCs. For example, line 5 shows that ECR(πDichGain(KC22, ET )) = 9.4 while

ECR(πnew(KC22, ET )) = 44.29, four times higher than the former.

Table 5.3: Compare DichGain Tactics With Tutorial Tactics Under New Feature Selection

Methods On Eight Primary KCs

DichGain Tutorial Tactics Tutorial Tactics With New Feature Selection

ECR 95% CI Range ECR 95% CI Range

1 KC1 20.196 [5.19, 34.19] 29.01 51.79 [32.67, 63.71] 31.04

2 KC14 54.15 [47.9, 59.58] 11.69 59.48 [54.3, 63.21] 8.91

3 KC20 4.81 [0.75, 8.66] 7.9 8.08 [4.24, 11.9] 7.66

4 KC21 15.48 [7.85, 21.78] 13.94 26.94 [19.8, 29.28] 9.48

5 KC22 9.4 [-5.37, 20.69] 26.05 44.29 [23.49, 50.51] 27.02

6 KC24 7.23 [2.72, 11.31] 8.59 12.91 [7.22, 16.43] 9.21

7 KC27 16.78 [5.95, 24.9] 18.95 27.25 [13.87, 32.16] 18.29

8 KC28 15.29 [2.52, 26.05] 23.52 32.8 [22.08, 38.61] 16.53

5.1.5 Conflicting Policies

In some cases, a given tutorial step involves multiple KCs and thus, multiple policies. When

multiple policies are relevant, the policy with the highest ECR was followed.

5.1.6 Summary: Procedure of Inducing Tutorial Tactics in Study 2

In sum, Study 2 involved using the Exploratory Corpus collected in Study 1 as the training

corpus and the reward functions are defined as either +100 (high learner) or −100 (low

learner) based on corresponding KC-based NLGs. In Study 2 a total of thirty-three policies
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were induced: twenty-two ET policies (21 KC-specific and one KC-general) and eleven JS

policies (10 KC-specific and one KC-general).

In order to induce the necessary policies a multi-pass approach was adopted. In the

multi-pass approach, a set of 18 MDPs were constructed for each KC and decision pair (e.g.

KC4, JS) with all features either discrete or discretized via a median split. Then a set of 18

single-feature policies was induced, one for each MDP. For each of Moore’s four categories, a

feature was selected whose corresponding single-feature policy had the highest ECR among

features in the same category. A four-feature MDP was then defined from which a more

complex policy was induced. All of the work here was done with Tetreault and Litman’s

toolkit [Tetreault and Litman, 2008]. Finally, the policy with highest ECR for the KC and

decision pair was selected from among the 19 derived policies: 18 single-feature policies and

one four-feature policy.

Appendix K lists the 22 ET tutorial tactics and the 11 JS policies that were induced

and applied in Study 2. One of the resulting policies is shown in Figure 5.1. This policy

involved four features: durationKCT, ProblemComplexityPS, tellsSinceElicitA, and pctCor-

1. Features: durationKCT, ProblemComplexityPS,

tellsSinceElicitA, pctCorrectKCSessionPM

2. Cutoff: durationKCA =’50.0’ tellsSinceElicitA =’0.0001’

pctCorrectKCSessionPM =’0.7179’

3. Policy:

a. Elicit: 0:MED:1:0, 1:COMP:1:0, 0:COMP:1:1, 0:MED:0:0, 0:COMP:1:0,

0:MED:1:1, 0:COMP:0:1, 1:COMP:0:1

b. Tell: 1:MED:0:1, 1:MED:0:0, 1:MED:1:0, 1:MED:1:1, 0:MED:0:1

c. Else: 0:COMP:0:0, 1:COMP:0:0, 1:COMP:1:1

Figure 5.1: The Induced Policy πDichGain(KC21, ET ): Gravitational Potential Energy
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rectKCSessionPM. Three of these features were continuous. The median cutoff values used

to discretize them are shown in line 2 (“cutoff”). This policy contains a total of 24 = 16

rules. In eight cases, the tutor elicited (line a); in five cases the tutor elected to tell (line b);

and in the remaining three the tutor could choose to do either (line c). For example, “elicit:

[0:MED:1:0]” (shaded in line a) means:

IF the duration since the most recent decision made on KC21 is less than 50sec;
AND the ProblemComplexity is ’medium’;
AND the students have received at least one tell since the most recent elicit (tellsSinceElicit)
AND the student’s performance on this kc in today’s session is less than 71.79% correct;
THEN: the tutor should elicit the next step from the student.

The example in Figure 5.1 indicated that the induced tactics were a very specific set of

case decisions, and could easily be implemented back into Cordillera. Moreover, the tactics

were quite subtle.

Then the thirty-three induced policies were implemented back into Cordillera producing

a version of the system called DichGain-Cordillera. This version of the system used the

KC-specific policies when facing a relevant decision, resolved ties by selecting the policy

with the best ECR, or followed the KC-general strategies when no policy was relevant.

As described below, a set of students were trained on this system to collect the DichGain

Corpus. For Study 2, the author was responsible for application of the MDP toolkit to the

Exploratory Corpus and induced the 33 DichGain tutorial policies. Once the policies were

implemented back into Cordillera, the author acted as a human wizard during the collection

of the DichGain Corpus.

5.2 METHODS

5.2.1 Participants

Data was collected over a period of three months during Spring 2008. As in Study 1, a set

of forty-two college students were recruited and paid for their time regardless of completion.
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The students were required to have a basic knowledge of high-school algebra and not to

have enrolled in college-level physics courses. All told, thirty-seven students completed the

experiment.

5.2.2 Materials & Procedures

The students followed the same procedure, used the same preparatory materials and prob-

lems, and involved the same group of human wizards as in Study 1. More specifically, the

DichGain group completed a background survey, read a textbook covering the target domain

knowledge, took a pre-test, solved the same seven training problems in the same order on

DichGain-Cordillera, and finally took a post-test. Only two salient differences exist between

Study 1 and Study 2:

1. Interaction decisions made by DichGain-Cordillera were guided by thirty-three derived

tutorial tactics; and

2. One test problem, Q20, on the pre- and post-test was changed for Study 2 to, Q∗
20. Both

Q20 and Q∗
20 are multiple-choice questions and cover the same KCs. But Q20 is a simple

question and had only two choices (true, false), so there is a good chance that students

could guess the answer. The new version of Q∗
20,covered the same KCs but was more

difficult by providing five choices. So it is less likely that students could guess the answer.

The remaining 32 test items were identical in both studies. And as with Study 1, the

pre- and post-tests in Study 2 were identical.

5.2.3 Grading

All tests were graded by the same grader as in Study 1 (not the author). She applied the

same grading metrics and carried out the same grading process resulting in both the overall

and KC-based grades.
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5.2.4 Measures

There were two research objectives in Study 2: first, to determine whether the DichGain

group learned by training on DichGain-Cordillera, and second, to examine the DichGain

group and the Exploratory group to see whether the induced DichGain tutorial tactics would

result in better learning performance than making random decisions. Note that given the

cost of the study, we did not run a strict control-experimental study but simply confirmed

whether the trend of the DichGain group over-performing the Exploratory group existed.

The two groups’ learning performances were compared, using both the students’ pre-test,

post-test, adjusted post-test scores and NLG, under both the overall grading criteria and the

cumulative KC-based grading criteria. The adjusted post-test can be measured as a linear

association between the real post-test score for each student and the difference between the

pre-test score for the students and the mean of pre-test scores. The formula for the adjusted

post-test score is:

posttest∗i = posttesti − β × (pretesti − pretest) (5.1)

where i stands for the student, posttest∗i for the adjusted post-test score for student i,

posttesti for the true post-test score for the student i, β is the regression coefficient of

the post-test score upon the pre-test score, pretesti is the true pre-test score for the student

i, and pretest is the mean of the pre-test scores.

Results showed that there was no significant difference between the DichGain and Ex-

ploratory groups under either grading criteria. There are two potential reasons for this. One

is the lack of random assignments and two is that the RL approach may be limited. As a

result, Study 3 focused on a full-scale comparison by exploring a wider range of methods to

deal with the five RL issues. For example, three training corpora were explored in Study 3:

the Exploratory Corpus collected in Study 1, the new DichGain Corpus in this study, and

a combination of the two in a new corpus. Because of this decision, the second part of the

results section will focus on the characteristics of the DichGain corpus. These characteristics

will include the general number of decisions the tutor made, the number of ET decisions and
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the I-ratio, and the number of JS decisions and the J-ratio. Additionally, because the DIch-

Gain corpus will be used to induce KC-specific tutorial tactics in Study 3, the description

will include some KC-based learning performance and corpus characteristics as well.

5.3 RESULTS

In Study 2, it took each student from three to six sessions to complete the study. These

sessions were spaced over a period of one to three weeks. The sessions generally took less

than two hours to complete. The students spent roughly five hours, ranging from as few as

four hours to as many as nine hours, training on DichGain-Cordillera.

5.3.1 Compare Pre- and Post-test

Table 5.4: DichGain Students’ Pre- vs. Post-test Performance

Min Max Mean σ

Overall Grading Pretest 0.04 0.74 0.40 0.18

Posttest 0.18 0.96 .58 .19

NLG -0.09 0.89 0.33 .21

Cumulative KC-based Grading Pretest 0.04 0.77 .42 .17

Posttest 0.08 0.97 .54 .20

NLG -0.33 0.86 0.25 0.23

A one-way ANOVA was used to test for performance preference differences between the

pre- and posttests. Regardless of grading criteria, participants made significant gains from

pre-test to post-test (Table 5.4), F (1, 72) = 16.86, p = .000,R2 = .69 under the overall

grading criteria and F (1, 72) = 8.55, p = .005,R2 = .71 under the culmulative KC-based

grading criteria. The overall NLG scores ranged from −0.09 to 0.89 (M = 0.33, SD = .21).
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The cumulative KC-based NLG scores ranged from −0.33 to 0.86 (M = 0.25, SD = .23).

Table 5.4 summarize the minimum, maximum, mean, and SD values for each test scores.

Figure 5.2 shows the DichGain group’s pre- and post-test scores under the two grading

criteria. A double asterisk (**) indicates that the difference is statistically significant (p <

0.05). To summarize, the DichGain group scored significantly higher in the post-test than

in the pre-test. .

5.3.2 Post-hoc Comparison: DichGain vs. Exploratory

5.3.2.1 Post-hoc Comparison: DichGain vs. Exploratory On Training Time In

a post-hoc comparison with a one-tailed paired t-test, there were no significant overall time on

task differences between the DichGain group (M = 294.33, SD = 87.50) and the Exploratory

group (M = 280.38, SD = 66.88) across the seven training problems : t(99) = .88, p = .38.

Figure 5.2: Learning Performance of Exploratory Group

86



Figure 5.3: Per Problem Time Comparison: DichGain vs. Exploratory Group

However, a significant difference was found between the two groups in the time they spent

on P1, P2 and P7 Figure 5.3 compared the average time students spent on each training

problem between the two groups. On P1 the DichGain group spent significantly less time

than the Exploratory group with a one-tailed paired t-test (t(98) = 3.15, p = .002) while on

P2, the DichGain group spent longer than the Exploratory group ((t(99) = 2.56, p = .012)).

Similarly on P7, the DichGain group spent significantly longer time than the Exploratory

group: (t(99) = 2.46, p = .016).

5.3.2.2 Post-hoc Comparison: DichGain vs. Exploratory On Learning Perfor-

mance Because of an administrative error, all of the background information for DichGain

group was not available for comparison. As mentioned above, one test problem Q20 was

changed from Study 1 to Q20∗ for Studies 2 and 3. So in order to compare the two groups,

Q20 and Q20∗ were excluded from the scores used here. As described in the previous chap-

ter, the tests contained thirty-three test items which covered 168 KC occurrences. Removing

Q20 or Q20∗ reduced this total by one leaving thirty-two test items covering 166 KC occur-
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Table 5.5: DichGain vs. Exploratory Scores: Pre vs. Post-Test (No Q20)

Dich m(σ)a Exp m(σ)b Statc d 1− β

Overall Pre- .40 (0.18) .47 (0.20) t(99) = 1.86, p = 0.066 −0.37 0.39
Post- 0.58 (0.19) 0.61 (0.18) t(99) = 0.78, p = 0.44 −0.16 0.54

Adj. Post- 0.62 (0.10) 0.59 (0.10) F (1, 98) = 1.99, p = 0.16 0.3 0.46
NLG 0.34 (0.20) .28 (0.21) t = 1.36, p = 0.18 0.29 0.47

Cumulative Pre- 0.41 (0.17) 0.45 (0.20) t(99) = 0.99, p = 0.32 -0.21 0.5
KC-Based Post- 0.54 (0.20) 0.57 (0.21) t(99) = 0.66, p = 0.51 -0.15 0.59

Adj. Post- 0.57 (0.12) 0.56 (0.12) F (1, 98) = 0.09, p = 0.77 0.08 0.78
NLG 0.26 (0.23) 0.25 (0.26) t(99) = 0.23, p = 0.82 0.04 0.82

aThe Mean and SD of DichGain Group.
bThe Mean and SD of Exploratory Group.
cExcept an ANCOVA using pre-test score as the covariate on Adj.Post-test scores, the two groups were

compared with one-tailed paired t-tests on the pre-test, post-test and NLG scores.

rences. In the subsections learning performance will be compared across both groups using

both the overall and cumulative KC-based scores. For the overall scores, the maximum raw

score was 32 points while for the cumulative KC-based score had a maximum of 166 points.

For comparison purposes both scores were normalized to 1.

A one-way ANOVA was used to test for performance preference differences between

the pre- and posttests across the two groups. Across 32 test questions, participants in the

first two studies made significant gains from pre-test to post-test, F (1, 200) = 35.88, p =

.000,R2 = .70 under the overall grading criteria and F (1, 200) = 19.51, p = .000,R2 = 0.69

under the cumulative KC-based grading criteria. In a post-hoc comparison, however, no

significant pre-test score differences were found between the two groups on pre-test scores,

post-test scores, adjusted post-test scores, and NLG under either the overall-grading rubric

or the cumulative KC-based scores (Table 5.5). The first column in Table 5.5 shows the

eight comparisons: pre-test scores, posttest scores, adjusted posttest scores, and NLG under

both the overall-grading rubric and the cumulative KC-based scores. The second column

in Table 5.5 lists the means (m) and SDs σ of two groups’ corresponding scores. The third

column lists the corresponding statistical comparisons. No significant difference was found
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between the two groups across the eight comparisons. However, the DichGain students did

demonstrate marginally significant lower pre-test scores than the Exploratory group under

the overall grading criteria only.

The fourth column lists the effect size of the comparison. There are several accepted

ways to measure effect size, such as Cohen’s d effect sizes based on means, Hedges’ g and so

on. For this dissertation, Cohen’s d is selected and it is defined as the mean learning gain

of the experimental group minus the mean learning gain of the control group, divided by

the groups’ pooled standard deviation. The final column listed the statistical power of the

comparison, 1−β1. Generally speaking, it must be kept correspondingly high. Ideally, power

should be at least 0.80 to detect a reasonable departure from the null hypothesis. The reward

functions used for inducing DichGain tutorial tactics were based on the students’ cumulative

KC-based NLGs or KC-based NLG scores. However, the last row in Table 5.5 shows that the

Exploratory and DichGain groups were not significantly different on cumulative KC-based

NLGs and its power reached an acceptable level: 0.82 (often considered to be between .80

and .90).

Although no significant difference was found between two groups on learning performance

and overall time on training, the DichGain students did have a marginally significant lower

pre-test score than the Exploratory group under the overall grading criteria. One potential

reason for an absence of difference in learning between the two groups may be because the

lack of random assignment. However, there are other potential reasons for this. For example,

it might be because of the limitation of the RL approach used in Study 2. As discussed above,

the feature selection method in Study 2 is somewhat greedy-like. So in Study 3, significantly

more feature selection methods were explored to find ways to better use RL and a full-scale

comparison was run.

At this point in the research, two training corpora existed: the Exploratory Corpus in

which all decisions were randomly made, and the corpus that was collected by following the

induced DichGain tutorial tactics induced from the Exploratory Corpus. Although there

was no significant learning performance difference between the two groups, the two corpora

1β represents Type II error: false negative. It refers to the error of failing to reject a null hypothesis when
it is in fact not true.
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may differ in other aspects. In Study 3, both the Exploratory and the DichGain corpora

were used as training corpora. The characteristics of the Exploratory Corpus were discussed

previously in Chapter 4 and the characteristics of the DichGain corpus will be discussed

below.

Finally, the two corpora will be compared using the following measurements: the average

number of ET decisions, JS decisions, and overall decisions that the tutor made. Another

point of comparison is measured by the I-ratio, the J-ratio, and the number of justification

steps. In addition, because the DichGain corpus will be used to induce KC-specific tutorial

tactics in Study 3, its KC-based learning performance and corpus characteristics will also be

discussed.

5.3.3 Post-hoc Comparison: DichGain vs. Exploratory Tutorial Corpora

The DichGain corpus was used as one of the training corpora to derive KC-based tutorial

tactics in Study 3. The decision to choose one corpus over another means that it is valuable

to compare the characteristics of the two corpora. Similar to the Exploratory corpus, each

student’s individual problem dialogues were combined into a single super-dialogue listing all

tutor-student interactions in order of occurrence. Thus, one tutorial dialogue was combined

per participant.

5.3.3.1 Post-hoc Comparison: DichGain vs. Exploratory On Overall Tutorial

Decisions Table 5.6 compares the various tutorial decisions with a one-tailed paired t-test

across all KCs between the DichGain and Exploratory Corpora. Except for the total number

of overall decisions and the total number of ET decisions, the two corpora differed on all

the other seven aspects (labeled with “**”). Overall, the DichGain Corpus is significantly

less interactive in that the DichGain students received more tells and less elicits from the

tutor than the Exploratory Corpus. As a result, the I-ratio of the DichGain corpus was

significantly lower than that of the Exploratory corpus. Moreover, the DichGain-Cordillera

skipped more and executed less justification steps than the Exploratory-Cordillera.
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Table 5.6: Overall Tutorial Decision Characteristics: DichGain vs. Exploratory Corpora

Decision Condition Mean σ Stats

tell** DichGain (37) 152.46 13.05 t(99) = 6.663, p = 0.000

Exploratory (64) 138.02 8.71

elicit** DichGain (37) 118.08 13.33 t(99) = −6.956, p = 0.000

Exploratory (64) 135.88 11.82

ET decisions DichGain (37) 270.54 10.00 t(99) = −1.396, p = 0.166

Exploratory (64) 273.89 12.46

skip-Justify** DichGain (37) 33.54 4.80 t(99) = 7.728, p = 0.000

Exploratory (64) 26.44 4.24

Justify** DichGain (37) 24.89 3.59 t(99) = −6.826, p = 0.000

Exploratory (64) 30.17 3.83

JS decisions** DichGain (37) 58.43 2.81 t(99) = 2.742, p = 0.007

Exploratory (64) 56.61 3.43

Overall Decisions DichGain (37) 307.57 12.45 t(99) = 0.749, p = 0.456

Exploratory (64) 305.48 14.01

I-ratio** DichGain (37) 0.44 0.04 t(99) = −7.967, p = 0.000

Exploratory (64) 0.50 0.03

J-ratio** DichGain (37) 0.43 0.07 t(99) = −7.894, p = 0.000

Exploratory (64) 0.53 0.06

5.3.3.2 Post-hoc Comparison: DichGain vs. Exploratory On Individual KCs

Table 5.7 shows the number of tutorial decision steps for each KC and each type of tutorial

decision in DichGain Corpus. The third and fourth columns list the number of ET and JS

tutorial decisions for the KC. The last column lists the statistical results of comparing the

KC-based pre-test scores with post-test scores with one-tailed paired t-tests. If the DichGain

group had significantly higher post-test scores than its pre-test scores, the corresponding KC
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were labelled with “**” next to their name in (column 2).

From Table 5.7, it can be seen that, as with the Exploratory Corpus, the DichGain

corpus had twenty-one KCs that occurred in at least one ET tutorial decision step and ten

KCs for JS decisions. Additionally, the number of occurrences of ET decisions varied from

one to seventy-two occurrences; for JS decisions it varied from two to sixteen occurrences.

Among the eight primary KCs, students learned significantly from six of them: KC1, KC14,

KC20, KC21, KC22, KC24 but not on KC27 and KC28.
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Table 5.7: Tutorial Decisions Per KC.

KC ET JS Total Pre- and Posttests

1 KC1** 4.16 4.16 t(72) = 2.80, p = 0.01

2 KC3 2.11 2.11 t(72) = 0.66, p = 0.51

3 KC5 7.05 7.05 t(72) = 1.64, p = 0.11

4 KC9** 1.22 2 t(72) = 2.46, p = 0.02

5 KC12 1.46 2 3 t(72) = 1.27, p = 0.21

6 KC13 3 3 t(72) = 1.27, p = 0.21

7 KC14** 8.38 2 9 t(72) = 2.03, p = 0.05

8 KC15 7.62 8.11 t(72) = 0.98, p = 0.33

9 KC17 4.43 5.43 t(72) = 1.68, p = 0.10

10 KC18 1.14 2 t(72) = 1.60, p = 0.11

11 KC20** 72.43 16.43 82.84 t(72) = 4.45, p = 0.00

12 KC21** 49 16.86 59.05 t(72) = 4.30, p = 0.00

13 KC22** 31.32 3.97 32.78 t(72) = 2.41, p = 0.02

14 KC23** 61.11 4 62.95 t(72) = 3.39, p = 0.00

15 KC24** 48.97 15.89 60.24 t(72) = 3.11, p = 0.00

16 KC25** 9.43 9.78 t(72) = 2.65, p = 0.01

17 KC26 5.41 2.81 7.46 t(72) = 1.76, p = 0.08

18 KC27 21.92 4.62 23.73 t(72) = 1.99, p = 0.051

19 KC28 14.19 5.14 18.32 t(72) = 1.82, p = 0.07

20 KC31 18.32 19.16 t(72) = 1.82, p = 0.07

21 KC32** 14.24 14.24 t(72) = 2.29, p = 0.03

Overall, there was a significant difference between the two corpora on the I-ratio and J-

ratio. However, as this difference is analyzed, the variance becomes more complex. Table 5.8

shows the I-ratio difference between the DichGain and Exploratory corpora with one-tailed
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paired t-tests. The third and fourth columns of the table list the mean of the I-ratio in the

DichGain Corpus and Exploratory Corpus respectively. The fifth column gives the direction

of the difference in which “DG > EX” represents that the DichGain Corpus was more

interactive than the Exploratory Corpus on corresponding KCs. Similarly, “DG < EX”

means the reverse is true. If the column is blank, it means that there were no significant

differences between the corpora on the I-ratio for the corresponding KC. The last column

shows the statistical results between the two corpora. If the difference is significant, the KC

name in column 2 is labeled with “**”.

As shown in Table 5.8 the corpora differed significantly in terms of I-ratio on all but

three KCs: KC9, KC22, and KC32. The DichGain group was significantly less interactive

than the Exploratory group on six KCs (KC12, KC18, KC20, KC23, KC24, and KC27), and

significantly more interactive than the Exploratory group on the remaining twelve KCs.
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Table 5.8: I-Ratio Between DichGain vs. Exploratory on a per-KC basis.

KC DichGain Exploratory Diff Stats Comparison

1 KC1** 0.90 0.49 DGa > EXP b t(99) = 8.92, p = 0.0000

2 KC3** 0.80 0.51 DG > EXP t(99) = 4.05, p = 0.0000

3 KC5** 0.56 0.46 DG > EXP t(99) = 3.37, p = 0.0010

4 KC9 0.35 0.47 t(99) = −1.35, p = 0.1810

5 KC12** 0.21 0.52 DG < EXP t(99) = −3.81, p = 0.0000

6 KC13** 0.90 0.45 DG > EXP t(99) = 8.17, p = 0.0000

7 KC14** 0.89 0.50 DG > EXP t(99) = 12.00, p = 0.0000

8 KC15** 0.60 0.47 DG > EXP t(99) = 4.38, p = 0.0000

9 KC17** 0.71 0.48 DG > EXP t(98)4.66, p = 0.0000

10 KC18** 0.04 0.43 DG < EXP t(99) = −5.39, p = 0.0000

11 KC20** 0.23 0.50 DG < EXP t(99) = −17.26, p = 0.0000

12 KC21** 0.65 0.50 DG > EXP t(99) = 6.76, p = 0.0000

13 KC22 0.46 0.49 t(99) = −1.53, p = 0.1300

14 KC23** 0.45 0.49 DG < EXP t(99) = −3.36, p = 0.0010

15 KC24** 0.28 0.50 DG < EXP t(99) = −17.43, p = 0.0000

16 KC25** 0.73 0.50 DG > EXP t(99) = 7.70, p = 0.0000

17 KC26** 0.58 0.43 DG > EXP t(99) = 3.05, p = 0.0030

18 KC27** 0.41 0.51 DG < EXP t(99) = −3.78, p = 0.0000

19 KC28** 0.64 0.48 DG > EXP t(99) = 4.23, p = 0.0000

20 KC31** 0.67 0.51 DG > EXP t(99) = 7.42, p = 0.0000

21 KC32 0.52 0.50 t(99) = 0.55, p = 0.5830

aDG = DithGain
bEXP=Exploratory

Table 5.9 shows the J-ratio difference between the two corpora. Similarly, the third and

fourth columns of the table list the mean of the J-ratio in the DichGain Corpus and Ex-
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Table 5.9: Justify Ratio Differences on a per-KC Basis.

KC DichGain Exploratory Diff Stats Comparison

1 KC12** 0.23 0.54 DG < EXP t(99) = −4.40, p = 0.0000

2 KC14** 0.69 0.48 DG > EXP t(99) = 3.44, p = 0.0009

3 KC20** 0.42 0.51 DG < EXP t(99) = −4.24, p = 0.0001

4 KC21** 0.46 0.56 DG < EXP t(99) = −4.27, p = 0.0000

5 KC22 0.63 0.61 t(99) = 0.25, p = 0.8043

6 KC23** 0.54 0.78 DG < EXP t(99) = −6.72, p = 0.0000

7 KC24** 0.33 0.57 DG < EXP t(99) = −8.58, p = 0.0000

8 KC26** 0.84 0.60 DG > EXP t(99) = 3.68, p = 0.0004

9 KC27** 0.63 0.51 DG > EXP t(99) = 2.49, p = 0.0143

10 KC28** 0.36 0.54 DG < EXP t(99) = −3.99, p = 0.0001

ploratory Corpus respectively. The fifth column gives the direction of the difference in which

“DG > EX” demonstrates that DichGain Corpus got justification steps more frequently

than the Exploratory Corpus on corresponding KC, while “DG < EX” means the reverse is

true. If this column is blank, it means that there were no significant differences between the

corpora on the justification ratio on the KC. The last column shows the statistical results

between the two corpora with one-tailed paired t-tests. If the difference is significant, the KC

name in column 2 was labeled with “**”. In Table 5.9. There was no significant difference

in terms of the number of justifications between the two corpora on KC22. While on six

(KC12, KC20, KC21, KC23, KC24, and KC28) the DichGain group were more likely to skip

a justification step than the Exploratory group. There were only three instances for two KCs

(row: KC14, KC26, and KC27) in which the DichGain group was more likely to receive tells

than the Exploratory group.

Thus, although no significant learning differences were found between the two groups

for time on task or learning performance, significant differences were found between the two

corpora. The DichGain corpus was significantly less interactive and included less justification
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steps than the exploratory corpus.

5.4 DISCUSSION

The goals in Study 2 were to investigate how to apply RL to induce tutorial tactics from a

training corpus and then to test whether the induced tutorial tactics would result in more

effective learning performance than making random decisions. This was to be accomplished

without running a full-scale comparison. Results showed that following the DichGain tutorial

tactics generated significantly less elicits and included fewer justification steps than following

the random decisions in the Exploratory group. A more detailed analysis, however, showed

that this difference varied from KC to KC. While applying RL did induce tutorial tactics

from the Exploratory corpus and the induced tutorial tactics were subtle, they did not seems

to be more effective. Despite of the lack of random assignment, no significant difference was

found between the two groups on either the pre-test, post-test, adjusted post-test or the

NLG.

There were at least three potential reasons for lack of difference in learning performance

between the DichGain and Exploratory groups. First, a full comparison of the DichGain

and Exploratory groups was not run by assigning students randomly into the two groups.

Second, the hypothesis may simply be incorrect, that micro-level policies covering interac-

tive decisions like ET and JS do not affect students’ learning. The decisions may be too

“fine-grained” to have a real impact on learning, no matter how optimal the policy. Ini-

tial analysis based on the comparison of the DichGain and Exploratory groups appears to

support previous research. That research suggests that given that content is controlled to

be same, pedagogical tutorial tactics may not result in different learning. Third, it is also

possible that lack of a difference in learning performance may be caused by limitations in

the RL approach.

In other words, applying RL to induce tutorial tactics may not be a simple task for

which we can plug a toolkit into the training corpus and induce effective tutorial tactics. As

demonstrated in Study 2, tutorial tactics depend on many factors, such as feature choices,
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feature selection, feature discretization and so on. Their effectiveness might also depend on

how we implement them back into Cordillera. For example, how we deal with conflicting

policies. It can be argued that in Study 2, exploration of these factors was limited. For

example, only eighteen features were included in our search space, but no more than four

appeared in the final induced tutorial tactics. It is possible that the selected features were

insufficient to adequately represent the state space. Moreover our greedy-like feature selec-

tion process and the discretization procedure of using simple median splits may also have

limited our success.

Study 3 was designed to address these reasons in hopes of producing more effective

pedagogical tutorial tactics. In it the approach to RL-related issues was modified. For

example, the training dataset was expanded to include both the Exploratory Corpus and the

DichGain Corpus in the induction process. Also, more features were included in the feature

states. To address the more weighty issue of learning performance, one set of tutorial tactics,

like the policies in the present study, was derived with the goal of enhancing the tutorial

decisions that contribute to the students’ learning; while the other was derived with the goal

of enhancing those decisions that contribute less or even none to the students’ learning. To

summarize, in contrast to Study 2, Study 3 included multiple datasets, a larger feature set,

induction of policies based on multiple corpora, and random assignment of subjects to two

comparable groups. The methods and outcomes of Study 3 are discussed in the next two

chapters.
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6.0 APPLYING RL TO INDUCE NORMALIZED GAIN (NORMGAIN)

AND INVERSE NORMALIZED GAIN (INVNORMGAIN) TUTORING

TACTICS

The conclusion of Chapter 5 identified three potential problems with Study 2 that might

explain the absence of a learning difference in the two groups’ performance. The earlier

study did not run a full comparison by randomly assigning students into the two groups.

The feature space selection may have been inadequate. The lack of a learning difference

may also suggest that decisions on the level of elicit/tell (ET) and justify/skip-justify (JS),

however well timed, cannot significantly affect the students’ performance. Many previous

studies showed that after solving the same training problems with the tutorial scripts written

by the same authors, no significant difference was found among students’ learning by means

of different learning treatments [VanLehn et al., 2007a]. In this study, the content was con-

trolled to be equivalent even at a much lower level than in these previous studies. Therefore,

it is possible that these micro-decisions would not make a difference in students’ learning.

As shown in Studies 1 and 2, both the Exploratory and DichGain groups gained signifi-

cantly. However, no signifciant difference was found between the two groups in a post-hoc

comparison.

On the other hand, even if there was an impact by tutorial decisions on learning, random

selection might have a good chance (50% chance given that both decisions were binary) to

guess the “proper” decisions, and thus might have made enough effective decisions. If so,

the impact of the tutorial decisions on learning would be canceled out. Therefore, in order

to investigate whether micro-step decisions would make a difference in learning, the contrast

between the two conditions in Study 3 was sharpened. Instead of choosing “random” as the

control condition, the InvNormGain Group was selected.
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In short, in Study 3 two sets of tutorial policies were induced: the Normalized Gain

(NormGain) set induced by using the students’ NLG as rewards and the Inverse Normalized

Gain (InvNormGain) set was induced by specifically using students’ (1-NLG) as rewards.

In other words, the NormGain tutorial tactics were derived with the goal of enhancing the

tutorial decisions that contribute to the students’ learning, while the InvNormGain tutorial

tactics were derived with the goal of enhancing those decisions that contribute less, or not

at all, to the students’ learning. If RL did live up to its promise, then it is expected that

the NormGain students would out-perform their InvNormGain peers. This would occur if

the micro-level decisions on ET and JS do impact learning.

Apart from the reward functions, the tactics were induced using the same general pro-

cedure. In this chapter, the main focus is on describing how RL was applied to induce these

two sets of tutorial tactics. The experimental comparison of these two sets will be presented

in Chapter 7. While the previous two studies were implemented by the ITR research group,

Study 3 was designed, executed and evaluated by the author.

In order to induce tutorial tactics in Study 3, the same general learning procedure de-

scribed in Chapter 3 and again in Chapter 5 was employed. As in the proceeding chapter the

five major RL issues are addressed in Study 3 and changes made from Study 2 are explained.

6.1 TRAINING CORPUS

In Study 2, the only corpus available was the Exploratory Corpus. At this stage, three train-

ing corpora were available: the Exploratory Corpus collected in Study 1, the DichGain corpus

from Study 2, and a combined corpus from both sets. The Exploratory Corpus consisted

of 64 students’ super-dialogues, the DichGain-Corpus consisted of 37 super-dialogues. The

combined set contained 101. Each super-dialogue covered one student’s entire interaction

with the Cordillera system including all seven training problems.

The choice of Training Corpus is a complex one. As explained previously, the Exploratory

Corpus was collected for RL and designed to explore the feature space evenly and without

bias. The DichGain Corpus, by contrast, is similar to many other pre-existing corpora.
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Inducing a successful policy from it would show the potential for applying RL to induce

effective tutorial policies from most pre-existing data. The combined corpus, in theory, offers

the benefits of both as well as an increased dataset. In this study, rather than selecting one

corpus a priori, all three were used. More specifically, tutorial tactics were derived from each

corpus separately, and then the best policies from all the sets were selected by ECR.

6.2 KNOWLEDGE COMPONENTS

Study 2 opted to induce tutorial policies for as many KCs as possible, covering every KC that

was involved in at least one tutorial step. However, these KCs were not equally important.

For example, in a domain such as physics, the domain principles are more challenging and

important than other KCs. Consider, for example, KCs 23 and 20:

KC23: The unit for energy is the Joule (J).

KC20: If an object is moving, then its kinetic energy at a time is 1
2
mv2, where m is the

objectś mass and v is the magnitude of the object’s instantaneous velocity.

In domains such as physics, solving a problem requires producing an argument, proof

or derivation consisting of one or more inference steps; each step is the result of applying a

domain principle, operator or rule. Here KC20 is one of the major domain principles, i.e.

the definition of Kinetic Energy, while KC23 is not a major principle. Therefore, KC20 is

more important than the latter in that the student’s overall learning performance depends

more on learning a domain principle such as KC20 and less so on KC23. Additionally, clearly

KC20 is a complex principle with a non-trivial cognitive load while KC23 is an atomic fact

and thus much simpler to convey and apply.

In Study 2 the ECRs of the KC-based tutorial tactics for KC23 are 42.45 on ET decisions

and 47.22 on JS decisions. Either ECR is much higher than the corresponding ECR of the

tutorial tactics on KC20: 4.81 on ET decisions and 4.29 on JS decisions respectively. So

when KC23 and KC20 co-occurred in a tutorial decision step, the dialogue manager would

follow the policy for KC23 even though KC20 is a domain principle and learning it is more

101



important for students to learn the domain. Therefore, in Study 3, the decision was made

to focus only on the eight primary KCs: KC1, KC14, KC20, KC21, KC22, KC24, KC27 &

KC28, each of which represent a major domain principle shown in Table 4.1.

Table 6.1 compares the frequency and ratio of various tutorial decisions on the eight main

KCs among the three corpora; the last row presents the comparison over all KCs across the

three corpora. Columns 3 and 4 list the average number of ET and JS decisions per KC in

each corpus. Column 5 shows the average number of tutorial overall decisions (regardless

of whether it is ET or JS). Columns 6 and 7 present the I-ratio and J-ratio respectively.

The last column presents a t-test comparison of the students’ KC-based pre- and post-test

scores. In the last column, if students’ KC-based post-test scores were significantly greater

than their corresponding pre-test scores, then the results of the t-test were listed in the last

column. There were no cases in which students’ post-test scores on a KC were significantly

lower than their corresponding pre-test scores.

From Table 6.1, it can seen that the average number of tutorial decisions (column 5)

varies significantly across KCs: from as few as four on KC1 to more than 80 on KC20. The

average number of tutorial decisions on elicit/tell (ET) (column 3) and justify/skip-justifys

(JS) (column 4) also varies across KCs. There are only 4.05 ET decisions on KC1 and more

than 70 on KC20. Similarly, there are only 3.34-3.97 JS decisions for KC22 on average and

more than 16 for KC21. Overall, the ET tutorial decisions were much more frequent than

the JS ones.

6.3 KC-BASED REWARD

In Study 2, the student’s final reward was based upon his/her KC-based NLG. More specif-

ically, for each KCk, the students were divided into two groups, low learners and high

learners, according to a median split of the students’ KC-based NLGs. The high learners

were assigned a final reward of +100 while the low learners were assigned a final reward of

−100.

However, there were at least two limitations from doing this. First, there was little to
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Table 6.1: Compare Three Corpus on Eight Primary KCs

ET JS overall I-ratio J-ratio pre-post

KC1 Exp 4.05 4.05 1.16 t(126) = 3.28, p = 0.0013

Dich 4.16 4.16 2.37 t(72) = 2.80, p = 0.0066

Comb 4.09 4.09 1.33 t(200) = 4.30, p = 0.0000

KC14 Exp 7.95 2.00 9 1.36 0.74 t(126) = 1.076, p = 0.284

Dich 8.38 2 9.00 7.44 0.95 t(72) = 2.03, p = 0.0462

Comb 8.11 2 9.00 3.49 0.80 t(200) = 2.04, p = 0.0422

KC20 Exp 72.59 15.36 81.53 1.04 1.21 t(126) = 5.38, p = 0.0000

Dich 72.43 16.43 82.84 0.33 0.78 t(72) = 4.45, p = 0.0000

Comb 72.53 15.75 82.01 0.78 1.05 t(200) = 6.94, p = 0.0000

KC21 Exp 33.63 16.92 60.75 1.01 1.45 t(124) = 3.93, p = 0.0001

Dich 49.00 16.86 59.05 1.90 0.99 t(72) = 4.30, p = 0.0001

Comb 39.26 16.9 60.13 1.77 1.28 t(198) = 5.73, p = 0.0000

KC22 Exp 30.7 3.34 32.06 1.02 1.34 t(126) = 2.39, p = 0.0184

Dich 31.32 3.97 32.78 0.97 1.73 t(72) = 2.41, p = 0.0185

Comb 30.93 3.57 32.33 1.00 1.50 t(200) = 3.30, p = 0.0011

KC24 Exp 52.7 15.48 60.45 1.05 1.52 t(124) = 3.92, p = 0.0001

Dich 48.97 15.89 60.24 0.40 0.58 t(72) = 3.11, p = 0.0027

Comb 51.34 15.63 60.38 0.81 1.18 t(198) = 4.99, p = 0.0000

KC27 Exp 21.45 4.83 23.89 1.10 1.32 t(126) = 4.52, p = 0.0000

Dich 21.92 4.62 23.73 0.89 1.75 t(72) = 1.99, p = 0.051

Comb 21.62 4.75 23.83 1.02 1.47 t(200) = 4.67, p = 0.0000

KC28 Exp 14.2 4.06 16.58 1.06 1.58 t(126) = 1.911, p = 0.058

Dich 14.19 5.14 18.32 3.58 0.69 t(72) = 1.82, p = 0.07

Comb 14.20 4.46 17.22 1.98 1.24 t(200) = 2.61, p = 0.0099

Overall Exp 273.89 56.61 305.48 0.99 1.19 t(126) = 3.32, p = 0.0012

Dich 270.54 58.43 307.57 0.79 0.77 t(72) = 2.92, p = 0.0046

Comb 272.66 57.28 306.25 0.92 1.03 t(200) = 4.40, p = 0.0000
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no differentiation between the students who learned much more than the median split and

those who were merely above the median and between those who were just below the median

and those who achieved a much lower score than the median. Additionally, the difference

between the high and low learners rewards were always 200 across all KCs, but the actually

NLG difference between the high learners and low learners varied across KCs: for example it

was 0.30 on KC20 but 0.49 on KC23. It is actually difficult to compare the induced KC-based

tutorial tactics across KCs (when there were conflicting policies in multi-KC steps) in this

way, because it also depends how much difference existed between the high and low learners

on that KC. So in Study 3, instead of using a median split, the final rewards were made

directly proportional to the real NLG scores.

As described above, one primary goal in this study was to compare the NormGain tu-

toring tactics with the InvNormGain ones. For inducing NormGain policies the final reward

value was set for each di on KCk as: NLGKCk
× 100. That is, the student’s KC-based nor-

malized learning gain for the given KC multiplied by 100. For the KC-general policies, the

final reward for each super-dialogue di was cumulative KC-based NLG × 100 where NLG

was the students’ learning gain as calculated based on his/her cumulative KC scores. Be-

cause NLG ∈ (−∞, 1], the maximum final reward was +100 and the minimum was −∞ for

enhancing learning tutorial tactics. Therefore, the NormGain tutoring tactics were expected

to enhance students’ learning.

For inducing InvNormGain policies, the inverted final rewards were used. More specifi-

cally, for KC-specific policies the reward was set for each di as (1−NLGKCk
)× 100. For the

KC-general tutorial tactics, the reward was set for each di was: (1−NLG)× 100. Because

(1 − NLG) ∈ [0, +∞), the maximum final reward was +∞ and the minimum was 0. So

the induced InvNormGain tutoring tactics were expected to enhance the reward for tutorial

actions that contributed less or nothing to the students’ learning.
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6.4 STATE REPRESENTATION

As described in Chapter 3, the issue of state representation can be divided into four sub-

issues. They are 1) defining the potential feature choices in state representation; 2) capping

the number of features included in each policy; 3) discretizing the features appropriately;

and 4) determining feature selection procedures. Compared to Study 2, several changes were

made in state representation. The number of features was expanded, and the maximum

number of features that could be included in a policy were also increased. In addition, a

different method on feature discretization was adopted, and more general feature selection

approaches were explored. How these four sub-issues were addressed in Study 3 is discussed

below.

6.4.1 Sub-issues 1: Feature Choices

In Study 2, 18 features were defined in four categories. One of major concern in Study 2

was that the 18 feature choices might not represent the state well enough. For example,

all three autonomy features were based on the number of elicits or tells the tutor gave to

that point in the session. However, the number may also depend on how much a student

said so far rather than the number of times the student input. Two tutorial dialogues can

have the same number of elicit/tells, but a student who generated a lot of words in his/her

entry generally did more work than another student who only generated one or two words

per turn. Therefore, the first motivation in Study 3 was to include more features in each

category so that it would represent the dialogue states better.

The second motivation was to expand the number of categories. In addition to the four

categories proposed in [Moore et al., 2004], two other categories were included that had been

suggested by the previous literature. For example, previous research indicated that there

was the learning difference between genders [Coley, 2001, Gallagher, 2001, Quek et al., 2002].

Additionally, we have shown that other background information such as MathSat score can

predict a student’s learning in math and science [Chi and VanLehn, 2008]. Therefore, a new

category of features that included certain background information was added. The category
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was named Background Features.

Additionally, previous analyses by Litman’s group have shown that simple linguistic

features computed from the students’ contributions to the tutorial dialogue are correlated

with learning. Forbes-Riley et al. [Forbes-Riley et al., 2007], for example, discovered that the

number of times a student mentioned a physics concept and the number of physics concepts

involved in a student’s dialogue were significantly correlated with learning. Additionally, in

[Purandare and Litman, 2008] the authors identified several additional features that can be

used to predict learning gains. These include the number of physics concepts mentioned in the

student’s turn, the concept-to-word ratio, the number of student turns with physics concepts,

and so on. Therefore, a new feature category was added that describes the characteristics of

dialogue generated by students. This category was named Student Dialogue Features.

In a word, feature choices were expanded from four categories and eighteen features in

Study 2 to six categories and fifty features in Study 3. The categories are: amount of the

work that the tutor has let the student perform (Autonomy); time-related tutorial contex-

tual information (Temporal situation); contextual information about the solution process

( Problem Solving Contextual features); the student’s current performance (Performance);

background information about the student (Background); and semantic information about

the students’ tutorial dialogues (Student Dialogue). All of these features are static infor-

mation, or can be computed in real time as the student works. The individual features are

described below.

6.4.1.1 Autonomy — five features Autonomy Features relate to the amount of work

performed by the student in the dialogue. All five autonomy features end with an ‘A’ in their

name and are numeric. Three of the five were included in Study 2 while two of the features,

stuWordsToTuWordsA and stuWordsToTuWordsSessionA, are new. In the following, the

label “**” is used to represent that the feature is a new feature and was not included in the

state choice in Study 2.

1. tellsSinceElicitA: The number of tells the student has received since the last elicit

prompt, irrespective of the KC involved. This feature reflects how active a student is

right now.
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2. pctElicitA:The percentage of elicit/tell decision points compared to what the tutor has

opted to elicit during the dialogue, irrespective of KC. This feature reflects how active a

student is overall.

3. stuWordsToTuWordsA** : The ratio of student-generated words to tutor-generated

words over the entire tutoring history, regardless of KCs. This feature also reflects how

active a student is overall, but it uses the words ratio. This is because when two students

receive the same percentage of elicits, a student with higher stuWordsToTuWordsA is

assumed to be more active than the one with lower stuWordsToTuWordsA.

4. stuWordsToTuWordsSessionA**: The ratio of student-generated words to tutor-

generated words in this session regardless of KCs. This feature also reflects how active a

student is in this session by using the words ratio between the student and the tutor.

5. pctTellsKCSessionA: The percentage of tells received this session for the given KC,

KCk. This feature reflects how active a student is on a specific KC in this session.

6.4.1.2 Temporal Situation — three features Temporal Situation Features encode

time-related information about the problem-solving process. All three temporal situation

features end with a ‘T’ and are numeric. All three were included in Study 2.

1. durationKCBetweenDecisionT: Time since the last tutorial decision was made on

the current KC. This feature reflects how active a student’s knowledge of the current KC

is. If “durationKCBetweenDecisionT” is high, it means that the tutor has not mentioned

the KC recently so the student’s knowledge on the current KC may be still.

2. TimeInSessionT: The total time spent in the current session. This feature reflects a

student’s fatigue level.

3. TimeBetweenSessionT: The time elapsed between the end of the previous session and

the beginning of the current one. This feature reflects how likely a student has forgotten

what they learned in previous sessions.

6.4.1.3 Problem Solving Contextual — fifteen features Problem Solving Contex-

tual features encode information about the current problem-solving context. All fifteen

problem solving-related features end with ‘PS.’ In Study 2, we included five features in this
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category (The first five features listed below — without “** ” in their names). However,

there are certain features that are important to describe the context of the tutorial decisions

which were not previously included. Thus, this category primarily consists of 10 new feature

choices that the author believes will represent the tutorial context. The selection of these fea-

tures was informed by prior research. For example, previous research suggests that whether

to tell or to elicit should depend on the student’s current competence and how difficult the

knowledge is. Therefore, a new feature was included, “conceptDifficultyPS”, to describe

the tutorial questions’ difficulty level. Moreover, [Purandare and Litman, 2008] found that

the number of concepts introduced by the tutor per-turn correlates with students’ learning,

so the features tutAverageConceptsPS** and tutAverageConceptsSessionPS** were in the

following list:

1. EarlyTrainingPS: For the first three problems, the value is 0 and for the later four

problems, the value is 1. This feature reflects how well a student might get used to the

tutoring system.

2. SimpleProblemPS: The first three problems are categorized as simple problems since

solving them involves only one domain principle; the next two are medium; and the final

two are complex. This feature reflects the complexity of the training problems’ problem

solutions.

3. DuringWalkThroughPS: For each training problem, the tutorial dialogues followed a

two-stage procedure: first problem solving followed by a post-problem discussion. This

feature describes whether a tutorial decision occurred during the problem solving or

post-problem discussion.

4. nKCsPS: The number of times the present KC has occurred in the current tutorial

dialogue. This feature reflects overall how familiar the student is with the current KC.

5. nKCsSessionPS: The occurrences of the current KC in the tutorial dialogue in this

session so far. This feature reflects how many times the student has accessed the current

KC in this session.

6. newLevelDifficultyPS**: If the current problem is more complex than the prior prob-

lem (i.e. we have crossed a boundary from simple to medium or medium to complex).
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This value is 1 for P1, P4, and P6 and 0 for the rest. If a problem is much more difficult

than its predecessors, it might take a student long time to learn the problem.

7. conceptDifficultyPS**: The current question’s difficulty level. This feature is roughly

estimated from the combined training corpus of Exploratory and DichGain Corpus. For

each tutorial decision step, we count the number of times the tutor decided to elicit the

answer from the students from the combined corpus and represent it as #elicit. Then

among all these occurrences, we count the number of occurrences of correct answers in

the corpus and represent it as #correct; the number of occurrences of incorrect answers

as #incorrect; the number of occurrences that students’ simply did not answer the

tutor’s question by input “I do not know” as #unknown, and finally, the number of

occurrences of partially correct answers as #partial. A partial correct answer refers to a

correct but incomplete answer; for example, to calculate the value of the Kinetic Energy

of the rock at T0 in P4, sometimes a student’s answer was “1.2′′ instead of “1.2J ′′. The

conceptDifficultyPS was calculated by

conceptDifficulty =
0.0 ∗#correct + 1.0 ∗ (#incorrect + #unknown) + 0.5 ∗#partial

#elicit
(6.1)

ConceptDifficulty is always in the range of [0, 1]. If conceptDifficulty =1, it means it is

a difficult question, whereas if it is close to 0, it means it is an easy question.

8. QuantitativeDegreePS**: This feature measures how quantitative the tutorial action

is. When the value is 1, it indicates the tutorial action is purely quantitative; when it

is 0, it is purely qualitative. When it is in the middle, then it is mixed. For example,

Line 4 in Figure 1.2 is a quantitative step since the tutor asks about the name of the

principle to apply to solve for KE0, while Line 6 in Figure 1.2 is a qualitative step since

the tutor asks the student “Would the direction of v0 affect the rock’s kinetic energy at

T0?”. For some decision steps, both types of discussion are involved. For example, in

a post-problem discussion, the tutorial decision step was about what physics quantities

the Kinetic Energy depends on. A correct answer should look like From KE=1
2
mv2. We

can infer that the Kinetic Energy of an object at time point T is influenced by the mass

of the object and its magnitude of velocity at T. This is both a quantitative step in that
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students need to know the formula of kinetic energy and it is also a qualitative step in

that they need to know what the variables represent here, especially that v only refers to

the object’s magnitude of the velocity at time T, which does not include the direction.

So for this tutorial decision step, the QuantativeDegreePS is 0.5.

9. numPhysConceptsTutorDialogueSessionPS**: The number of tutor’s physics con-

cepts 1 in this session so far. These physics concepts were identified and generated by

the two domain experts and knowledge representations (not the author); these are the

key words and physics concepts in the domain of work and energy.

10. tutAverageConceptsPS**: The average number of a tutor’s physics concepts in each

turn. This feature reflects how many physics concepts the tutor has mentioned so far

and how important the tutor’s turns might be. The more frequently physics concepts

showed in tutor’s turns, the more likely students might learn from these previous tutor’s

turns.

11. tutAverageConceptsSessionPS**: The average number of physics concepts in each

tutor’s turn in this session. This feature reflects how important the tutor’s turns might

be in this session.

12. tutConceptsToWordsPS**: The ratio of physics concepts to the words that have been

used in the tutor’s turn. This feature also reflects how often the tutor has mentioned

physics concepts overall.

13. tutConceptsToWordsSessionPS**: The ratio of physics concepts to the words that

have been mentioned in the tutor’s turn in this session. This feature also reflects how

often the tutor has mentioned physics concepts in this session.

14. tutAverageWordsPS**: The average number of words in the tutor’s turn. This fea-

ture reflects how verbose the tutor is overall.

15. tutAverageWordsSessionPS**: The average number of words in the tutor’s turn in

this session. This feature reflects how verbose the tutor is in the current session.

1“Physics concepts:” A word is a physics concept if it is one of the following: ’scalar’, ’vector’, ’mass’,
’displacement’, ’velocity’, ’acceleration’, ’gravitation’, ’gravity’, ’force’, ’weight’, ’normal’, ’friction’, ’system’,
’isolated’, ’non-isolated’, ’kinetic’, ’energy’, ’potential’, ’total mechanical’, ’gravitational’, ’spring’, ’tme’,
’spe’, ’ke’, ’gpe’, ’conservation’, ’non-conservation’, ’work’, ’network’, ’net’, ’direction’, ’perpendicular’.
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6.4.1.4 Performance — twelve features Performance Features describe information

about the student’s performance during the training. All twelve performance-related features

end with “PM.” In Study 2, seven features were included (listed as the first seven in below).

Five of the twelve features in this category are new for Study 3. Most of the original seven

features defined here described a student’s overall performance to that point. However, a

more accurate description of his/her performance should be based upon a student’s more

recent capability or performance. Therefore, five performance features have been added

which measure students’ more recent performance — in the session so far.

1. pctCorrectPM: We compute this by assessing all of the correct KCs in students’ entries

divided by the total number of KCs in the students’ entries. This feature reflects the

student’s overall competence when only elicits are counted as learning opportunities.

2. pctOverallCorrectPM: We compute this by assessing all of the correct KCs in stu-

dent’s entries divided by the total number of KCs shown in both the tutor’s entries and

the student’s entries. This feature reflects the student’s overall competence, when both

elicits and tells are counted as learning opportunities.

3. nCorrectKCPM: The absolute number of correct responses on the current KC in the

student’s entries. This feature reflects the student’s overall competence on the current

KC by measuring how many times the student have given correct responses on the KC.

4. pctCorrectKCPM: We compute this by assessing all of the correct cases on the present

KC in the student’s entries divided by the total number of cases the present KC showed

in the student’s entries. This feature reflects the student’s overall competence on the

current KC when only elicits on the KC are counted as learning opportunities.

5. pctOverallCorrectKCPM: We compute this by assessing all of the correct cases on the

present KC in the student’s entries divided by the total number of cases on the present

KC in both the tutor’s and the student’s entries. This feature reflects the student’s

overall competence on the current KC when both elicits and tells that involve the KC

are counted as learning opportunities.

6. pctCorrectKCSessionPM: We compute this by assessing all of the correct cases on

the present KC in the student’s entries in this session divided by the total number of

cases on the present KC in the student’s entries in this session. This feature reflects the
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student’s competence on the current KC in this session when only elicits on the KC in

this session are counted as learning opportunities.

7. nIncorrectKCPM: The number of incorrect student responses on the current KC since

the start point. This feature reflects the student’s overall incompetence on the current

KC.

8. nCorrectKCSessionPM**: The absolute number of correct responses on the current

KC in the student’s entries in this session. This feature reflects the student’s incompe-

tence on the current KC in this session.

9. pctCorrectSessionPM**: We compute this by assessing all of the correct KCs in the

student’s entries in this session divided by the total number of KCs in the student’s

entries in this session. This feature reflects the student’s overall competence across all

KCs in this session when only elicits in this session are counted as learning opportunities.

10. pctOverallCorrectSessionPM**: We compute this by assessing all of the correct

KCs in the student’s entries in this session divided by the total number of KCs shown in

both the tutor’s entries and the student’s entries in this session. This feature reflects the

student’s overall competence across all KCs in this session, when both elicits and tells in

this session are counted as learning opportunities.

11. pctOverallCorrectKCSessionPM**: We compute this by assessing all of the correct

cases of the present KC in the student’s entries in this session divided by the total number

of cases of the present KC in both the tutor’s and the student’s entries in this session.

This feature reflects the student’s overall competence on the current KC in this session

when both elicits and tells that involve the current KC in this session, are counted as

learning opportunities.

12. nIncorrectKCSessionPM**: The number of incorrect student responses on the cur-

rent KC in this session. This feature reflects the student’s overall incompetence on the

current KC in this session.

6.4.1.5 Background — five features As described above, previous research has shown

that certain background features describe general information about the student’s ability to

learn. Five Background Features, such as the student’s pre-test scores, have been included.
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None of these features change during problem solving. All five background features end with

“BG.” All features in this category are new features which were not incorporated into Study

2. One important note was that for DichGain group, the following features, genderBG,

ageBG, MathSatBG, and VerbalSatBG, were not available because of the administrative

error.

1. genderBG**: The student’s gender. It may be the case that the effectiveness of tutorial

policies depends upon differences in gender. For example, male students might learn

better by answering the questions, while female ones might learn better by reading the

information.

2. ageBG**: The student’s age. This feature reflects how much school experience the

participant might have.

3. MathSatBG**: The student’s math SAT scores. This feature reflects the participant’s

math skill since the physics domain is a math-related domain.

4. VerbalSatBG**: The student’s verbal SAT scores. This feature reflects the partici-

pant’s reading skill since the selected domain also has a lot qualitative discussions.

5. pretestBG**: The student’s pre-test scores. This feature reflects the participant’s

competence in physics before he/she starts the training session.

6.4.1.6 Student Dialogue — ten features This is also a new category. It describes

the characteristics of the entries input by students. These are simple linguistic features that

are computed from the student’s part of the tutorial dialogues. These features were inspired

by previous work on tutoring. Forbes-Riley et al., for example, discovered that the number of

times a student mentioned a physics concept and the number of physics concepts involved in

the students’ dialogue were significantly correlated with learning [Forbes-Riley et al., 2007].

Additionally, Purandare and Litman, identified several additional features that can be used

to predict learning gains: the number of physics concepts mentioned in the students’ turn,

the concept-to-word ratio, the number of the student’s turns with physics concepts, and so

on [Purandare and Litman, 2008].
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1. averagePhysConceptsStudentDialogueSD**: The average number of physics con-

cepts mentioned per student turn since the training started. This feature reflects how

physics-like the student-generated answers have been since the beginning of the training.

2. numStudentConceptualDialogueSD**: The number of the student’s turns that in-

cludes at least one physics concept. This feature reflects how many times the student-

generated answers included at least one physics concept.

3. stuConceptToWordRatioSD**: The ratio of physics concept words to total words

in the student’s turns. This feature also reflects how physics-like the student-generated

answers have been since the beginning of the training.

4. stuAverageWordsSD**: The average number of words per student turn. This feature

also reflects how verbose the student was overall. It might also reflect how active the

student was.

5. stuAverageConceptSD**: The average number of the student turns that involve at

least one physics concept. This feature reflects how often the student’s answers involved

at least one physics concepts since the start of the training.

6. averagePhysConceptsStudentDialogueSessionSD**: The average number of physics

concepts mentioned per student turn in this session. This feature reflects how physics-like

the student-generated answers are in this session.

7. numStudentConceptualDialogueSessonSD**: The number of the student turns

that mention physics concepts in this session. This feature reflects how many times the

student- generated answers included at least one physics concept in this session.

8. stuConceptToWordRatioSessionSD**: The physics concepts to words ratio per

student’s turn in this session. This feature also reflects how physics-like the student-

generated answers are in this session.

9. stuAverageWordsSessionSD**: The average length of student turns in this session.

This feature reflects how verbose the student was in this session, and it might also reflect

how active the student was in this session so far.

10. stuAverageConceptSessionSD**: The average number of student turns which in-

volve at least one physics concept over all the student turns in this session. This feature
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reflects how often the student’s answers involved at least one physics concepts in this

session.

6.4.1.7 Simplified Example of Deriving Fifty Features from Log Files. Similar

to Chapter 5, the same sample tutorial dialogue in Table 5.1 were transformed into fifty

features for inducing tutorial tactics on KC20. I attach how the 50 features were updated as

the sample dialogue in Table 5.1 goes on in the Appendix L.

6.4.2 Sub-issues 2: Maximum Number of Features

In Study 2, the maximum number of features was capped at four because of the four cate-

gories. The effect of this was that the maximum number of features involved in the induced

tutorial tactics was limited to only one. It is quite possible, however, that for some KCs

there was more than one feature from one category that should have been included in the

state representation. Therefore, in Study 3, no limit was set for the number of features that

each category could contain, nor was a requirement set that there needed to be a feature

from each category.

In order to determine the maximum number of features in the induced policy, it is

necessary to consider the amount of available data and available computational power. In

the worst case scenario, there were only 2 JS tutorial decision steps in the DichGain training

corpus for KC14. In order to learn effective tutoring tactics, we should have a corpus that

covers each of these states at least once. Therefore, based on the minimum data available

from the three training corpus for KC14, we capped the number of features in each policy at

six, which means that there are at least 26 = 64 states in the learned policy. Alternatively,

we could have used a flexible number for different KCs. However, given that six features

would already result in very subtle policies, as shown in Table 6.5, it is not the case that

learned tutorial tactics with six features were most effective. Instead the final induced policies

primarily have 3-5 features in their state representation, and only two of 34 final tactics have

six features. So it appears that six is a reasonable number for this study.
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6.4.3 Sub-issues 3: Feature Discretization

Five of the fifty features, EarlyTrainingPS, SimpleProblemPS, DuringWalkThroughPS, gen-

derBG, and newLevelDifficultyPS are discrete. The remaining forty-five features are numeric

and must be discretized before a suitable MDP can be constructed. Previously, in Study 2

a median split was implemented. For the present study, a more complicated procedure was

adopted. The discretization procedure in Study 3 used two clustering procedures, one based

upon bounding the number of clusters, and the other based upon identifying the optimal

cluster means.

For each of the continuous valued features, the ideal number of clusters was identified

using a TwoStep package embedded in SPSS. TwoStep clustering is a scalable cluster analysis

algorithm designed to handle very large datasets. It is capable of handling both continuous

and categorical variables and attributes. Its key advantage is that it can find the optimal

number of clusters when the ideal value is unknown. Once the proper number of clusters

has been determined, it is possible to apply more traditional K-mean methods to identify

the contents of each cluster. After the clusters and their mean values were identified, the

clusters were ranked by value, assigned the student values, and discretized according to

cluster membership.

Although the median split in study 2 may not have been optimal, it capped the number

of possible values for each state feature at two. By using the automatic procedure, it is highly

likely that each feature it would have been discretized into many clusters. Increasing the

number of possible values in a state would increase the number exponentially. For example,

the application of the TwoStep package to stuAverageConceptSD from the Exploratory

training corpus on KC20 resulted in seven clusters. If each feature has seven possible values,

for a six-feature policy, it would have 76. In order to control the number of possible values,

the maximum number of discrete values for each feature was set at four. However, this

procedure is still risky in that it can generate small clusters containing at most a handful of

data points. This can then lead to problems of data sparsity during the RL phase. These

two problems were addressed by adding a reduction loop to the procedure. If any given

cluster within a set contained less than 20% of the total cases after K-means clustering took
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place, then the number of clusters was reduced by one and the K-means algorithm was run

again. This process was repeated until all clusters exceeded the 20% threshold.

If this requirement could not be met, then the feature was discretized through a median

split. A Pseudo-code representation of the algorithm is shown below:

1. for each feature choice fi:
2. Step 1: Count the clusters numCluster by applying two-step clustering approach
3. Step 2: Via k-means clustering, discretize the feature fi into numCluster clusters.
4. Step 3: if one cluster has less than 20% cases:
5. Step 4: if numCluster =2:
6. Step 5: median split
7. Step 6: else:
8. Step 7: numCluster = numCluster − 1
9. Step 8: Go to Step 2.

For example, by running this procedure, the system performed a median split on “stu-

AverageConceptSD” so that values in the range of 0 to 0.228395 is 0 and values in the range

of 0.228395 to 1 is 1 (The feature choices were normalized in this dissertation). Finally, the

number of clusters for each feature ranged from, at minimum, two clusters to as many as

four.

6.4.4 Sub-issues 4: Feature Selection

In Study 2 a simple greedy-feature selection method was used. The procedure was repeated

later, using the same Exploratory Corpus, the same 18 features and the discretization pro-

cedure, rewards and so on. The only difference was that some new feature selection methods

were applied. Results showed that by simply changing the feature selection methods, the

induced policies had a much higher ECR than the ones used in Study 2. Recall that the

ECR was the criteria for picking the best policies [Chi et al., 2008a]. For example, the pol-

icy π(KC22, ET ) used in study 2 previously had an ECR of 9.40. Under the new feature

selection methods, the policy π(KC22, ET )∗ had an ECR of 44.29, almost four times higher.

Therefore, in Study 3 a more complex set of eleven feature-selection approaches were

explored. The domain general feature selection methods were the main ones explored, and by

doing so, the relationships among the features were neglected. For example, a domain-specific

feature selection approach could only select features that correlated with NLG. However, by

117



doing so, most of the problem-solving contextual features would never be considered such as

DuringWalkThroughPS, EarlyTrainingPS, and so on.

Almost every approach described below involved inducing single-feature policies first.

That is, for each of the fifty feature choices, the RL package was used to induce a single-

feature-policy. Because generating single-feature policies does not involve any feature se-

lection procedure, such policies were labelled as “single”. In the following, the focus is on

using feature selection to select at least two features in a policy. To differentiate from the

single-feature policies, the policies induced through feature selection were labelled as non-

single-feature policies. In short, Study 3 explored eleven feature-selection methods to induce

non-single-feature policies. Four of the approaches were based upon RL (Upper Bound,

Lower Bound, ECR, and Hedge) used in the previous studies [Chi et al., 2008a] ; one was

based on Principal Component Analysis (PCA) (PCA-only); four were combinations of PCA

and RL (PCA-Upper Bound, PCA-Lower Bound, PCA-ECR, and PCA-Hedge); while the fi-

nal pair were based upon stochastic selection (Random and PCA-random).

In the following, π(KCi, Dj, NormGain) and π(KCi, Dj, InvNormGain), are used to

represent a NormGain and an InvNormGain KC-based policy on KCi for tutorial decisions

Dj respectively. Here Dj ∈ {ET, JS}, KC∗ is used to represent KC-general policies, and

KCi ∈ {KC1, KC14, KC20, KC21, KC22, KC24, KC27, KC28, KC∗}.

6.4.4.1 RL-based Feature Selection As described in Chapter 3, after being given

a complete MDP structure, the Tetreault and Litman’s toolkit would calculate a policy

together with the policy’s ECR and 95% CI [Tetreault and Litman, 2008]. Lower-Bound

and Upper-Bound were used to refer to the 95% confidence bounds calculated for the

ECR. For example, a final tutorial tactic in Study 3 π(KC14, ET,NormGain) was based

on feature: durationBetweenDecisionT alone which is derived from the combined corpus.

π(KC14, ET,NormGain) states that “if the duration since last the tutorial decisions on

KC14 is less than 160.07 sec, then the tutor should elicit.”; π(KC14, ET,NormGain) has

ECR = 9.99 (range [−∞, 100]) with a 95% confidence interval= [9.85, 10.06], which means

there is a 95% chance that the ECR of the learned policy is between a lower-bound of

9.85 and an upper-bound of 10.06. Another π(KC14, ET,NormGain)∗ was based on the
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feature conceptDifficultyPS and is derived from training the Exploratory Corpus; it states

that: “if the current tutorial decision step is easy (< 49.53%), then the tutor should elicit.”

π(KC14, ET,NormGain)∗ has ECR = 1.19 with a 95% confidence interval = [0.03, 3.39].

To this point ECR has always been used as the criteria for selecting the best poli-

cies. However, the policy’s Lower-Bound or Upper-Bound can also be used as the crite-

ria. More specifically, the former evaluates the performance of policies in the worst case,

while the latter describes how well the policy can perform. As in the example above,

π(KC14, ET,NormGain) is more effective than policy π(KC14, ET,NormGain)∗ because

even its Lower-Bound is much higher than policy π(KC14, ET,NormGain)∗’s Upper-Bound.

Sometimes researchers encounter situations in which the ECR for Policy A is the same as

the ECR for Policy, B, but the confidence interval of A is much narrower than that of B.

In this case, a new criterion, Hedge, can be applied to compare the two policies. Hedge is

defined as a learned policy:

Hedge =
ECR

UpperBound− LowerBound
(6.2)

By applying Hedge, policy A is shown to be more effective than policy B. Any of these

criteria, ECR, Lower-Bound, Upper-Bound, or Hedge can be used to evaluate policies, and

thus they are used as four different criteria for feature selection. These feature-selection

methods are fairly straightforward and use the same general procedure, described below.

For each ranking metric in [ECR, Lower-Bound, Upper-Bound, Hedge]
1. For each of the 50 feature choices, use the RL package to induce a single-feature-policy.
2. Rank the policies in descending order based upon the ranking metric.
3. For i = 2 to 6

Pick the top i features from the ranked list and construct an MDP using them for the
state representation.
Induce a policy for that MDP and set it aside.

These feature-selection metrics based upon the sorting criteria used: ECR, Lower-Bound,

Upper-Bound, and Hedge respectively. These are RL-based methods as the feature selection

procedures all use the policy ECR to identify optimal feature choices. For each of the ranking

metrics, the above procedure resulted in five lists of policies and resulted in twenty policies
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that involved at least two features in the state representation for each KC on each type of

tutorial action decision from each corpus.

Here is an example which applies the Upper-Bound feature selection for deriving poli-

cies on KC14 for the ET decision from the Exploratory Corpus. First, from the fifty fea-

tures fifty single-feature policies were learned: π1, · · · , π50. Then the fifty single features

were sorted based on the upper-bound of its corresponding single-feature policy. Then the

first six features were selected for which the corresponding single-feature policies had the

highest upper-bounds. In this example, the six selected features are in the order of fre-

quency: {durationBetweenDecisionT, numPhysConceptsTutorDialogueSessionPS, nKCsPS,

nKCsSessionPS, nIncorrectKCSessionPM, tutAverageWordsSessionPS}. For the first fea-

ture, “durationBetweenDecisionT” a single-feature policy has already been learned, so the

process begins with the second one. The process used is to learn a two-feature policy based

on the first two features: “durationBetweenDecisionT, numPhysConceptsTutorDialogueSes-

sionPS”, and then a three-feature policy based on the first three features: “durationBetween-

DecisionT, numPhysConceptsTutorDialogueSessionPS, nKCsPS”, and so on. The most com-

plicated policy to be learned would be a six-feature policy which includes all six features in

the state. Therefore, for KC14 on ET tutorial decisions, five non-single-feature tutorial

tactics were induced by following the Upper-Bound feature from each training corpus.

6.4.4.2 PCA-based Feature Selection Given the data sparsity problems that most

machine learning techniques face, an ideal state representation should have as few features

as possible while still being rich enough to represent the domain accurately. Unfortu-

nately, some of the features available in this study were highly correlated which reduced

their expressiveness when used together. For example, given nCorrectKCPM, the number

of correct responses on the current KC KCk, and nIncorrectKCPM, the number incorrect

responses on KCk generated by the student, pctCorrectKCPM, the percentage of correct

responses given by the student on KCk could easily be calculated as: pctCorrectKCPM =

nCorrectKCPM
nCorrectKCPM+nIncorrectKCPM

. Therefore, it was necessary to apply an analysis procedure to

avoid redundant features. One such procedure explored in this thesis is Principal component

analysis (PCA) [Jolliffee, 2002].
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PCA is a mathematical procedure that transforms a large number of, possibly correlated,

variables into a smaller number of uncorrelated variables called principal components. It is

a popular dimensionality-reduction technique as it is simple, non-parametric, unsupervised,

and has been applied successfully in a number of domains. More formally, given a list of

n− dimension variables, PCA extracts a reduced set of p (p < n) principal components or

factors that account for most of the variance present in the original set.

This is done by first extracting n principal components from the original n variables. Each

component is a linear combination of the variables. Formally, it results in a set of n linear

equations with n unknown variables. In other words, PCA repackages the original variables

into an equal number of uncorrelated principal components. The first of these components

accounts for the largest possible amount of variance. The second component, which attempts

to explain the variance remaining after the first component has been extracted, accounts for

the second largest amount of variance, and so on. As the components are extracted they are

restricted to be orthogonal. Geometrically, they may be viewed as defining an n-dimensional

space.

The variance in this correlation matrix is “repackaged” into a set of n eigenvalues, one

for each principal component. Each eigenvalue represents the amount of variance covered

by its associated component. Thus the first eigenvalue accounts for the largest share of

the variability with each one accounting recursively for the largest share of the remaining

variability once its predecessors are accounted for. Each of the n variables’ variance is

normalized to 1. Each component’s eigenvalue may be compared to this standard value to

determine how much more or less variance it accounts for than a single variable. With n

variables there is a total of n variance to distribute. The extracted components, like the set of

variables, account for all of this variance collectively. The proportion of variance accounted

for by one component equals its eigenvalue divided by n.

Typically, the goal was to derive a set of less than n components. When a set of p out

of the variables share a considerable amount of variance, then p < n components will have

relatively large eigenvalues, while the rest will have substantially smaller eigenvalues. In this

situation what needs to be determined is how many components will be retained and how

many will be discarded. One rule of thumb is to drop any component with an eigenvalue
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of less than 1, that is, any component that accounts for less variance than a single variable.

Having done that, the n − dimensional space defined by the original variables has been

reduced to a p− dimensional component space that still covers the bulk of the variance.

In this study, initially, all fifty feature choices were normalized. PCA was then applied

to the normalized features to generate fifty principal components and their correspond-

ing eigenvalues. These eigenvalues were arranged in descending order, and all components

whose eigenvalues were less than 1 were removed. For each eigenvalue, the feature that

was maximally correlated with the corresponding principal component was identified. The

resulting features were a subset of the original fifty feature choices that were designated the

PCA-feature subset. PCA-feature subset is an ordered list arranged by the eigenvalues of

its corresponding principal components. Results showed that the number of PCA-features

selected for each KC varied from eight to thirteen.

Once the PCA-feature subset was identified, the PCA-only feature selection procedure

was straightforward. It began with the first feature in PCA-feature subset and added one

feature at a time to the MDP and learned a new policy. This process was repeated five

times.

Here is an example. After running PCA on a list of 50 − dimension feature variables

exacted from the Exploratory Corpus for inducing KC-general tutorial tactics on elicit/tell,

a reduced set of thirteen principal components whose eigenvalues were bigger than 1 was ex-

tracted. They were ordered by their corresponding eigenvalues as shown in Table 6.2. In that

table, the second column shows the eigenvalues of the corresponding components arranged

in decreasing order. Specifically, eigenvalues decreased from 6.59 for the first component

to 1.11 for the 13th component. The third column represents the cumulative eigenvalues.

For example, the last row of the third column is 81.42%, which means these 13 principal

components have 81.42% of the total information provided by the original fifty variables.

For each principal component, one feature with the highest correlation with the com-

ponent was extracted. In this instance, “pretestBG” (the students’ pre-test score) is se-

lected for the first principal component, SimpleProblemPS (whether the current problem

students are working on is a simple problem or not) as the second principal component,

and so on. The corresponding correlation value is listed in the last column. So our PCA-
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Table 6.2: An Example PCA Feature Set from the Exploratory Corpus Induced for A KC-

general Tutorial Tactics

Order EigenVals EigenCumulative EigenVar EigenCorr

1 6.589 13.179 pretestBG 0.962

2 4.858 22.894 SimpleProblemPS 0.933

3 4.746 32.387 nKCsSessionPS 0.939

4 4.416 41.218 stuAverageWordsSD 0.912

5 4.304 49.827 tutAverageConceptsSessionPS 0.859

6 3.626 57.08 pctCorrectSessionPM 0.882

7 3.601 64.283 stuConceptToWordRatioSessionSD 0.866

8 2.555 69.393 MathSatBG 0.914

9 1.357 72.107 newLevelDifficultyPS 0.871

10 1.205 74.516 pctElicitA 0.618

11 1.202 76.919 QuantativeDegreePS 0.868

12 1.141 79.202 conceptDifficultyPS 0.578

13 1.11 81.421 durationBetweenDecisionT 0.763

feature subset is simply the collection of the thirteen features in column 4, sorted by the

corresponding eigenvalues, which is pretestBG, SimpleProblemPS, nKCsSessionPS, stuAver-

ageWordsSD, tutAverageConceptsSessionPS, pctCorrectSessionPM, stuConceptToWordRa-

tioSessionSD, MathSatBG, newLevelDifficultyPS, pctElicitA, QuantativeDegreePS, concept-

DifficultyPS, durationBetweenDecisionT.

For PCA-only feature selection, the researcher started with a single feature policy,the

first Eigen Variable pretestBG here, then a two-feature policy by using the first two Eigen

Variables: pretestBG, SimpleProblemPS, and so on. The most complicated policy would be

a six-feature policy (because the maximum number of features in a policy was capped at

six) by using the first six Eigen Variables: pretestBG, SimpleProblemPS, nKCsSessionPS,
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stuAverageWordsSD, tutAverageConceptsSessionPS, pctCorrectSessionPM, which included

one background feature “BG”, three problem state contextual features “PS”, one feature

about the student’s dialogue “SD”, and one feature about the student’s performance “PM”.

Therefore, for each KC for each type of tutorial action from each individual corpus, five

non-single-feature tutorial tactics were induced using the PCA-only feature selection.

6.4.4.3 PCA and RL-based Feature Selection Thus far, four RL-based feature se-

lection methods and a PCA-only feature selection method have been described. By simply

combining PCA-only feature selection with the four RL-based feature selection methods,

four new feature selection approaches are created. In this method, PCA is used to identify

the PCA-feature subset from the original fifty features, creating a set of available features

that have eigenvaluse greater than one. The four RL-based methods, PCA-Upper Bound,

PCA-Lower Bound, PCA-ECR, and PCA-Hedge are then applied as before. In effect these

combined feature selection methods are being used to winnow the set of available features,

not once, but multiple times.

Here is a summary of the procedure:

[Stage 1:] Select the PCA-feature Subset:

[Phase 1:] Apply PCA on fifty features.

[Phase 2:] Identify the set of principal components with its

eigenvalues greater than or equal to one.

[Phase 3:] For each component, identify the feature F that is most

correlated with the component.

The resulting features are the PCA-feature choices and are ranked in

the order of their eigenvalues.

[Stage 2:] Apply the RL-based approach:

For each ranking metric in [ECR, Lower-Bounds, Upper-Bounds, Hedge]

For each of PCA-feature choices, use the RL package to induce a

single-feature-policy.

Rank the policies in descending order based upon the ranking metric.

For i = 2 to 6:
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Pick the top i features from the ranked list and construct

an MDP using them for the state representation.

Induce a policy for that MDP and set it aside.

Based on the sort criteria in phase 2, four feature selection methods were named PCA-

ECR, PCA-Lower Bound, PCA-Upper Bound, and PCA-Hedge respectively. Similar to pre-

vious approaches, for each KC on each type of tutorial action from each individual corpus,

five non-single-feature tutorial tactics were induced by combining the PCA and RL-based

feature selection methods.

6.4.4.4 Random Feature Selections Thus far nine feature selection methods have

been introduced. In order to evaluate their relative effectiveness, a random feature selection

method was also introduced. The expectation was that the nine feature selection approaches

described above would be more effective than a random feature selection. In other words,

it was anticipated that the final tutorial tactics would be induced by the feature selection

methods introduced above rather than the random feature selection. Two random feature

selection procedures were employed: Random and PCA-Random. In the former case features

were randomly selected from all fifty feature choices. In the latter case PCA-based feature

reduction was applied to reduce the set of variables to those with high variance correlations,

and then features were randomly selected from the reduced set. Here is the summary of this

procedure:

Random-selection :

For j= 1 to 2

For i = 2 to 6

Randomly select i features from fifty features.

Induce a policy for that MDP and set it aside.
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PCA-Random:

[Stage 1:] Select the PCA-feature Subset:

[Phase 1:] Apply PCA on fifty features.

[Phase 2:] Identify the set of principal components with

eigenvalues greater than or equal than one.

[Phase 3:] For each component, identify the feature F

that is most correlated with the component.

The resulting features are the PCA-feature choices and

are ranked in the order of their eigenvalues.

[Stage 2:] Random Selection:

For j= 1 to 2

For i = 2 to 6

Randomly Select i features from the PCA-feature Subset.

Induce a policy for that MDP and set it aside.

For each KC for each type of tutorial action from each individual corpus, 10 non-single-

feature tutorial tactics were induced by following either random or PCA-random feature

selection.

To summarize, for each KCi and decision (ET or JS) < KCi, Dj >, three training

corpora, a space of fifty features, and eleven feature selection methods were explored. For

each KCi and decision pair one set of policy choices was collected for each training corpus.

For each corpus, there were fifty single-feature policies. Applying eleven feature selection

methods to them yielded 5 × 9 + 10 × 2 = 65 non-single-feature policies (the random and

PCA-random feature selection yielded 10 non-single-feature policies each and the remaining

nine methods yielded five non-single-feature ones each). A total of 115 potential tutorial

tactics were generated for a single KC and decision pair per training corpus. Taken together,

all three corppora resulted in a total of 115 × 3 = 445 policies for each pair < KCi, Dj >.

The best policy for < KCi, Dj > was selected from this pool by ECR. For the purposes of

this study, the highest ECR irrespective of the confidence bounds or hedging was selected.

This is similar to Study 2.
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6.5 CONFLICTING POLICIES

In Study 2, a total of 21 KCs for elicit/tell decisions and 10 KCs for justify/skip-justify

decisions were considered. When faced with conflicting tutorial policies, the policy with

the highest ECR was chosen. However, in the selected domain, certain KCs are necessary

precursors for other KCs. KC24, for example, is the definition of Total Mechanical Energy

: TME = KE + GPE + SPE. In order to apply KC24 effectively, students need to know

the definition of Kinetic Energy, which is KC20 KE = 1
2
mv2. Thus KC20 is a necessary

precursor to KC24. In Study 3, we have the ECR of π(KC20, ET ) = 14.25 while the ECR

of π(KC24, ET ) = 13.51. In some of the ET tutorial decisions that involve both KC24 and

KC20, KC24, what would the major topic of discussion be, given this precursor relationship?

By following the old procedure on conflicting policies, the system would always choose the

policy with the highest ECR. In this case, the system would follow the π(KC20, ET ) because

its ECR is higher than π(KC24, ET )’s ECR, even though the KC24 is the target topic.

Therefore, in Study 3 the focus was narrowed eight main KCs and a more complex conflict-

resolution approach was adopted. The KCs were first grouped according to three levels of

“priority” based upon the domain knowledge with “Top” being the highest and “Low” being

the lowest:

Top Level: KC27, KC28.
Medium Level: KC24, KC14.
Low Level: KC20, KC21, KC22, KC1.

This heuristic was built in such way that lower-level KCs are necessary precursors for the

higher level KCs. KC27 for example is conservation of total mechanical energy : TME1 =

TME0. In order to apply KC27 effectively, students need to know about the definition of

Total Mechanical Energy, which is KC24 TME = KE + GPE + SPE. Thus KC24 is a

necessary precursor for KC27 and KC27 is not a necessary precursor for any other KCs in

the domain. Therefore we put KC27 in the highest level: Top Level and KC24 in the second

level: Medium Level. By always choosing the highest level KCs in a multiple-KC decision

step, we can pick the policy on the target KCs.
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When a tutorial decision involved multiple KCs, the system first collected the set of

policies at the highest level. If a tutorial decision step did not involve any of the eight major

KCs, then the system will follow the KC-general tactics. If, however, a decision step did

involve some of the eight primary KCs, then the system would poll the tutorial tactics for

KCs at the maximum rank, and will follow the policy with the highest ECR.

6.6 SUMMARY: INDUCTION OF TUTORIAL TACTICS IN STUDY 3

For Study 3 two sets of tutorial tactics were induced. The first is Normalized Gain or the

NormGain set. The second is Inverse Normalized Gain or the InvNormGain set. Both

sets were induced using the same RL procedures on the same corpora and differed only in

the reward function applied to the training corpora. The NormGain set used a positive

NLG-based reward and the InvNormGain set used an inverse of that same function.

Both the final NormGain and InvNormGain sets contained 17 policies. Thus, we have

a total of 34 policies. In each set, two out of the 17 are KC-general policies, one is an ET

policy and the other is a JS policy. The remaining 15 policies are KC-based and consist of

seven pairs of policies for seven of the eight main KCs and one policy for KC1. Each of the

seven pairs is associated with a single KC and contains one ET policy and one JS policy.

KC1 does not arise in any JS decisions and thus only an ET policy was induced for it.

In order to examine a range of possible tactics for each KCi on either ET or JS tutorial

decisions < KCi, Dj >, three training corpora, a space of fifty features, and eleven feature

selection methods were used to yield 445 policies. As discussed above, the corpora were:

the Exploratory Corpus collected in Studies 1, the DichGain Corpus collected in Studies

2, and a combined corpus that merged both datasets. The fifty feature choices could be

divided into six categories as described in detail above, and eleven feature selection methods

could be applied to them. The best policy for each pair < KCi, Dj > was selected from

445 policies by ECR. For the purposes of this study only the policy with the highest ECR

irrespective of the confidence bounds or hedging was selected. This selection process was

repeated for each of the 34 policies with the KC-general policies being chosen from models
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that ignored the involved KCs. The full list of NormGain policies used in Study 3 are

shown in Appendix N and the full list of InvNormGain policies are shown in Appendix O.

They detail the policies themselves, the corpus from which they were drawn, the features

involved, their discretization ranges, the feature selection method used, the policy’s ECR

and its confidence bounds.

The resulting NormGain and InvNormGain policies were implemented back into Cordillera

yielding two new versions of the system, named NormGain-Cordillera and InvNormGain-

Cordillera respectively. Both systems applied the policies to guide tutorial decisions. KC-

based decisions were guided using the KC-based policies. Conflicts were resolved using the

ranking among the primary KCs discussed in Section 6.5. For steps that did not involve one

of the eight primary KCs, the system used the KC-general tutorial tactics.

Table 6.3 summarizes the major differences between the RL procedure used in Study 2

and that in Study 3. The RL procedures differed on all the major issues. In the next section

the discussion will focus on some general characteristics of the induced tutorial tactics.

Specifically, it will focus on the source corpus that each of 34 tutorial tactics was derived

from, the features that were involved, and which feature selection method yielded the most

tutorial tactics, and so on.
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Table 6.3: Issue-by-Issue Comparison of Studies 2 and 3

Study 2 Study 3

Aspects DichGain NormGain InvNormGain

Training Corpora Exploratory Exploratory, DichGain, & Combined

KCs: 31 KCs 8 main KCs

Features: 18 features 50 features

4 categories 6 categories

Discretization: Medium Split TwoStep first and then k-means

Feature Selection Category-based 11 including Random; ECR; Hedge; & PCA

Max features /policy: 4 6

Reward: (NLG > median) NLG× 100 (100−NLG)× 100

→ +100;

(NLG ≤ median)

→ −100

Conflicting Policies: Follow max ECR Use KC ranking then ECR.

6.7 INDUCED POLICIES

In this section, the induced tutorial tactics will be described by identifying the training corpus

that each final tutorial tactic was derived from, which feature categories were most frequently

involved in the final tutorial tactics, and which feature selection method discovered the most

final tutorial tactics. The full list of policies used in Study 3 are shown in Appendix N

and Appendix O. The purpose of this section is to determine how RL-related decisions

described in the previous section had impacted the induced tutorial tactics. For example,

one decision was made to use all three training corpora, did the final induced policies come

from one corpus or from all three corpora? Moreover, which features appeared in the final
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induced tutorial tactics? Which feature selection method(s) seemed to be more effective?

This section begins with a discussion of the training corpus involved in the final 34 tutorial

tactics.

6.7.1 Source Training Corpus

Table 6.4 shows which corpus was used to induce the corresponding tutorial tactics. The

second and third columns show the source training corpus used in deriving NormGain tutorial

tactics on ET and JS for corresponding KCs respectively. The fourth and fifth columns

show similar information for the InvNormGain tutorial tactics. The last three rows 10-12

summarize the number of tutorial tactics derived from each corresponding training corpus.

For example, Rows 10 and 11 show that the Exploratory Corpus and the DichGain Corpus

each generated sixteen final tutorial tactics. The Exploratory Corpus was used to generate

11 NormGain tutorial tactics (5 ET and 6 JS) and 5 InvNormGain ones (3 on ET and 2

on JS) while the DichGain Corpus was used to generate five NormGain tutorial tactics (3

ET and 2 JS) and eleven InvNormGain ones (6 on ET and 5 on JS). The combined corpus,

however, only generated one tutorial tactic each for NormGain and InvNormGain.

Table 6.4 also shows that both the Exploratory and DichGain Corpora were involved in

generating the final tutorial tactics. However, the majority of the NormGain tutorial tactics

were from the Exploratory Corpus, eleven out of seventeen, while most of the InvNormGain

tutorial tactics were from the DichGain Corpus, also eleven out of seventeen. This result

suggested that the choice of the training corpus is very important for deriving tutorial tactics.

However, it is not very intuitive to determine why most of the NormGain policies were from

Exploratory Corpus, while most InvNormGain ones were from DichGain Corpus. Future

work is needed to explore the characteristics of a training corpus and how to choose a

training corpus.
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Table 6.4: The Source Training Corpus Of the Inducing 34 Tutorial Tactics

NormGain InvNormGain

ET JS ET JS

1 KC1 DichGain DichGain

2 KC14 Combined Exploratory DichGain Combined

3 KC20 Exploratory Exploratory Exploratory DichGain

4 KC21 Exploratory Exploratory Exploratory Exploratory

5 KC22 Exploratory Exploratory Exploratory DichGain

6 KC24 DichGain Exploratory DichGain DichGain

7 KC27 Exploratory Exploratory DichGain DichGain

8 KC28 DichGain DichGain DichGain Exploratory

9 Overall Exploratory DichGain DichGain DichGain Total

10 Exploratory 5 6 3 2 16

11 DichGain 3 2 6 5 16

12 Combined 1 0 0 1 2

6.7.2 Number of Features

Table 6.5 shows the number of the features involved in the thirty-four final tutorial tactics.

The second and third columns show the training corpus used in deriving NormGain tutorial

tactics on ET and JS for corresponding KCs respectively. The fourth and fifth columns

show the same information for the InvNormGain tutorial tactics. Table 6.6 summarizes

distribution of sizes, that is, how many policies contained one feature, two, and so on. For

example, Row 12 in Table 6.6 shows that there were eight policies that involved three features,

four NormGain ones and four InvNormGain ones. To our surprise, only two tutorial tactics

involved six features and most of the policies involved three to five features.
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Table 6.5: The Complexity of the 34 Induced Tutorial Tactics

NormGain InvNormGain

# KC ET JS ET JS

1 KC0 4 5 5 4

2 KC1 1 2

3 KC14 1 1 1 1

4 KC20 3 5 3 5

5 KC21 3 3 6 3

6 KC22 2 5 3 4

7 KC24 4 6 2 2

8 KC27 4 4 4 5

9 KC28 5 3 3 5

Table 6.6: Distribution of Policy Sizes.

NormGain InvNormGain

# Size ET JS ET JS Total

10 1 2 1 1 1 5

11 2 1 0 2 1 4

12 3 2 2 3 1 8

13 4 3 1 1 2 7

14 5 1 3 1 3 8

15 6 0 1 1 0 2
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6.7.3 Feature Choices

The total number of feature occurrences across all thirty-four tutorial tactics was 117. For

each induced tutorial tactic, the number of features involved were counted and then totaled.

If a feature occurred in several induced tutorial tactics, then each occurrence was counted

as one. More specifically, the total number of feature occurrences across the NormGain and

InvNormGain tutorial tactics was fifty-nine and fifty-eight respectively.

6.7.3.1 Autonomy Features Autonomy Features relate to the amount of work done

by the student in the dialogue. Five Autonomy features were defined: tellsSinceElicitA,

pctElicitA, stuWordsToTuWordsA**, stuWordsToTuWordsSessionA**, and pctTellsKCSes-

sionA. As mentioned earlier, features with “**” were new ones added in Study 3. The five

autonomy features occurred thirteen times. Among the five features, with the exception of

tellsSinceElicitA, the remaining four features occurred only once in one final induced policy.

Feature tellsSinceElicit occurred in nine out of the thirty-four final tutorial tactics included

in the state representation: five for NormGain and four for InvNormGain. Table 6.7 sum-

marizes the occurrences of each feature in the induced NormGain and InvNormGain tutorial

tactics. The number in the parenthesis refers to the number of occurrences. For example,

NormGain(8) means there were eight occurrences of autonomy features in NormGain tuto-

rial tactics and pctElicitA (1) means that “pctElicitA” occurred once in the final tutorial

tactics. The two new features labelled with “**” occurred only twice.

Table 6.7: Occurrence of Autonomy Features in The Final Tutorial Tactics

NormGain (8) InvNormGain(5)

1 tellsSinceElicitA (9) 5 4

2 pctElicitA (1) 1 0

3 stuWordsToTuWordsA** (1) 1 0

4 stuWordsToTuWordsSessionA** (1) 1 0

5 pctTellsKCSessionA (1) 0 1
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6.7.3.2 Temporal Situation Features Temporal Situation Features encode the time-

related information about the problem-solving process. Three features are defined: dura-

tionKCBetweenDecisionT, TimeInSessionT, and TimeBetweenSessionT. Table 6.8 summa-

rize the number of occurrences of each feature in the induced NormGain and InvNormGain

tutorial tactics. The three features occurred a total of fourteen times in the final thirty-four

policies. In Table 6.8, Row 1 shows that durationBetweenDecisionT showed up eight times,

more frequently than the other two features: four times in NormGain tutorial policies and

four times in InvNormGain ones.

Table 6.8: Occurrence of Temporal Situation Features in The Final Tutorial Tactics

NormGain (7) InvNormGain(7)

1 durationBetweenDecisionT (8) 4 4

2 TimeBetweenSessionT (2) 1 1

3 TimeInSessionT (4) 2 2
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Table 6.9: Occurrence of Problem Solving Contextual Features in The Final Tutorial Tactics

NormGain (30) InvNormGain (28)

1 EarlyTrainingPS (2) 1 1

2 SimpleProblemPS (2) 1 1

3 DuringWalkThroughPS (6) 2 4

4 nKCsPS (4) 3 1

5 nKCsSessionPS (3) 2 1

6 newLevelDifficultyPS** (4) 2 2

7 conceptDifficultyPS** (12) 7 5

8 QuantativeDegreePS** (5) 0 5

9 numPhysConceptsTutorDialogueSessionPS**(1) 1 0

10 tutConceptsToWordsPS** (8) 5 3

11 tutConceptsToWordsSessionPS** (4) 3 1

12 tutAverageWordsPS** (5) 2 3

13 tutAverageWordsSessionPS** (2) 1 1

6.7.3.3 Problem Solving Contextual Features Problem Solving Contextual features

encode information about the current problem-solving context. There are fifteen features

defined in this category. Table 6.9 summarizes the occurrences of each feature in the induced

NormGain and InvNormGain tutorial tactics. This category seems to be the most active.

There were fifty-eight occurrences in the final thirty-four tutorial tactics, which represents

approximately half of all of feature occurrences. In some of the tutorial tactics, more than

one feature from this category was involved.

Among the fifteen Problem Solving Contextual features, conceptDifficultyPS** (Row 7)

is the most frequently occurrences, occurring in twelve induced tutorial tactics: seven for

NormGain and five for InvNormGain. The next most frequently occurring feature is in Row
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ten: tutConceptsToWordsPS**, which describes the ratio of the tutor’s physics concepts to

their words. Two features (tutAverageConceptsPS** and tutAverageConceptsSessionPS**,

which represent the average number of tutor’s physics concepts in each turn overall and in

this session specifically, did not appear in any of the final induced tutorial tactics. Among the

fifty-eight occurrences, new features added for Study 3 occurred forty-one times: twenty-one

for NormGain and twenty on InvNormGain ones.

6.7.3.4 Performance Features Performance Features describe information about the

student’s performance during problem solving. Twelve feature choices were defined in this

category. Table 6.10 summarizes the occurrences of each feature in the induced NormGain

and InvNormGain tutorial tactics. The features in this category occurred seventeen times.

Row eight shows that “nIncorrectKCPM” (the number of incorrect response in the student’s

dialogue so far) is the most frequently occurring feature in that it appeared in five final

tutorial tactics: two for NormGain and three for InvNormGain. A feature such as pctOver-

allCorrectPM did not appear in any of the final tutorial tactics, probably because the closely-

related feature, pctOverallCorrectSessionPM, better represents the state in that it measures

the student’s more recent performance. PctOverallCorrectSessionPM (Row two) occurred

three times: one for NormGain and two for InvNormGain. The new features occurred a total

of five times: “nCorrectKCSessionPM** (2)” in Row four, “pctCorrectKCSessionPM** (1)”

in Row seven, and “nIncorrectKCSessionPM** (2)” in Row nine.

6.7.3.5 Background Features Much to the author’s surprise, only one background

feature occurred in one final tutorial tactic: “ageBG**” (the age of the subject). The policy

involved “ageBG**” is on KC24 and Justify/Skip-Justify. The remaining four background

features were not involved in any policy.

6.7.3.6 Student Dialogue Features Student Dialogue Features are simple linguistic

features that are computed from the student’s entries in the tutorial dialogue. Ten features

were defined in this category. Table 6.11 summarizes the occurrences of each feature in

the induced NormGain and InvNormGain tutorial tactics. The features in this category
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Table 6.10: Occurrence of Performance Features in The Final Tutorial Tactics

NormGain (5) InvNormGain (12)

1 pctCorrectPM (1) 0 1

2 pctOverallCorrectSessionPM (3) 1 2

3 nCorrectKCPM (1) 0 1

4 nCorrectKCSessionPM** (2) 1 1

5 pctOverallCorrectKCPM (1) 0 1

6 pctCorrectKCPM (1) 0 1

7 pctCorrectKCSessionPM** (1) 0 1

8 nIncorrectKCPM (5) 2 3

9 nIncorrectKCSessionPM** (2) 1 1

occurred fourteen times. Among them, “stuAverageWordsSD**” (the average number of

words per student turn) occurred four times, while stuConceptToWordRatioSD** (the ra-

tio of physics concept words to total words in the student’s turns) occurred three times.

Three features: averagePhysConceptsStudentDialogueSD**, stuAverageConceptSD**, av-

eragePhysConceptsStudentDialogueSessionSD** did not appear in any of the final tutorial

tactics.

To summarize, Problem Solving Contextual Features occurred most frequently, fifty-eight

times, in the final thirty-four induced tutorial tactics. Background Features occurred the

fewest number of times. The newly added features were involved in the final in a total of

2 + 41 + 5 + 1 + 14 = 63 times, so it could be concluded that expanding feature choices to

include new features such as conceptDifficultyPS**, was a good decision given that it had

the most occurrences in the final tutorial tactics.
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Table 6.11: Occurrence of Student Dialogue Features in The Final Tutorial Tactics

NormGain (8) InvNormGain (6)

1 numStudentConceptualDialogueSD** (1) 1 0

2 stuConceptToWordRatioSD**(3) 1 2

3 stuAverageWordsSD** (4) 2 2

4 numStudentConceptualDialogueSessonSD** (1) 1 0

5 stuConceptToWordRatioSessionSD** (2) 1 1

6 stuAverageWordsSessionSD** (1) 0 1

7 stuAverageConceptSessionSD** (2) 2 0

6.7.4 Feature Selection

In this study, I applied 11 feature selection methods. It would be interesting to see which of

them found the most final tutorial tactics. Table 6.12 lists all the feature selection methods

that were followed to get the final tutorial tactics for the corresponding KCs on the two types

of tutorial tactics: the NormGain and InvNormGain ones. Additionally, “single” means it

is a single feature policy.

It can be concluded that the three feature selection approaches: PCA-only, PCA-ECR,

and PCA-Upper Bound did not elicit any of the final tutorial tactics. All other eight ap-

proaches resulted in at least one. Among them, the two RL-based feature selection methods

appeared to be most effective. The ECR-based method discovered four NormGain tutorial

tactics and six InvNormGain tutorial tactics. The Upper Bound method found five Norm-

Gain tutorial tactics and four InvNormGain tutorial tactics. The feature selection may still

need to be improved because one of the final induced policies is from the random feature

selection — π(KC20, JS, InvNormGain).
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Table 6.12: Applying 11 Feature Selection Methods to Induce 34 Tutorial Tactics

NormGain InvNormGain

ET JS ET JS

KC1 single Upper Bound

KC14 single single single single

KC20 ECR PCA-Hedge PCA-Lower Bound Random

KC21 Upper Bound PCA-Hedge Hedge ECR

KC22 Hedge Upper Bound ECR ECR

KC24 ECR Upper Bound ECR Upper Bound

KC27 PCA-Random ECR Lower Bound Hedge

KC28 Upper Bound Upper Bound ECR Upper Bound

Overall Lower Bound ECR Upper Bound ECR

6.8 SUMMARY: RL IN STUDY 3

To summarize, compared with the RL approach in Study 2, a series of changes were made in

Study 3 to improve the effectiveness of the induced tutorial policies. However, there are many

ways this can be explored in future work. For example, except for following the heuristic

among the KCs to resolve the conflicting policies, we could choose the action that has the

most votes. For instance, if three KCs, KC20, KC21 and KC24, were involved in an ET

tutorial decision step. The ET policies on KC20 and KC24 selected to tell, but the KC21’s

policy selected to elicit, then the system would choose the one with the majority of the votes–

tell in this case. Similarly, instead of using the Exploratory Corpus and DichGainDichGain

Corpus individually or combined, a subset of the student’s dialogue from each corpus could

be selected to make a new training Corpus, and so on. Other research opportunities exist

which will be discussed in Chapter 9.
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The RL approach in Study 3 showed that it appears that the Problem Solving Contextual

features are most involved in the final induced tutorial tactics and that most of the NormGain

tutorial tactics were derived from the Exploratory Corpus while most of the InvNormGain

tutorial tactics were derived from the DichGain Corpus. Among the 11 feature selection

approaches, it seemed that the two RL-based tutorial tactics: Upper-Bound and ECR, were

most effective. However, in order to investigate why these are the case, we need more

exploration and it is beyond the content of this dissertation. Additionally, one of the future

works I would like to investigate is how different choices of Training Corpus or feature

selection methods are correlated with learning gains.

Next, the induced tutorial tactics were evaluated on real human subjects to see whether

the students who followed the NormGain tutorial tactics would out-perform those who are

under the InvNormGain ones.
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7.0 STUDY 3: NORMALIZED GAIN (NORMGAIN) VS. INVERSE

NORMALIZED GAIN (INVNORMGAIN)

In this chapter, I will present an experimental comparison of the induced Normalized

Gain (NormGain) and Inverse Normalized Gain (InvNormGain) tutorial tactics.

7.1 METHODS

7.1.1 Participants

Data was collected over a period of two months during the summer of 2009. Participants

were 64 college students who received payment for their participation. They were required

to have a basic understanding of high-school algebra. However, they could not have taken

any college-level physics courses. Students were randomly assigned to the two conditions.

Each took from one to two weeks to complete the study over multiple sessions. In total, 57

students completed the study (29 in the NormGain condition and 28 in the InvNormGain

condition).

7.1.2 NormGain-Cordillera and InvNormGain-Cordillera

NormGain-Cordillera and InvNormGain-Cordillera were used in Study 3. The only differ-

ences between the two systems were that interaction decisions made by NormGain-Cordillera

were guided by the 17 NormGain tutorial tactics and those made by InvNormGain-Cordillera
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were guided by the 17 InvNormGain tutorial tactics. Only one human wizard (the author)

was involved in Study 3.

7.1.3 Materials & Procedures

Participants in both conditions experienced a background survey; read a textbook covering

the target domain knowledge; took a pre-test; solved the same seven training problems in the

same order on the NormGain-Cordillera for the NormGain condition and the InvNormGain-

Cordillera for InvNormGain condition; and finally took a post-test that was identical to

the pre-test. The exams, introductory materials and training problems used were identical

to those used in Study 2 as was their order of presentation. As discussed in Chapter 5

subsection 5.2.2, in Study 3, everything but the exams were identical to those used in Study

1. The exams differed in only a single test question.

7.1.4 Grading

In study 3, the students’ test answers were graded by a different grader, the author, than the

grader from Studies 1 and 2. All of the tests in study 3 were graded in a double-blind manner

and followed the same procedure as used by the grader in Studies 1 and 2. Following the

same grading rubrics used in the previous studies, each question was assigned two grades:

overall and KC-based grade.

A grader agreement study was conducted in order to establish the validity of this grading.

The inter-grader agreement study, discussed in Appendix B, showed that the grading rubrics

were comparable to those used in the prior studies.

7.1.5 Measures

The main purpose of Study 3 was to investigate whether micro-level tutorial decisions would

make a difference in learning. The hypothesis was that the NormGain group would out-

perform the InvNormGain group. Therefore, Study 3 mainly focused on the two groups’

learning performances, which is measured by their pre-test and post-test scores. Moreover,
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the students’ overall learning performance will be compared under both grading criteria.

7.2 RESULTS

Random assignment appears to have balanced the incoming student competence across con-

ditions. A post-evaluation analysis showed that there were no statistically significant dif-

ferences in the pre-test scores between the two conditions. Additionally, there were no

significant differences between two groups on the mathSAT scores with a one-tailed paired

t-test: t(39) = 0.536p = 0.595 (M = 633.48, SD = 140.14 for the NormGain group and

M = 654.55, SD = 108.92 for the InvNormGain group) or age: t(55) = 0.175p = 0.862

(M = 23.41, SD = 4.39 for the NormGain group and M = 23.64, SD = 5.47 for the InvNor-

mGain group).

7.2.1 Time

No significant difference was found between the two groups in terms of the total training

time spent on Cordillera with a one-tailed paired t-test: t(55) = −.272, p = .787. The

NormGain group spent (M = 259.98, SD = 59.22) and the InvNormGain group spent (M =

264.57, SD = 67.60). By using a one-tailed paired t-test, a more detailed analysis of the time

spent on a per-problem basis revealed no significant difference between the two groups for

all but P6. Figure 7.1 compares the average time students spent on each training problem

between the two groups. On P6, the InvNormGain group spent an average of 57.72 min on

the problem. This was significantly more than the NormGain group’s 47.09 min (t(55) =

3.28, p = 0.002).

7.2.2 Learning Performance

7.2.2.1 Compare NormGain vs. InvNormGain conditions: Overall Learning

Performance A one-way ANOVA was used to test for learning performance differences

between the pre- and posttests. Participants in Study 3 made significant gains from pre-test
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Figure 7.1: Compare Time Between NormGain vs InvNormGain Groups On Training Prob-

lem

to post-test: with F (1, 112) = 36.22, p = .000, R2 = .70 under the overall grading criteria

and F (1, 112) = 27.58, p = .000, R2 = 0.71 under the cumulative KC-based grading criteria.

Table 7.1 compares the pre-test, post-test, adjusted-post-test, and NLG scores between

the two conditions under two grading criteria. In Table 7.1, the Adj.Post-test scores were

compared between the two conditions by running an ANCOVA using the corresponding pre-

test score as the covariate. The rest of the three scores, the pre-test, post-test and NLG

scores, were compared with one-tailed paired t-tests. The first column in Table 7.1 shows

that there were two grading criteria and the second column shows the comparisons were

conducted on four types of test scores: pre-test scores, post-test scores, adjusted post-test

scores, and NLG under each grading criteria. The third and fourth columns in Table 7.1

list the means and SDs σ of the NormGain and InvNormGain groups’ corresponding scores.

The fifth column lists the corresponding statistical comparison and the sixth column lists

the effect size of the comparison. Similar to Study 2, in study 3 Cohen’s d, was used. This is

defined as the mean learning gain of the experimental group minus the mean learning gain
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of the control group, divided by the groups’ pooled standard deviation. The final column

lists the statistical power of the comparison, 1− β.

Table 7.1 shows that there was no significant difference between the two groups on pre-

test scores under either grading criteria. However, there was a significant difference between

the two groups on the post-test, adjusted-post-test, and NLG scores under both grading

criteria. For example, cumulative KC-based NLG scores were used as reward functions for

inducing NormGain and cumulative KC-based (1-NLG) scores were used as reward functions

for inducing InvNormGain. The last row in Table 7.1 shows that with a one-tailed paired

t-test the former group out-performed the latter group: t(55) = 3.058, p = 0.003 and the

effect size was 0.81. Across all measurements, the NormGain group performed significantly

better than the InvNormGain group and the effect size was large by Cohen’s d criteria.

7.2.2.2 Compare NormGain vs. InvNormGain Conditions: KC-based Learning

Performance Above students’ overall learning performance was compared in the previous

section. Since KC-based tutorial tactics were induced, it would be interesting to compare

the two groups’ performance on a KC basis. With first step was to investigate whether

students learned on the eight primary KCs. A one-way ANOVA was used to test for learning

performance differences between the pre- and post-tests on each KC. Table 7.2 shows that

the participants in study 3 gained significantly from pre-test to post-test on all eight primary

KCs.

Next, the two groups’ KC-based scores were compared. Table 7.3 compares the two

groups’ performance on the pre-test, post-test, adjusted-post-test, and NLG scores on the

eight primary KCs. If there was a difference between the two groups, the Cohen d value

is labeled with “**” and it is labeled with “*” if it is marginal significant (p < 0.1). No

significant difference was found between the two groups on the KC-based pretest scores

across all eight KCs. Only on KC27, did the NormGain group score marginally higher than

the InvNormGain group.

On four out of eight primary KCs (KC1, KC20, KC21, and KC27) the NormGain group

significantly out-performed the InvNormGain group on the post-test, adjusted post-test and

NLG scores. On KC22 and KC24, the NormGain group significantly out-performed the In-
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vNormGain group on post-test and adjusted post-test scores, but not on the NLG scores.

On KC14, the NormGain group significantly out-performed the InvNormGain group on ad-

justed post-test score, but only marginally significantly on the post-test and NLG scores.

On KC28, however, no significant difference was found between the two groups on post-test,

adjusted post-test or NLG scores. One of the potential explanations for the lack of difference

on learning between the two conditions across measurements may be that there were too few

times KC28 appeared during the training. For example, Table 4.2 showed that KC28 only

appeared during the problem solving for training problem P4 while the other KC that has

the equivalent complexity is KC27 (KC27 and KC28 are the only two top level KCs.), which

showed up in three training problems: P5, P6 and P7.

Table 7.2: KC-based Pre- and Post-Test Test Scores

Pretest Posttest Stat

KC1 0.40 (0.19) 0.59 (0.19) F (1, 112) = 26.67, p < 0.0000,R2 = 0.582

KC14 0.44 (0.23) 0.59 (0.25) F (1, 112) = 10.85, p = 0.001,R2 = 0.46

KC20 0.37 (0.20) 0.62 (0.16) F (1, 112) = 54.27, p < 0.0000,R2 = 0.48

KC21 0.44 (0.22) 0.70 (0.18) F (1, 112) = 46.37, p < 0.0000,R2 = 0.42

KC22 0.40 (0.25) 0.57 (0.24) F (1, 112) = 12.78, p = 0.001,R2 = 0.44

KC24 0.43 (0.19) 0.61 (0.18) F (1, 112) = 25.68, p < 0.0000,R2 = 0.58

KC27 0.48 (0.23) 0.68 (0.26) F (1, 112) = 19.98, p < 0.0000,R2 = 0.52

KC28 0.36 (0.23) 0.50 (0.23) F (1, 55) = 10.35, p = 0.002,R2 = 0.48
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Table 7.3: Between-Group Comparison by KC-based

Pre- and Post-Test Scores

KC Test NormGain InvNormGain Stat d 1− β

KC1 Pre 0.42 (0.15) 0.39 (0.22) t(55) = 0.66, p = 0.5095 0.16 0.58

Post 0.65 (0.16) 0.53 (0.21) t(55) = 2.51, p = 0.0151 0.66**1 0.48

Adj. 0.64 (0.12) 0.54 (0.12) F (1, 54) = 9.80, p = 0.0028 0.85** 0.52

NLG 0.41 (0.24) 0.24 (0.27) t(55) = 2.59, p = 0.0122 0.68** 0.48

KC14 Pre 0.43 (0.23) 0.44 (0.25) t(55) = −0.17, p = 0.8638 -0.04 0.87

Post 0.64 (0.22) 0.53 (0.26) t(55) = 1.71, p = 0.0937 0.47*2 0.52

Adj. 0.65 (0.17) 0.53 (0.17) F (1, 54) = 6.47, p = 0.0139 0.72** 0.56

NLG 0.38 (0.34) 0.18 (0.39) t(53) = 2.00, p = 0.0502 0.56* 0.54

KC20 Pre 0.38 (0.17) 0.37 (0.22) t(55) = 0.31, p = 0.7613 0.05 0.77

Post 0.68 (0.13) 0.57 (0.18) t(55) = 2.48, p = 0.0163 0.72** 0.58

Adj. 0.67 (0.11) 0.58 (0.11) F (1, 54) = 10.30, p = 0.0022 0.83** 0.47

NLG 0.47 (0.22) 0.32 (0.19) t(55) = 2.75, p = 0.0080 0.74** 0.51

KC21 Pre 0.45 (0.20) 0.43 (0.24) t(55) = 0.35, p = 0.7256 0.09 0.74

Post 0.75 (0.12) 0.65 (0.21) t(55) = 2.32, p = 0.0238 0.6** 0.47

Adj. 0.75 (0.13) 0.65 (0.13) F (1, 54) = 7.62, p = 0.0079 0.78** 0.57

NLG 0.56 (0.22) 0.36 (0.32) t(55) = 2.73, p = 0.0086 0.74** 0.53

KC22 Pre 0.42 (0.25) 0.39 (0.26) t(55) = 0.41, p = 0.6828 0.12 0.71

Post 0.64 (0.19) 0.50 (0.27) t(55) = 2.34, p = 0.0228 0.61** 0.48

Adj. 0.63 (0.17) 0.51 (0.17) F (1, 54) = 7.77, p = 0.0073 0.72** 0.47

NLG 0.32 (0.43) 0.22 (0.33) t(54) = 0.97, p = 0.3380 0.26 0.54

KC24 Pre 0.46 (0.15) 0.41 (0.23) t(55) = 0.89, p = 0.3782 0.26 0.57

Post 0.65 (0.14) 0.56 (0.20) t(55) = 2.03, p = 0.0468 0.53** 0.49

Adj. 0.64 (0.11) 0.58 (0.11) F (1, 54) = 4.22, p = 0.0448 0.56** 0.51

Continued on Next Page. . .

1“**” means significant.
2“*” means marginal significant.
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Table 7.3: Between-Group Comparison by KC-based

Pre- and Post-Test Scores

KC Test NormGain InvNormGain Stat d 1− β

NLG 0.37 (0.22) 0.27 (0.27) t(55) = 1.67, p = 0.1012 0.41 0.46

KC27 Pre 0.53 (0.21) 0.42 (0.24) t(55) = 1.74, p = 0.0879 0.5* 0.55

Post 0.78 (0.21) 0.58 (0.28) t(55) = 3.01, p = 0.0040 0.82** 0.54

Adj. 0.74 (0.18) 0.63 (0.18) F (1, 54) = 5.88, p = 0.0187 0.62** 0.47

NLG 0.60 (0.34) 0.28 (0.37) t(53) = 3.33, p = 0.0016 0.92** 0.55

KC28 Pre 0.37 (0.20) 0.36 (0.26) t(55) = 0.13, p = 0.8997 0.04 0.9

Post 0.53 (0.22) 0.47 (0.24) t(55) = 1.01, p = 0.3179 0.27 0.52

Adj. 0.53 (0.17) 0.47 (0.17) F (1, 54) = 1.61, p = 0.2101 0.36 0.54

NLG 0.27 (0.37) 0.16 (0.29) t(54) = 1.26, p = 0.2119 0.34 0.51

7.2.2.3 Summary of Learning Results showed that both groups of participants had

significant learning gains after training on NormGain-Cordillera and InvNormGain-Cordillera

respectively. More importantly, although no significant difference was found in time on task

and in the pre-test scores under both grading criteria, the NormGain group out-performed

the InvNormGain group on the post-test, adjusted post-test, and NLG scores regardless of

the grading criteria. Therefore overall, the results show that the micro-level tutorial decisions

on micro-steps made a significant difference in the students’ learning.

On a KC by KC basis, the difference between the two groups was not significant on all

of the eight primary KCs. Especially, on KC28, no significant difference was found between

the two groups on post-test, adjusted post-test, and NLG scores. There are many potential

explanations for the lack of the difference on KC28. For example, KC28 is the only KC for

which both ET and JS tutorial tactics were derived from the DichGain Corpus. One of the

hypothesis generated from this study was that Exploratory Corpus seemingly works more

effectively than the DichGain Corpus (this will be discussed in the next chapter).
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To summarize, the overall test scores seemingly support the primary research hypothesis.

The NormGain condition indeed out-performed the InvNormGain condition. In order to

investigate why the NormGain tutorial tactics were more effective than the InvNormGain

one, it will be necessary to dig into the logs to have a detailed comparison of the differences

between the two sets of tutorial tactics. For example, the induced NormGain tutorial tactics

might simply elicit more answers from the students or execute more justification steps during

the tutoring. Therefore, the following section will investigate whether the NormGain and

InvNormGain tutorial tactics resulted in a different number of tutorial actions. The number

of overall decisions the tutor made, the number of ET decisions, the I-ratio, and the number

of JS decisions and the J-ratio between the two groups will all be compared. The goal is to

see whether the NormGain tutorial tactics resulted in different tutorial behaviors from the

InvNormGain policies when viewed from this shallow aspect.

7.2.3 Log Analysis

Table 7.4: Overall Characteristics of Tutorial Decisions in Exploratory Corpus

NormGain (29) InvNormGain (28) Stats

1 Tell 63.759 (19.528) 63.250 (4.656) t(55) = 0.134, p = 0.894

2 Elicit 198.586 (17.463) 204.000 (7.679) t(55) = −1.506, p = 0.138

3 ET Decisions 262.345 (6.149) 267.250 (6.775) t(55) = −2.864, p = 0.006

4 Skip-Justify 9.345 (3.829) 11.000 (1.700) t(55) = −2.096, p = 0.041

5 Justify 42.517 (3.786) 40.321 (1.442) t(55) = 2.874, p = 0.006

6 JS Decisions 51.862 (0.833) 51.321 (1.156) t(55) = 2.030, p = 0.047

7 Overall Decisions 280.103 (4.126) 285.464 (6.995) t(55) = −3.539, p = 0.001

8 I-ratio 0.758 (0.073) 0.763 (0.018) t(55) = −0.395, p = 0.694

9 J-ratio 0.820 (0.073) 0.786 (0.030) t(55) = 2.273, p = 0.027
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7.2.3.1 Overall Tutorial decision Steps Table 7.4 summarizes and compares the av-

erage number of various tutorial decisions, the I-ratio and J-ratio between the NormGain

and InvNormGain tutorial dialogues. Row 1 to row 7 shows the average numbers of various

tutorial decisions the students got during the tutoring. These include the average number

of tell decisions (row 1), elicit decisions (row 2), ET decisions (row 3), skip-justify decisions

(row 4), justify decisions (row 5), JS decisions (row 6), and overall decisions (row 7). Ta-

ble 7.4, shows that except for the total number of tells and elicits, the two groups differed

in all other five numbers.

On average, the InvNormGain-Cordillera made more tutorial decisions during the tu-

toring than the NormGain-Cordillera. This is probably because the InvNormGain students

got more remediations in their dialogues. Row 3 shows that the InvNormGain students had

more ET decisions in their tutorial dialogue than the NormGain students. For JS decisions,

the NormGain students got more justification steps than the InvNormGain ones: on average

two more justification decisions (row 5).

Rows 8 and 9 compared the I-ratio and J-ratio between the two conditions. There were

no significant differences between the two groups on the I-ratio. However, on J-ratio, the

NormGain students were higher than the InvNormGain group. So by following the induced

tutorial tactics, the NormGain tutorial dialogues seemingly were no more interactive than

the InvNormGain ones but the NormGain students were more likely to get justification steps.

7.2.3.2 Comparing I-ratio Across Primary KCs Although no significant difference

was found between the two groups on the I-ratio overall, once the dialogue was broken into

a KC by KC basis there were significant differences between the two groups on each of the

eight primary KCs (see Table 7.5). In Table 7.5, row 2 shows that on KC14 the NormGain

group got all elicits while the InvNormGain group got all tells. Among the rest of seven

primary KCs, the NormGain condition was more likely to get elicits than the InvNormGain

condition on KC20, KC21, and KC22; and the InvNormGain condition was more likely to

get elicits than the NormGain condition on KC1, KC24, KC27, and KC28.
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Table 7.5: Compare NormGain vs. InvNormGain on I-ratio Across Eight Primary KCs

NormGain(29) InvNormGain (28) Stats

1 KC1 0.500 (0.000) 0.696 (0.157) t(55) = −6.72, p = 0.000

2 KC14 1.000 (0.000) 0.000 (0.000)

3 KC20 0.897 (0.024) 0.696 (0.030) t(55) = 27.87, p = 0.000

4 KC21 0.923 (0.030) 0.863 (0.045) t(55) = 5.95, p = 0.000

5 KC22 0.888 (0.099) 0.543 (0.089) t(55) = 13.88, p = 0.000

6 KC24 0.866 (0.028) 0.920 (0.029) t(55) = −7.21, p = 0.000

7 KC27 0.484 (0.137) 0.651 (0.112) t(55) = −5.03, p = 0.000

8 KC28 0.000 (0.000) 0.525 (0.108) t(55) = −26.08, p = 0.000

7.2.3.3 Comparing J-ratio Across Primary KCs Similarly, the J-ratio was broken

into a KC by KC basis. Only seven primary KCs (KC1 was not involved in JS decisions)

were involved in JS decisions (see Table 7.6). Surprisingly, on two KCs, KC22 (row 4) and

KC28 (row 7), both NormGain and InvNormGain tutorial tactics achieved the same results,

executing all justification steps. There are at least two potential explanations. One possible

explanation is that the JS decisions on these KCs may not matter to the students’ learning.

The other possible explanation is that the source training corpora used to induce these

two KC-specific policies might not be exploratory enough. On KC14, however, following

the NormGain tutorial tactics resulted in skipping all justification steps, but following the

InvNormGain tutorial tactics resulted in executing all justification steps. For the remaining

four KCs, no significant difference was found between the two conditions on KC20 (row 2)

and KC24 (row 5). Only marginally significant difference was found between the two groups

on KC27. On KC21, however, the NormGain group was significantly more likely to get

justification steps than the InvNormGain group.
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Table 7.6: Compare NormGain vs. InvNormGain on J-ratio across Eight Primary KCs

NormGain(29) InvNormGain (28) Stats

1 KC14 0.000 (0.000) 1.000 (0.000)

2 KC20 1.000 (0.000) 0.994 (0.022) t(55) = 1.467, p = 0.148

3 KC21 0.815 (0.216) 0.573 (0.096) t(55) = 5.445, p = 0.000

4 KC22 1.000 (0.000) 1.000 (0.000)

5 KC24 0.876 (0.024) 0.871 (0.005) t(55) = 1.071, p = 0.289

6 KC27 0.046 (0.140) 0.000 (0.000) t(55) = 1.736, p = 0.088

7 KC28 1.000 (0.000) 1.000 (0.000)

7.2.3.4 Summary of Log Analysis Following the NormGain tutorial tactics did not

generate more interactive tutorial tactics than following the InvNormGain ones. But once

broken into a KC by KC basis, the NormGain tutorial tactics resulted in different I-ratio

for each of the primary KCs. On the other hand, following the NormGain tutorial tactics

seemed more likely to execute a justification step but once broken it into KC by KC bases,

the NormGain and InvNormGain tutorial tactics’ J-ratio were only significantly different on

KC21 and KC14 (The NormGain tutorial tactics skipped all of them while the InvNormGain

executed all of them). To summarize, future work is needed to explore why the NormGain

tutorial policies resulted in better learning performance than the InvNormGain ones.

7.3 DISCUSSION

To summarize, the findings confirmed the primary hypotheses in this thesis. First, and

foremost, the pedagogical tutorial tactics applied at the interactive decision level affected

students’ learning. Secondly, the use of RL to derive tutorial tactics from existing data proved

to be feasible and successful. On the other hand, the results also suggested that content
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exposure with the Cordillera system, irrespective of the tactics employed, was, indisputably,

an important factor in governing students’ learning even the InvNormGain students learned

significantly in Study 3. Despite this importance, however the results showed that the

pedagogical tutorial tactics also made a significant impact.

However, it is not clear as to what it was about the induced NormGain tutorial tactics

that caused the NormGain students to learn more effectively than the InvNormGain group.

By simply analyzing the log file in a relatively shallow way, it seems that it was not that the

NormGain tutorial tactics were simply more interactive or generated more justification steps

that caused the NormGain students to learn more than the InvNormGain students. Overall,

the preliminary results supported the conjecture that interactivity is not, necessarily, the

most important determiner of students learning. For example, no significant difference was

found between the two conditions in terms of the number of elicitation prompts and tells they

received and the I-ratio. However, NormGain students learned significantly more than the

InvNormGain students. Additionally, once broken into a KC by KC basis, the InvNormGain

students had significantly higher I-ratio than the NormGain group on KC1, KC24, KC27,

and KC28, but the former did not learn more than the NormGain group.

For JS decisions, following the induced NormGain tutorial tactics indeed resulted in more

justification steps in students’ tutorial dialogues. However, once the tutorial decisions were

broken into a KC by KC basis, the two groups differed significantly only on KC21 and KC14.

Therefore, future work is needed to investigate the induced tutorial tactics and find out what

actually caused these learning differences.

The NormGain and InvNormGain tutorial tactics in Study 3 were derived from the

Exploratory and DichGain Corpora in Studies 1 and 2. Therefore, it is possible to draw some

hypothesis from observations by running a post-hoc comparison among the four groups. A

cross-study analysis comparing the three studies will be presented in Chapter 8.
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8.0 GENERAL DISCUSSION AND CONCLUSIONS

This chapter contains a general discussion of the results including a post-hoc comparison

across the study groups. I will then revisit the central research questions examining the data

relevant to them and draw conclusions.

8.1 POST-HOC COMPARISON

8.1.1 STUDY VARIATIONS

A total of 158 participants used four versions of Cordillera as part of the three studies:

The Exploratory Group contained 64 students who used Random-Cordillera (Study 1); the

Dichotic Gain (DichGain) Group was comprised of a total of 37 students who used DichGain-

Cordillera (Study 2); The Normalized Gain (NormGain) group included 29 students who used

NormGain-Cordillera (Study 3); and the Inverse Normalized Gain (InvNormGain) group in-

cluded 28 students who used InvNormGain-Cordillera (Study 3). All of the participants

followed the same procedure; used the same preparatory materials and problems; and inter-

acted with Cordillera with the identical GUI. They all completed a background survey; read

a textbook covering the target domain knowledge; took a pre-test; solved the same seven

training problems in the same order on Cordillera; and finally took a post-test. Only four

salient differences existed across the three studies:

1. Although all of the participants were recruited in the same way, they were recruited in

different years. In Study 3 the students were randomly assigned into the NormGain and

InvNormGain groups (2009). On the other hand, in the first two studies participants
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were not randomly assigned to the Exploratory (2007) and DichGain groups (2008).

2. Interaction decisions that were made by NormGain-Cordillera, InvNormGain-Cordillera,

DichGain-Cordillera, and Random-Cordillera were guided by different tutorial tactics.

Random-Cordillera made random decisions on tutorial decision steps. The other three

versions of Cordillera followed corresponding induced tutorial tactics to decide which

action to take.

3. Apart from a single question variation on Studies 2 and 3, all three studies used identical

exams containing a total of 33 test questions. The one variation occurred as the result

of the replacement of a single question, Q20, which had been used in Study 1. It was

judged to be too easy and was replaced with a more difficult question, Q20∗ that covered

the same KCs for Studies 2 and 3. The remaining 32 test items were identical across all

three studies.

4. A group of six human wizards (including the author) were involved in Studies 1 and 2;

but only one wizard (the author) was in Study 3.

Despite these differences, because the NormGain and InvNormGain groups trained in

Study 3 were guided using tutoring tactics derived from the Exploratory and DichGain cor-

pora, a post-hoc comparison among the four groups will allow us to observe the characteristics

of the induced tutorial tactics from a wider point of view.

In Study 3, the exams were graded by a different grader, the author, than the grader in

Studies 1 and 2. An inter-grader agreement study, discussed in Appendix B, showed that

the grading rubrics were comparable to those used in the prior studies. Moreover, the high

level of correlation supports the conclusion that the grades assigned by the two graders were

equivalent and thus may be reliably compared. This chapter contains a post-hoc comparison

across the four student groups. This analysis will make use of the new grades exclusively.

In order to establish test equivalence, Q20 and Q20∗ were excluded from the scores used

here. As described in the previous chapter, the tests contained 33 test items which covered

168 KC occurrences. Removing Q20 reduced this total by 1 leaving 32 test items covering 166

KC occurrences. The subsections below compare learning on both the overall and cumulative

KC-based scores. For the overall scores, the maximum raw score is 32 points while for the

cumulative KC-based score it is 166. For comparison purposes both scores were normalized
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to 1.

Based on the procedure of induced tutorial tactics, it was expected that NormGain >

DichGain > Exploratory > InvNormGain. However, in Chapter 5 , a post-hoc compari-

son showed no significant difference between the DichGain and Exploratory. These will be

compared again using the new grading criteria.

A one-way ANOVA showed that there were no significant differences among the four

groups on overall training time: (F (3, 147) = 1.531, p = .209). More specifically, the

average total training time across the seven training problems, was M = 278.73, SD =

67.38 for Exploratory group, M = 294.33, SD = 87.51 for DichGain group, M = 259.99,

SD = 59.22 for NormGain group, and M = 264.57, SD = 67.60 for InvNormGain group.

Additionally, no significant difference was found among the Exploratory, the NormGain, and

the InvNormGain groups on the MathSat scores: (F (2, 83) = .520, p = .596).

8.1.2 LEARNING PERFORMANCE

A one-way ANOVA was used to test for performance preference differences between the

pre- and post-tests. Participants across four groups made significant gains from pre-test to

post-test: F (1, 314) = 67.36, p = .000, R2 = .68 under the overall grading criteria and

F (1, 314) = 41.82, p = .000, R2 = 0.69 under the cumulative KC-based grading criteria.

Figure 8.1: Compare Four Groups Learning Performance under Overall Grading
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Figure 8.1 compares the four groups on the pre-test, post-test, adjusted-post-test, and

NLG scores under the overall grading. A one-way ANOVA was used for learning perfor-

mance differences among the four groups. No significant pre-test score differences were

found between the groups under the overall-grading rubric (F (3, 154) = 1.16, p = 0.32).

However, there were significant differences among the four groups on the remaining three

scores: F (3, 154) = 5.052, p = .002 on posttest-scores, F (3, 153) = 9.938, p = .000 for

adjusted post-test scores, and F (3, 154) = 8.33, p = 0.000 on the NLG scores.

Moreover, pairwise comparisons among the four groups1 showed that there was a signifi-

cant difference between the NormGain and either of the three groups on the post-test scores,

adjusted post-test scores, and NLG scores. There were no significant differences among the

DichGain, Exploratory, InvNormGain on all four test scores (see Table 8.1). More specifi-

cally, Table 8.1 shows the pairwise comparisons among the four groups on pre-test, post-test,

adjusted post-test scores, and NLG scores. The first column lists the two groups in compar-

ison and their corresponding mean and SD scores. The second column lists the statistical

result of the t-test comparison. The last two columns list the effect size and power of the

comparison. For effect size, Cohen’s d was still used. Results in Table 8.1 suggest that under

the overall grading rubric, on the pretest there were no significant differences among the

four groups but NormGain > DichGain = Exploratory = InvNormGain across post-test,

adjusted post-test, and NLG scores. Although this formulation holds that the latter three

groups were equally effective, in some tests the power was less than 0.80. So more subjects

would be needed to determine which pairs of groups were in fact equivalent.

1A Bonferroni correction was not performed as the hypotheses being tested are independent and the
corpora were collected seperately.
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Table 8.1: Compare Four Groups Under the Overall

Grading Criteria

Group Name µ(σ) Stat Cohen’s d 1− β

Pre-test

NormGain 0.48(0.18) t(55) = 0.63, p = 0.53 0.2 0.63

InvNormGain 0.44(0.22)

NormGain 0.48(0.18) t(64) = 1.75, p = 0.09 0.44 0.47

DichGain 0.40(0.19)

NormGain 0.48(0.18) t(91) = 0.31, p = 0.75 0.1 0.77

Exploratory 0.46(0.20)

InvNormGain 0.44(0.22) t(63) = 0.91, p = 0.37 0.2 0.49

DichGain 0.40(0.19)

InvNormGain 0.44(0.22) t(90) = −0.43, p = 0.67 -0.1 0.69

Exploratory 0.46(0.20)

DichGain 0.40(0.19) t(99) = −1.65, p = 0.102 -0.31 0.38

Exploratory 0.46(0.20)

Posttest

NormGain 0.73(0.11) t(55) = 2.85, p = 0.006 0.77 0.51

InvNormGain 0.61(0.18)

NormGain 0.73(0.11) t(64) = 4.12, p < 0.001 1.04 0.42

DichGain 0.57(0.19)

NormGain 0.73(0.11) t(91) = 3.28, p = 0.001 0.74 0.27

Exploratory 0.61(0.18)

InvNormGain 0.61(0.18) t(63) = 1.05, p = 0.30 0.27 0.5

DichGain 0.57(0.19)

InvNormGain 0.61(0.18) t(90) = 0.208, p = 0.836 0.05 0.84

Exploratory 0.61(0.18)

Continued on Next Page. . .
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Table 8.1: Compare Four Groups Under the Overall

Grading Criteria

Group Name µ(σ) Stat Cohen’s d 1− β

DichGain 0.57(0.19) t(99) = −1.04, p = 0.301 -0.22 0.48

Exploratory 0.61(0.18)

Adjusted Posttest

NormGain 0.70(0.07) t(55) = 4.21, p < 0.0001 1.14 0.52

InvNormGain 0.62(0.09)

NormGain 0.70(0.07) t(64) = 4.70, p = 0.00001 1.18 0.42

DichGain 0.60(0.10)

NormGain 0.70(0.07) t(91) = 5.33, p = 0.00001 1.21 0.2

Exploratory 0.59(0.10)

InvNormGain 0.62(0.09) t(63) = 0.60, p = 0.551 0.15 0.61

DichGain 0.60(0.10)

InvNormGain 0.62(0.09) t(90) = 1.06, p = 0.293 0.24 0.47

Exploratory 0.59(0.10)

DichGain 0.60(0.10) t(99) = 0.45, p < 0.66 0.09 0.68

Exploratory 0.59(0.10)

NLG

NormGain 0.49(0.16) t(55) = 3.95, p < 0.001 1.06 0.52

InvNormGain 0.31(0.18)

NormGain 0.49(0.16) t(64) = 4.35, p = 0.000 1.09 0.43

DichGain 0.30(0.18)

NormGain 0.49(0.16) t(91) = 4.67, p = 0.0000 1.06 0.23

Exploratory 0.28(0.22)

InvNormGain 0.31(0.18) t(64) = 0.199, p = 0.84 0.05 0.85

DichGain 0.30(0.18)

Continued on Next Page. . .
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Table 8.1: Compare Four Groups Under the Overall

Grading Criteria

Group Name µ(σ) Stat Cohen’s d 1− β

InvNormGain 0.31(0.18) t(90) = 0.733, p = 0.466 0.17 0.55

Exploratory 0.28(0.22)

DichGain 0.30(0.18) t(99) = −0.60, p < 0.552 0.12 0.61

Exploratory 0.28(0.22)

Under the Cumulative KC-based grading criteria, similar results were found. No signif-

icant pre-test score difference was found among the four groups under the Cumulative KC-

based grading rubric (F (3, 154) = 0.38, p = 0.77). However, there were significant differences

among the four groups on the remaining three scores: F (3, 154) = 3.41, p = .02 on post-test

scores, F (3, 153) = 8.09, p = .000 for adjusted post-test scores, and F (3, 154) = 5.30, , p =

0.002 on the NLG scores (see Table 8.2). Similar to overall grading criteria, t-test compar-

isons showed that there was a significant difference between the NormGain group and either

of the three remaining groups on the post-test scores, adjusted post-test scores, and NLG

scores and there were no significant differences among the DichGain, Exploratory, InvNor-

mGain on all four test scores (see in Table 8.2). Therefore, the cumulative KC-based rubric

results suggest that: NormGain > DichGain = Exploratory = InvNormGain across all

three different performance metrics: post-test, adjusted post-test, and NLG scores. Again,

note that Table 8.2 shows that although this formulation holds that the latter three condi-

tions were equally effective, in some tests the power was less than 0.80. So more participants

would be needed to determine which pairs of groups were equally effective.
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Table 8.2: Compare Four Groups Under the Cumulative

KC-based Grading Criteria

Group Name µ(σ) Stat Cohen’s d 1− β

Pretest

NormGain 0.42(0.15) t(55) = 0.66, p = 0.507 0.16 0.58

InvNormGain 0.39(0.23)

NormGain 0.42(0.15) t(64) = 1.05, p = 0.299 0.25 0.49

DichGain 0.38(0.17)

NormGain 0.42(0.15) t(91) = 0.29, p = 0.792 0.05 0.8

Exploratory 0.41(0.20)

InvNormGain 0.39(0.23) t(63) = 0.16, p = 0.871 0.05 0.87

DichGain 0.38(0.17)

InvNormGain 0.39(0.23) t(90) = −0.5, p = 0.618 -0.1 0.64

Exploratory 0.41(0.20)

DichGain 0.38(0.17) t(99) = −0.81, p = 0.418 -0.16 0.52

Exploratory 0.41(0.20)

Posttest

NormGain 0.65(0.15) t(55) = 2.32, p = 0.024 0.64 0.53

InvNormGain 0.54(0.20)

NormGain 0.65(0.15) t(64) = 3.28, p = 0.0017 0.82 0.46

DichGain 0.50(0.21)

NormGain 0.65(0.15) t(91) = 3.17, p = 0.0069 0.63 0.35

Exploratory 0.53(0.21)

InvNormGain 0.54(0.20) t(63) = 0.78, p = 0.439 0.2 0.55

DichGain 0.50(0.21)

InvNormGain 0.54(0.20) t(90) = 0.23, p = 0.820 0.05 0.82

Exploratory 0.53(0.21)

Continued on Next Page. . .
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Table 8.2: Compare Four Groups Under the Cumulative

KC-based Grading Criteria

Group Name µ(σ) Stat Cohen’s d 1− β

DichGain 0.50(0.21) t(99) = −0.68, p = 0.498 -0.14 0.57

Exploratory 0.53(0.21)

Adjusted Posttest

NormGain 0.63(0.07) t(55) = 3.16, p = 0.003 0.89 0.59

InvNormGain 0.55(0.11)

NormGain 0.63(0.07) t(64) = 3.68, p = 0.0000 1.18 0.38

DichGain 0.52(0.11)

NormGain 0.63(0.07) t(91) = 4.77, p = 0.0000 1.12 0.3

Exploratory 0.52(0.11)

InvNormGain 0.55(0.11) t(63) = 1.20, p = 0.236 0.28 0.45

DichGain 0.52(0.11)

InvNormGain 0.55(0.11) t(90) = 1.24, p = 0.217 0.28 0.43

Exploratory 0.52(0.11)

DichGain 0.52(0.11) t(99) = −0.07, p = 0.945 0 0.95

Exploratory 0.52(0.11)

NLG

NormGain 0.42(0.19) t(55) = 3.15, p = 0.0026 0.87 0.54

InvNormGain 0.25(0.21)

NormGain 0.42(0.19) t(64) = 4.626, p = 0.000 0.95 0.18

DichGain 0.22(0.23)

NormGain 0.42(0.19) t(91) = 3.61, p = 0.0005 0.84 0.33

Exploratory 0.22(0.26)

InvNormGain 0.25(0.21) t(63) = 0.546, p = 0.587 0.14 0.63

DichGain 0.22(0.23)

Continued on Next Page. . .
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Table 8.2: Compare Four Groups Under the Cumulative

KC-based Grading Criteria

Group Name µ(σ) Stat Cohen’s d 1− β

InvNormGain 0.25(0.21) t(91) = 0.506, p = 0.61 0.12 0.65

Exploratory 0.22(0.26)

DichGain 0.22(0.23) t(55) = −0.045, p = 0.964 0 0.96

Exploratory 0.22(0.26)

8.1.3 LEARNING PERFORMANCE ACROSS THE FOUR GROUPS

To summarize, a post-hoc comparison of learning performance across three studies shows that

the NormGain group significantly outperformed all other three groups while no difference

was found between the remaining three groups. These results were consistent both for the

adjusted post-test scores and the normalized learning gains. These results support the prior

analysis of Study 3 which showed that the NormGain tutorial tactics significantly improved

students’ learning compared with the InvNormGain ones.

However, the lack of a significant difference between the InvNormGain, DichGain, and

Exploratory groups seemingly contradicts the initial predictions. The InvNormGain strate-

gies were specifically induced to enhance those decisions that contribute less or even none to

the students’ learning. Therefore, a lower performance on the students’ part there than in

at least the DichGain group, which sought to enhance the tutorial decisions that contribute

to the students’ learning, was expected. One possible explanation for the lack of difference

is that the tutorial tactics employed by the DichGain- and Random-Cordillera systems were

ineffective and thus presented a minimum bar. By ’ineffective’ it does not mean that they

prevented the students from learning but rather that they were not able to make a positive

impact on their learning above and beyond the baseline provided by Cordillera itself. Here

the basic practices and problems, domain exposure, and interactivity of Cordillera set a min-

imum bar of students’ learning that the tactics, however poor, cannot prevent. This is only a
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post-hoc explanation not a tested hypothesis, however it merits further study. On the other

hand, note that under both grading criteria in some tests, the power of the comparisons

among the three groups was less than 0.80. Therefore, more participants would be needed

to determine which pairs of the three groups were truly equivalent in further studies.

8.1.4 LOG ANALYSIS

Having compared the individual groups’ learning performance, this subsection will compare

the log file variations across the four groups. Two types of tutorial actions are of principal

interest in this dissertation: elicit/tell (ET) and justify/skip-justify (JS). Therefore, the

following section will focus on two aspects of the ET and JS actions. The first aspect of

interest is the I-ratio of the tutorial dialogue. That is, how often were the students given

elicitation prompts in the course of the dialogue? The second is the J-ratio. This is the

number of times the dialogue manager did not skip a justification step. Both values range

from 0 (no elicits or justifies) to 1 (all elicitation or justification).

8.1.4.1 I-Ratio Table 8.3 summarizes t-test comparisons on the I-ratio among the four

tutorial corpora. In Table 8.3, the first two columns list the two groups in comparison and

their corresponding mean and SD scores. The last column lists the statistical results of the

t-test comparisons. From the Table 8.3, the I-ratios for the four student groups were: 0.76

(NormGain), 0.76 (InvNormGain), 0.44 (DichGain), and 0.50 (Exploratory) respectively.

Except for no significant difference between the NormGain and InvNormGain on the I-

ratio, both groups were significantly more interactive than either the DichGain group or

Exploratory group. Altogether, the result is NormGain = InvNormGain > Exploratory >

DichGain on the I-ratio.

Although high interactivity is a key characteristic of one-on-one human tutoring, the

more successful tutorial tactics were not necessarily more interactive than the less successful

tactics. Comparisons between the NormGain and InvNormGain groups suggest that it is

not the absolute level of interactivity that determines the students’ success. The NormGain

group was more successful than the others despite there being no significant difference in
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interactivity ratios between it and the InvNormGain group. Conversely, the InvNormGain

group was no more successful than the Exploratory and DichGain groups despite being more

interactive than either.

8.1.4.2 Justify Ratio Table 8.4 summarizes t-test comparisons on J-ratio among the

four tutorial corpora. In Table 8.4, the first two columns list the two groups in comparison

and their corresponding mean and SD scores. The last column lists the statitical results of

the t-test comparisons. Table 8.4, shows that the mean of J-ratios for the four student groups

were: 0.82 (NormGain), 0.79 (InvNormGain), 0.43 (DichGain), and 0.53 (Exploratory). The

difference was statistically significant: F (3, 154) = 322.88, p = 0.000. Table 8.4 presents

the pair wise t-test comparisons. It shows that on J-ratio, the result is: NormGain >

InvNormGain > Exploratory > DichGain.

Table 8.5 summarizes and compares the average number of justification decisions students

experienced during the tutoring among the four groups. The average number of steps for each

student was: 42.52 for the NormGain group, 40.32 for the InvNormGain group, 24.89 for the

DichGain group and 30.17 for the Exploratory group. The pariwise comparisons among the

four groups are listed in Table 8.5. It shows that the number of justification steps students

received were in the same order as the justification ratio: NormGain > InvNormGain >

Table 8.3: Pairwise Comparison Among Four Groups On I-ratio

Group 1 Group 2 Group 1 vs. Group 2

NormGain 0.76 (0.07) InvNormGain 0.76 (0.02) t(55) = .395, p = .694

NormGain 0.76 (0.07) Exploratory 0.50 (0.03) t(91) = 24.72, p = 0.000

NormGain 0.76 (0.07) DichGain 0.44 (0.04) t(64) = 22.08, p = 0.000

InvNormGain 0.76 (0.02) Exploratory 0.50 (0.03) t(90) = 43.998, p = .000

InvNormGain 0.76 (0.02) DichGain 0.44 (0.04) t(63) = 36.34, p = .000

Exploratory 0.50 (0.03) DichGain 0.44 (0.04) t(99) = 7.967, p = .000
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Table 8.4: Pairwise Comparison Among Four Groups On J-ratio

Group 1 Group 2 Group 1 vs. Group 2

NormGain 0.82 (0.07) InvNormGain 0.79 (0.03) t(55) = 2.27, p = .027

NormGain 0.82 (0.07) Exploratory 0.53 (0.06) t(91) = 18.95, p = 0.000

NormGain 0.82 (0.07) DichGain 0.43 (0.07) t(64) = 22.85, p = .000

InvNormGain 0.79 (0.03) Exploratory 0.53 (0.06) t(90) = 43.998, p = .000

InvNormGain 0.79 (0.03) DichGain 0.43 (0.07) t(63) = 26.65, p = .000

Exploratory 0.53 (0.06) DichGain 0.43 (0.07) t(99) = 7.894, p = .000

Exploratory > DichGain.

Table 8.5: Pairwise Comparison Among Four Groups On Number of Justification Steps

Group 1 Group 2 Group 1 vs. Group 2

NormGain 42.52 (3.79) InvNormGain 40.32 (1.44) t(55) = 2.87, p = 0.006

Exploratory 30.17 (3.83) t(91) = 19.33, p = 0.000

DichGain 24.89 (3.59) t(64) = 22.85, p = .000

InvNormGain 40.32 (1.44) Exploratory 30.17 (3.83) t(90) = 13.57, p = .000

DichGain 24.89 (3.59) t(63) = 21.45, p = .000

Exploratory 30.17 (3.83) DichGain 24.89 (3.59) t(99) = 6.83, p = .000

To summarize, applying RL to induce tutorial tactics designed to enhance students’

learning resulted in a set of tutorial tactics that involved substantially more justifications

than tutorial tactics designed with the goal of enhancing those decisions that contribute

less or even none to the students’ learning. However, although the NormGain group had

a higher ratio of justification prompts than the InvNormGain, Exploratory, or DichGain

groups it is not the case that the absolute justification ratio guarantees learning. As with

the interactivity ratio, the InvNormGain group received a higher justification ratio than the
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Exploratory or DichGain groups despite having been induced to enhance those decisions that

contribute less or even none to the students learning, and despite the absence of a significant

difference in adjusted post-test scores or NLG between the groups. This is supported by the

absolute number of justification steps as the InvNormGain group received more than ten

more justification prompts on average than the Exploratory or DichGain groups while the

NormGain group had only two more justification steps than the InvNormGain group. Given

that the tutorial decisions in this dissertation were very fine-grained size level, an argument

can be made something other than more justification steps causes more learning.

8.2 REVISITING THE TWO RESEARCH QUESTIONS

8.2.1 Question 1: Micro-level Pedagogical Tutorial Decisions Affect Students’

Learning.

A comparison between the NormGain and InvNormGain groups from Study 3, discussed

in Chapter 7, shows that tutorial tactics covering micro-level interaction decisions do affect

students’ learning. More specifically, the results support the hypothesis that interactive

tutorial decisions such as the elicit/tell and justify/skip-justify decisions affect students’

learning. In Study 3, the students were randomly assigned to balanced conditions and

received identical training materials and procedures apart from the tutoring tactics employed.

After spending the same amount of time on training, the NormGain group outperformed

the InvNormGain group in terms of posttest scores, the adjusted post-test scores and the

normalized learning gain regardless of the grading criteria.

In order to investigate why the NormGain tutorial tactics were more effective, some pre-

liminary analyses of the students’ log files was performed. It showed that the induced tutorial

tactics did not produce more or less interactive tutorial dialogues for the NormGain group

relative to the InvNormGain group. However the interactivity ratio (I-ratio) varied across

the eight primary KCs. On some KCs, the NormGain group was more likely to be elicited

for information rather than told it; while on other KCs, the NormGain group received more
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didactic instruction. A wider comparison across the NormGain, InvNormGain, DichGain,

and Exploratory groups suggests that it might not be increased interactivity that caused the

NormGain students to learn more than the remaining three groups. Similarly, for justifica-

tion decisions, although the NormGain group was given significantly more justification steps

than the InvNormGain group overall, once the totals are broken down by KC, the two groups

only differed on one KC, KC21. Additionally, a wider comparison among the NormGain,

InvNormGain, DichGain, and Exploratory groups suggests that increased learning might not

be due to receiving a higher number of justification steps. The InvNormGain students had

significantly more justification steps than the DichGain, and Exploratory groups. However,

the former did not learn more than the latter two groups. Therefore, further analysis is

needed to understand what caused the NormGain tutorial tactics to be more effective.

The analysis in Chapters: 4; 5; and 7 show that all four groups learned significantly

by training on Cordillera. This result indicates that the content exposure and practice

opportunities can cause students to learn even from tutors with poor pedagogical tutorial

tactics. However, it also indicates that, with effective tutorial tactics, students can learn

more and more effectively than without.

8.2.2 Question 2: Reinforcement Learning is a Feasible Method to Induce Tu-

torial Tactics.

The results so far suggest that NormGain-Cordillera outperformed InvNormGain-Cordillera

system and further that it seems to be superior to the DichGain-Cordillera and Random-

Cordillera as well. This success supports the hypothesis that RL-induced rules are effective

and that the approach taken in Study 3 was a feasible one. However, inducing effective

tutorial tactics is not trivial. In Study 2, the DichGain tutorial tactics did not seem to be

more effective than the random decisions in Random-Cordillera. A number of factors were

changed between Study 2 and Study 3. These included the choice of training corpora, the

selections of knowledge components, the reward function, the feature choices, the maximum

number of the features in a policy, the discretization procedure, the feature selection methods,

and how the dialogue manager should respond when there were conflicting policies. All of
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these factors might change the effectiveness of the resulting tactics. However, it is still

not clear which factor or factors caused a change in effectiveness. Despite that, the results

demonstrate the feasibility of RL to induce tutorial tactics. Or more accurately, the results

show that: applying RL with a suitable training corpus; defining reward functions; and using

the proper state representations on properly selected knowledge components; will produce

effective tutorial tactics with a reasonable policy conflict heuristic.

Moreover, the RL-induced tutorial tactics induced in this dissertation seemingly to be

highly adaptive both to the problem solving context and to other features. This fits in with

the conjecture proposed by both learning and cognitive scientists that pedagogical skills and

tutorial interactions should be adaptive to the tutorial context and students’ needs. However

more work remains to be done in this area to investigate whether it was the adaptiveness

that caused the NormGain students to learn more effectively. In inducing the tutorial tactics

the Expected Cumulative Reward (ECR) was used as the estimate of success. However

both the InvNormGain and DichGain systems contained tactics whose ECR estimates far

exceeded their actual performance with the students. More studies are necessary to identify

good performance metrics that will allow researchers to evaluate candidate tutorial tactics

without running expensive empirical studies.
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9.0 CONTRIBUTIONS AND FUTURE WORK

In this dissertation Reinforcement Learning was applied to induce several sets of pedagogical

tutorial tactics from existing tutoring corpora and then integrated them into a system for

evaluation with human subjects. This study was mainly designed to: 1) examine the ped-

agogical importance of low-level interactive decisions in tutoring; and 2) test the viability

of using reinforcement learning to induce pedagogical tutorial tactics. As such this is an

interdisciplinary study that contributes to several fields.

In the field of cognitive science, this dissertation demonstrates that pedagogical skills

governing low-level interactive tutorial decisions can impact students’ learning. In the field

of the learning science, it informs the ongoing discussion of interactive vs. didactic tutoring

by suggesting that a tutor’s success is not governed by how often they give interactive

prompts or ask the students questions but how well. This dissertation also demonstrates that

RL may be fruitfully applied to derive adaptive pedagogical tutorial tactics from student-

computer interactivity data, thus informing the general field of AI and Education. Further

this work demonstrates that existing a-priori theories about the importance of given features

to tutoring may be assessed by means of induction and feature selection which seek to

distinguish profitable feature choices from unprofitable ones thus informing the nascent field

of Educational Data Mining.

9.1 CONTRIBUTION TO COGNITIVE & LEARNING SCIENCE

Examinations of pedagogical skills have long been a focus of attention for the instruc-

tional and learning sciences. For example, one preferred explanation for the effectiveness
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of human one-on-one tutoring is that human tutors possess effective pedagogical skills that

are responsible for the students’ learning gains [Chi et al., 2001, Collins and Stevens, 1982,

McArthur et al., 1982, Merrill et al., 1992]. Pedagogical skills generally involve the tutor’s

skillful execution of tutoring tactics such as eliciting student knowledge with a scaffolding

question. While it is generally assumed that the tutor’s interactive decisions are responsible

for tutoring effectiveness [Collins and Stevens, 1982], little evidence has been presented to

date demonstrating that either the human tutor has effective pedagogical skills or that ped-

agogical skills cause students to learn. In order to execute the pedagogical skills effectively,

it is assumed that tutors should adapt their behaviors to the students’ needs based upon

their current knowledge level, general aptitude, emotional state and other salient features.

Previous research, however has cast doubt on the tutor’s ability to monitor the student’s

state accurately [Chi et al., 2004] and on whether they really adapt their tutorial decisions

based on the present context. Chi, Siler, and Jeong for example, found that human tutors

do not seem to maintain an accurate model of student’s knowledge level during the tutoring

process. Similarly, [Putnam, 1987] found that experienced tutors did not attempt to form

detailed models of the students’ knowledge before attempting remedial instruction. Rather,

each teacher appeared to move through a general curricular script irrespective of the stu-

dent’s state. In recent years, some cognitive scientists have begun to doubt the effect of

pedagogical skills on student’s learning [Chi et al., 2001, Chi et al., 2004, VanLehn, 2006].

This dissertation investigated on pedagogical skills at a micro-step level. i.e. pedagogical

tutorial tactics. These tactics do not govern the domain solution path selected for presenta-

tion or the problems presented. They only govern low-level tutorial interactions, e.g. whether

the student is told what principle to apply or if the system elicits it from them with a prompt,

and whether a student, once he/she has made a step, is asked to justify his/her answer or not.

If fine-grained pedagogical skills of this type turn out to be effective, then more complex or

content-oriented tactics, such as problem or sub-problem selection may be similarly effective.

Both the Normalized Gain (NormGain) and the Inverse Normalized Gain (InvNormGain)

groups in Study 3 solved the same training problems in the same training order, following

the same solution path in the process by using the same tutorial scripts. The only differ-

ence between the groups was the tutorial tactics employed. Additionally, the Exploratory
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and DichGain groups, though run at different times from the NormGain and InvNormGain

groups, followed the same tutoring cycle save for the pedagogical tutorial tactics employed.

And, like the NormGain and InvNormGain groups, the Exploratory and DichGain groups

showed no salient difference in incoming competence. As reported in Chapters 6 and 8, the

NormGain group outperformed the other three groups under either grading rubrics. Thus,

a first, and primary, contribution of this work has been to show that pedagogical tutorial

tactics can impact student’s learning. However, inducing such tutorial tactics is not trivial.

As demonstrated in Studies 2 and 3, the induced DichGain tutorial tactics did not notably

improve the effectiveness of Cordillera compared with the Random-Cordillera. Given the

potentially important role tutorial tactics might play for the effectiveness of the tutoring,

more research needs to be done to investigate this issue.

On the other hand, high interactivity is a key characteristic of one-on-one tutoring.

A classroom lecture can be viewed as a monologue consisting of a long sequence of tutor

instructions or “tell” acts. Individual tutoring, by contrast, features a great deal of give

and take and can be viewed as a mixture of tutor questions or elicitation acts, student

responses, and tutor instructions. One common assumption, often referred as the monotonic

interaction hypothesis [VanLehn et al., 2007a], is that greater interactivity causes greater

learning. Previous studies, however, have suggested that when the instructional content is

strictly equivalent between conditions, highly interactive tutoring methods (such as human

tutoring) are no more effective than moderately interactive methods (such as step-based

NL tutoring systems) [VanLehn et al., 2007a, VanLehn, 2009]. Results such as found in this

thesis suggest that more interactivity does not necessarily guarantee more learning.

Previous researchers in the cognitive and learning sciences have identified a number

dialogue, domain, and student features that may be relevant when making pedagogical de-

cisions. For the present studies, six categories of features were defined based upon prior

research. These categories are discussed in Chapter 6. The final sets of tutorial tactics (used

in the NormGain- and InvNormGain-Cordillera) employed more of the problem-solving con-

text features than any other categories. The features in this category occurred 58 out of 117

times. ConceptDifficulty, which describes the difficulty level of the present tutorial decision,

was employed by 12 of the 34 tutoring policies used in Study 3 and was the most common
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single feature.

9.2 CONTRIBUTIONS TO AI&ED, ITS & EDM

The development of Intelligent Tutoring Systems (ITSs) is typically viewed as a standard

system design problem. Every aspect of the system, including any pedagogical tutorial tactics

employed, are specified a-priori by system developers under the guidance of or in response to

domain experts. The tutoring behavior is similarly viewed as a sequential decision process

where, at each discrete step, the tutor is responsible for selecting the next action to take. As

with other features of the system these decisions are guided by a-priori policies. Tutoring

systems face a number of limitations to their deployment, notably, the cost and pace of

development make it difficult to quickly deploy systems or to adapt them to changing needs.

Recently, researchers have turned to the development of authoring tools to address these

problems [Aleven et al., 2006, Ainsworth and Fleming, 2005, Murray et al., 2003]. These

tools provide content support and tool libraries that permit domain experts to design and

deploy systems for their needs without extensive software development. Most authoring

tools, however, focus on supporting the adaptation of new content and, as such, use static

predefined pedagogical strategies that allow only small amounts of tailoring by the author,

such as specifying how many hints the system will provide. Doing so means assuming that

all students in all domains covered by the tutor learn best using the same strategy and that

domain experts know a-priori how best to teach. However, both cognitive and learning sci-

entists have suggested that tutors should adapt to student’s needs and, as discussed above,

suggested that domain experts do not always track a student’s knowledge level accurately

[Chi et al., 2004] or make a habit of adapting their tutorial decisions to the present context

[Putnam, 1987].

This dissertation described and evaluated a general methodology suitable for ITS de-

signers to derive effective pedagogical tutorial tactics from pre-existing interactivity data

rather than, as is presently common, implementing a-priori pedagogical theories drawn from

experts. This approach does not require ITS designer to have an a-priori belief about how
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he/she thinks the tutor should teach. Instead, this is a data-driven architecture. Having

an ITS that makes effective decisions more automatically is important for its acceptance in

a broader community. Systems that may be adapted to an instructor’s preferred pedagogy

may be more easily acceptable to pedagogical experts. And, by applying RL to induce tu-

torial tactics, systems may be developed that are neither equipped with nor restricted to

potentially faulty a-priori tutorial tactics.

The results herein showed that it is possible and practical to develop a strategy-neutral

tutoring system (Random-Cordillera) and to use it to explore the relevant features of a

tutoring space. The results also show that it is possible to use existing pedagogical knowledge

(e.g. lists of relevant features) to structure the RL process and to use the results of that

process to assess the domain theories.

9.3 FUTURE WORK

Given the diverse contributions of this dissertation, the work here is a starting point for

additional analyses focusing on what makes this approach successful and whether it can be

transferred to other domains, other machine learning methods, and other applications. The

first branch of research will focus on the tutorial corpora. In the work for this dissertation

policies were induced from three training corpora: Exploratory, DichGain and Combined.

The final tactics used were drawn from all three corpora as discussed in Chapter 6. Among

them, 11 out of 17 NormGain tutorial tactics were from the Exploratory Corpus while 11 out

of 17 InvNormGain ones were from the DichGain Corpus. Given the effectiveness of Norm-

Gain relative to the Exploratory and DichGain and the null effect among the InvNormGain,

Exploratory and DichGain groups, the initial analysis suggests that the Exploratory Corpus

was a more effective source of tutorial tactics than the DichGain or Combined Corpora.

However, it should be noted that the DichGain tutorial tactics were also derived from the

Exploratory Corpus. Therefore, it can be argued that whether a training corpus is effective

or not also depends on many other factors such as feature selection approach, the feature

used to represent the state and so on. However this selection was based upon the estimated
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success of each set of tutorial tactics and not on a full study comparison. This has impor-

tant implications for the potential success of these policy induction methods with existing

datasets. In future work more direct comparisons between the tutorial tactics derived from

random corpora and those from preexisting corpora are planned.

A second line of proposed research will be to focus on the divergence between KC-general

and KC-specific tutorial tactics. Here it was assumed that KC-specific tutorial tactics would

be more effective to improve learning than KC-general ones. However, annotating everything

with corresponding KCs is very time-consuming. A question exists as to whether a KC-

general policy would be just as effective. For example, in Study 3, the NormGain-Cordillera

and InvNormGain-Cordillera followed KC-specific tutorial tactics on eight main KCs and

KC-general ones for the remainder of the 23 KCs. Later results on KC-based learning

gains indeed showed that the NormGain students also learned significantly more than the

InvNormGain ones on some of these 23 KCs. So it suggests that KC-general policies may

be as or more effective than KC-specific tactics. Further comparisons are needed to analyze

this.

In Studies 2 and 3 the state representation had been composed from features that had

been suggested in the cognitive and learning science literatures and which could be both

automatically computed and unambiguously evaluated. The use of manual features is im-

practical in the current study due to the emphasis on online training. However, there are a

number of potentially relevant features that do not meet these criteria such as motivation

[Hume et al., 1995, Noe, 1986]. Future work may investigate manual features or features

that do not allow for unambiguous classification so much as estimation. For feature selection

procedures, although there was some success here, one of the best final induced policies was

from Random feature selection. So further explorations on feature selections are needed.

In addition to examining alternate feature selection policies the feature selection criteria

should be studied. In this study alternate candidate features were selected based upon

their Expected Cumulative Reward (ECR). In theory ECR values, as estimated from the

underlying models, are a reliable indicator of future performance. However this contention

has not been empirically verified in the present domain. The tactics employed in both the

DichGain- and the InvNormGain-Cordillera systems, for example, have comparatively high
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ECR values. However they did not seem to either outperform or fall below the Exploratory

group’s performance. Future work may explore the quality of ECR and investigate ways

to evaluate new instructional policies. While the gold standard is to collect a new dataset

by executing the new policy, it may be possible to demonstrate that cheaper evaluation

methods provide sufficient accuracy to guide development. For example, one alternate policy

estimation method is to test them on simulated students. Alternatively, cross-validation on

ECR, e.g. train on n-1 students and test predicted vs. actual reward for the other one, can

be run.

Additionally, the induction model used in this research was based exclusively on Markov

Decision Processes (MDPs). While this framework seems effective, there are alternative

methods such as Partially Observable Markov Decision Process (POMDP) [Hauskrecht, 1997,

Aström, 1965], which may be more suitable. POMDPs allow for realistic modeling of the

student’s knowledge levels, the student’s intentions, and other hidden state components by

incorporating them into the state space. POMDPs explicitly represent two sources of un-

certainty: non-determinism in the control process and partial observability of the students’

knowledge levels. In the former case, outcomes of the tutorial actions or student’s knowl-

edge level are not deterministic. In the latter, the underlying student’s knowledge levels are

observed indirectly via incomplete or imperfect observations.

Another future study would be to investigate why the NormGain students learned more

effectively than the other three groups. One approach would be to investigate whether, by

using the number of tutors’ decisions on each KC, combined with the KC’s I-ratio and J-

ratio, its cognitive difficulty, and student’s pre-test scores, one is able to predict the student’s

learning gains. An additional study would be to investigate when and how different RL

techniques can provide increased leverage when compared to other learning techniques or be

combined with other techniques (such as learning decomposition [Beck and Mostow, 2008]).

Finally, comparing these induced policies with existing learning and cognitive theories

or with real human tutors in a more formal way such as evaluating and comparing them

in-vivo studies could be a fruitful area of study. Previous research in non-tutoring dialogue

systems has shown that the induced policy can sometimes beat human generated policies

[Lemon et al., 2006]. Given the computing power of the computers, it is expected that the
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induced tutorial tactics might be more effective than human tutors’.
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APPENDIX A

KNOWLEDGE COMPONENTS
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In this appendix I list all 32 domain KC’s grouped by topic.

Table A1: Individual (not net) forces

ID Knowledge Component (KC)

KC1 If an object is near a planet, and then the planet exerts a gravitational

force on the object. The force is straight down.

KC2 The magnitude of the gravitational force is m ∗ g, where m is the mass of

the object and g is the gravitational acceleration of the planet.

KC3 If a spring pushes on an object, then it exerts a force on the object. The

force’s direction is from the spring toward the object.

KC4 If a surface pushes on an object, it exerts a normal force on the object.

The force is perpendicular to the surface and away from it.

KC5 If an object contacts a surface while moving along it, and the surface is

not known to be frictionless, then the surface exerts a dynamic friction

force on the object. The force is parallel to the surface and in the opposite

direction of the object’s motion relative to the surface.

KC6 If object A pushes or pulls on object B, and the force is not one of the

types listed above, then there is an applied force on B due to A. If it is a

push, then it is directed from A toward B. If it is a pull, then it is directed

from B toward A.
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Table A2: Choosing a system for COE

ID Knowledge Component (KC)

KC7 When an object A exerts a force on an object in the system, and the

force is not a spring force nor a gravitational force, then object A must be

outside the system.

KC8 When an object in the system is moving, and a spring or gravitational

force acts on it and is perpendicular to its motion, then put the object

exerting the force outside the system.

KC9 When an object in the system is moving, and a spring or gravitational

force acting on it is not perpendicular to the moving object, then put the

object exerting the force inside the system.
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Table A3: Individual (not net) work

ID Knowledge Component (KC)

KC10 If an object moves while a force interacts with it, then the force does work

on the object, although the work may be zero.

KC11 If an object does not move while a force interacts with it, then the force

does no work on it. (Not in textbook, but easily inferred.)

KC12 If a force does work on an moving object, and the force on an object

is always perpendicular to its motion, then the work is zero. (This was

generalized from the textbook version for the sake of the roller coaster

training problem, 81).

KC13 If a constant force does work on an object which is moving in a straight

line, and the object moves anti-parallel to the force, then the work is

−F ∗ d, where F is the magnitude of the force and d is the displacement.

KC14 If a constant force does work on an object which is moving in a straight

line, and the object moves parallel to the force, then the work is F ∗ d,

where F is the magnitude of the force and d is the displacement.

KC15 The unit for work is the Joule (J) – used only when answer is work in

joules.
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Table A4: Net work

ID Knowledge Component (KC)

KC16 Suppose two objects interact via a force. If one object is inside the system

and one is outside, then the force is an external force. If they are both

inside the system, then the force is an internal force.

KC17 If there is only one external force during a time interval, then the work

done by it is also the net work done on the system during the time interval.

KC18 If there are multiple external forces acting on objects in a system, then

the net work on the system is the sum of the work done by these forces

on objects in the system.
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Table A5: Individual (not net) mechanical energies

ID Knowledge Component (KC)

KC19 If an object is not moving, then it has no kinetic energy.

KC20 If an object is moving, then its kinetic energy at a time is 0.5∗m∗v2, where

m is the object’s mass and v is the magnitude of the object’s instantaneous

velocity.

KC21 If an object and a planet are in a system (or equivalently, the gravitational

force of the earth on the object is an internal force), then their gravita-

tional potential energy is m ∗ g ∗ h, where m is the mass of the object, g

is the gravitational acceleration of the planet, and h is the object’s height

above a zero point. The zero point is arbitrary, but is often chosen to be

the planet’s surface.

KC22 If an object and a spring are in a system (or equivalently, the force the

spring exerts on the object is an internal force), then their spring potential

energy is 0.5 ∗ k ∗ d2, where k is the spring’s spring constant and d is

the displacement of the object relative to the equilibrium position of the

spring.

KC23 The unit for energy is the Joule (J) – used only when answer is in Joules.

185



Table A6: COE, TME and isolated/non-isolated

ID Knowledge Component (KC)

KC24 The total mechanical energy of a system is the sum of the kinetic ener-

gies of each object in the system plus the sum of the potential energies

(gravitational and spring) of each pair of objects in the system that have

potential energies. Typically there is only one moving object and at most

one pair for each type of potential energy, so TME = KE +GPE +SPE.

KC25 Given a system composed of one or more objects, it is isolated if there are

no physical interactions between an object inside the system and an object

outside the system where forces are one kind of physical interaction.

KC26 Otherwise, the system is non-isolated.

KC27 If a system isolated during a time interval, then its total mechanical energy

at the beginning of the time interval equals its total mechanical energy at

the end.

KC28 If a system is not isolated during a time interval, and forces are the only

physical interactions between objects inside the system and objects outside

the system, then its total mechanical energy at the beginning of the time

interval equals its total mechanical energy at the end plus the net work

done on the system during the time interval.
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Table A7: Kinematics

ID Knowledge Component (KC)

KC29 When an object is in projectile motion (only gravity acts on it), at the

apex of its trajectory, the vertical component of its velocity is zero and

the magnitude of its velocity is minimal. Also, it slows down as it climbs

and speeds up as it falls.

KC30 When an object slows to a stop and reverses direction, then its velocity is

momentarily zero.

KC31 The unit for velocity is m
s
. Used only when the answer is a numerical

velocity.

KC32 The value of g is 9.8 m
s2 .
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APPENDIX B

GRADING

As described earlier, in studies 1 and 2, all tests were graded by a single experienced

grader whom I will refer to as the original grader. I will likewise refer to the grades she

assigned as the original grades. The original grades were used to calculate the KC-based

NLGs and cumulative KC-based NLGs for the Exploratory and Dichotic Gain (DichGain)

Corpora later used to derive the tutorial tactics for studies 2 and 3. The results I reported in

chapters 4 and 5 were all based on the original scores. For study 3, however, it was necessary

to engage a new grader, in this case me. I have expertise in the domain and have graded

exams in this domain for a previous experiment. Since the original scores were used as the

basis for our reward function it is important for us to use an equivalent rubric when grading

the final exams. In order to ensure that these rubrics can be adequately aligned, I re-graded

all of the original exams from studies 1 and 2 so as to conduct a full grader agreement study.

B.1 GRADING PROCEDURE

Across three studies in this dissertation, we have total 158 participants and the pre- and

post-tests were identical. In order to aid grading, I first developed a simple interface to

input a correct answer for each test question. As in the original grading process, each test

answer was assigned two grades: overall and KC-based grading. The overall grade was a
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score in the range [0, 1] describing the correctness of the answer as a whole. The KC-based

grading assigned a score in the range [0, 1] indicating whether the student applied each

relevant KC in their answer and, if so, how correct their application of the KC was. Over

the course of the study we collected 64× 2 = 128 students’ answers for Q22 in study 1 and

(37+29+28)×2 = 188 answers for Q22∗ in studies 2 and 3. For the remaining test questions

we obtained a total of 158× 2 = 316 answers.

Two grader interfaces were developed for overall grading and KC-based grading respec-

tively. During each grading process, all identifying information, such as the students’ ID,

group ID, the test (whether pre- or post-test), were concealed from the new grader and the

original grades and the original graders’ correct answers for each question were not presented.

The overall grading interface displays the test question statement, the correct answer

input by the new grader, a student’s solution and allows for the entry of an overall score for

the solution. All answers for a given question were graded serially before the grader moved

on to the next test question.

While overall grading did not borrow anything from the original grading, KC-based

grading borrowed the list of relevant KCs for each test question from the original grading.

As part of the initial grading process, the original grader identified the list of KCs that

were relevant to each test question. During the new grading process, I made use of that

list rather than re-mapping each test question to 31 KCs. As I stated previously, the lists

identify a total of 168 KC occurrences distributed over the 33 test questions. The KC-based

grading interface displays the students’ answers next to the correct answer and the list of

relevant KCs. The grader then entered a score for each KC separately. Again the grades

were assigned serially for all student answers before moving on to the next question.

In order to avoid errors, the test answers in study 3 were graded twice by the same pro-

cedure with the answers being checked for agreement. The other test questions were graded

twice, once by each grader with the original graders’ grades having already been checked for

errors. In order to adequately assess the new grades’ reliability, we investigated the inter-

grader agreement between the original grades and the new grades across the Exploratory

and DichGain groups.
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B.2 INTER-GRADER AGREEMENT

Both graders agreed on the correct answers for all test questions. For the present study, inter-

grader agreement was calculated using Pearson’s product moment correlation which yields

a correlation statistic in the range [−1, 1]. This comparison was made both for the overall

and KC-based scores across the pre- and post-tests taken from studies 1 and 2. The level of

agreement on these grades was quite high on both the pre-test scores, r = .988, p = 0.000,

and post-test scores r = .988, p = 0.000 across the student groups. On the Exploratory

group alone, the correlation statistics were (r = .987, p = 0.000) on the pre-test and r =

.977, p = 0.000) on the post-test. For the DichGain group exam scores, the agreement was

(r = .996, p = 0.000) on the pre-test and (r = .993, p = 0.000) on the post-test.

Similar results were found for the cumulative KC-based scores across the two groups in

the two studies: r = .969, p = 0.000 (pre-test) and (r = .977, p = 0.000 (post-test). For the

Exploratory group within study 1 the agreement was similarly high: (r = .963, p = 0.000)

on the pre-test and (r = .969, p = 0.000) on the post-test. For the DichGain group in study

2, the results are (r = .983, p = 0.000) on the pre-test and (r = .984, p = 0.000) on the

post-test. Similarly high correlations were found on a per-KC basis.

The high level of correlation supports the conclusion that the grades assigned by the two

graders are equivalent and may thus be reliably compared. This conclusion is bolstered by

the fact that our previous findings for studies 1 and 2, reported in chapters 4 and 5, still

hold with the new grades.
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APPENDIX C

BACKGROUND SURVEY

C.0.1 Instructions:

1. If you do not know or remember an item, enter your best guess.

2. For any item is not applicable to you, please enter N/A.

3. If you have any questions, please feel free to ask the experimenter.

C.0.2 Questions:

Which of the following courses did you complete in high school? To the best of your
recollection, please enter the grade you received for the highest level of each course you
completed. (For example, if you took both Algebra I and Algebra II, please indicate your
grade for Algebra II.)

Did you take an Advanced Placement(AP) high school course in either of the following
subjects? Please answer “Yes” or “No” for each course.

I have read and signed the consent form:
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Table C1: Questions

Date: 2009-11-02 13:15:48

User ID: 777777

Age:

Gender: Male Female

Native language: English Other

High School GPA: out of a maximum value of: 4.0

SAT scores: Math: Reading: Writing:

(If you took the old SAT, please enter your Verbal score as Reading)

Name of college:

Year in college: (1st = freshman, 2nd = sophomore, etc.)

College major(s):

College GPA: out of a maximum value of:

Table C2: High School

High-school Course Grade Year(e.g 1999, 2006)

Algebra

Trigonometry

Calculus

Physics
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Table C3: Advanced Placement

Course Yes No

Calculus:

Physics:

Table C4: College-level Math

Please name any college-level math courses you have

taken, along with grades earned and years taken:

1

2

3

4

5

6

Table C5: College-level physics

Please name any college-level physics courses you

have taken, along with grades earned and years taken:

1

2

3

4

5

6
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APPENDIX D

TEXTBOOK

194



D.0.2.1 Introduction

This brief textbook was designed to provide you with sufficient background knowledge
of physics to be able to learn something from this study. It assumes no prior college-level
physics knowledge. The next major section will introduce you to various physical quantities
covered in this study, and the last major section will cover topics specific to work and energy,
the topic domain for this study.
A Note About Notation: For consistency’s sake, this textbook shows equations and num-
bers that use superscripts and subscripts the same way you would type them in this study.
For example, to enter an equation with exponents, you would indicatethe superscripted
exponents using the carat character ˆ (shift-6):

a2 + b2 = c2—>aˆ2 + bˆ2 = cˆ2

Similarly, to enter an equation with subscripts, you would indicate the subscripts using
adjacent [lower-case] letters:

vf = vi + a*t—>vf = vi + a*t

To enter an expression involving a square root, use sqrt:

c =
√

(a2 + b2)—>c = sqrt(aˆ2 + bˆ2)

v0 =
√

[KE0 / (1
2*m)]—>v0 = sqrt[KE0 /(0.5*m)]
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D.0.2.2 Physical Quantities

In this study you will learn about and use different physical quantities. Quantities are
measurable physical features or properties, such as acceleration, length, or time, that can
be expressed as variables in equations. There are two different types of quantities in physics:
scalars and vectors.
A scalar quantity has only magnitude and is completely specified by a single numeric value
with units. Some examples are length (the field is 120 yds long and 50 yds wide) and time
(1 minute equals 60 s). Other examples are volume (a bottle has a volume of 1.5 liters)
and frequency (electrical current has a frequency of 60 Hz). Scalar quantities of the same
type can be added together using ordinary arithmetic (e.g., 60 s + 60 s = 120 s= 2 min).
A vector quantity has both magnitude and direction. Some examples are acceleration (32
ft/sˆ2 downwards) and velocity (60 mph due east). You must be careful to account for
direction when adding vector quantities. For example, when you add the velocity vectors
60 mph due east and 45 mph due west (i.e., in the opposite direction), the resulting vector
is 15 mph due east –not 60+45=105 mph.
In this textbook, we will represent vector variables in bold face (F, v, a) and scalar quan-
tities in standard font (m, k). Variable names will usually begin with a letter denoting
its type, followed by letters or numbers distinguishing it from other variables of the same
type. For example, an object’s velocity at time point T1 may be represented by the vari-
ablev1, while the magnitude of its velocity at time T2 is v2. The mass of object A may be
represented as ma, and that of object B as mb.
Whenever you are asked to enter a numerical directional orientation for a vector in this
study, you should enter it in degrees relative to the right horizontal (counter-clockwise,
starting from 0), according to the following convention:

90
|

180 -+- 0
|
270

The next pages in this section cover some basic physical quantities that you will encounter

throughout the study.
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D.0.2.3 Mass

Mass is a scalar measure of the amount of matter that makes up an object. Its standard
unit of measure is the kilogram (kg) and is often represented by a variable name beginning
with m.
Mass is the property of an object that causes it to have weight in a gravitational field. An
object of mass 1 kg will have 10 times as much mass as an object of mass 100 g, and it will
weigh 10 times as much. However, mass is not the same as weight, which is gravitational
force acting on an object. For example, an astronaut of mass 90 kg will have a different
weight on the Earth than he does on the moon. We will return to this distinction later.
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D.0.2.4 Displacement

Displacement is a vector quantity representing the change in position of an object. Its
standard unit of measure is the meter (m) and is often represented by a variable name
beginning with d.
It is not the same as the scalar measure of distance traveled by a moving object. For
example, a swimmer who swims in a straight line from one end of a 100-m pool to the
other end and back swims a total distance of 200 m, but her displacement during that
same time interval is 0 m because she returns to her original position.
If a football player runs straight down the sideline from one end zone to the other (see
red arrow at the bottom of the figure below), he runs a total distance of 100 yds, and his
displacement is 100 yds in the direction of the far end zone. However, if he starts and ends
at the same two points on the sideline as before, but runs in a zig-zag or haphazard pattern
all over the field instead of a straight line (see yellow arrow below), his displacement is still
100 yds downfield but he will have run a distance greater than 100 yds.

Thus, the red arrow at the bottom of the figure (which represents the first running path)
also represents the player’s displacement after both running paths.
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D.0.2.5 Velocity

Velocity is a vector quantity representing the rate of change in position of an object per
unit time. Its standard unit of measure is meters per second (m/s) and is often represented
by a variable name beginning with v.
The average velocity of a moving object is its displacement during a time interval di-
vided by the duration of the time interval. However, velocity in this study will refer to
theinstantaneous velocity of an object, which is its displacement per unit time at a given
point in time (or, over an infinitesimal time interval).
For example, let’s say you throw a ball straight up in the air with an initial velocity of
5 m/s upwards. A short time later, its velocity will be less than 5 m/s upwards because
gravity will slow it down. At the point in time where the ball ceases to move upwards but
before it begins to fall back down, it has a velocity of 0 m/s. It will eventually land back
in your hands with a downward velocity of some magnitude.
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D.0.2.6 Acceleration

Acceleration is a vector quantity representing the rate of change in velocity of an object
per unit time. Its standard unit of measure is meters per second per second, or meters per
second squared (m/sˆ2) and is often represented by a variable name beginning with a.
The average acceleration of a moving object is its change in velocity during a time interval
divided by the duration of the time interval. However, acceleration in this study will refer
to the instantaneous acceleration of an object, which is its change in velocity per unit time
at a given point in time (or, over an infinitesimal time interval).
As with other vector variables, be careful to account for direction when dealing with ac-
celeration. For example, suppose the driver of a car moving east at 60 mph applies the
brakes. The car’s velocity vector (with magnitude v below) will continue to be eastward
until the car stops, but the braking acceleration vector (with magnitude a below) will be
to the west, in the direction opposite the car’s displacement.

Although some vectors change in magnitude or direction as an object moves (such as the
velocity on this and the previous page), most of the accelerations you will encounter in this
study will be constant.
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D.0.2.7 Gravitational Acceleration

One such constant acceleration used in this study is the acceleration due to gravity of
a moving object near the surface of the Earth. It can be shown experimentally that all
objects near the Earth’s surface have exactly the same downward acceleration, whenever
the effects of air resistance can be eliminated or otherwise ignored.
Unlike many other accelerations, this special constant isnot represented by a variable name
beginning witha. Its magnitude is represented by the scalar variable g, and its direction is
always straight down (toward the center of the Earth):

g = 9.8 m/sˆ2
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D.0.2.8 Force

A force is a push or a pull exerted on an object.
It is a vector quantity and its standard unit of measure is newtons (N), which is equivalent
to kilogram meters per second squared (kg*m/sˆ2). It is often represented by a variable
name beginning with F.
If a force is exerted by something in direct contact with the object, it is a contact force.
For example, if you pull as pring-loaded pinball plunger back toward you and then let it
go, it exerts a contact force on the pinball touching it, in the direction away from you. If
you tie a rope around a box and start pulling it across the floor, the rope exerts a tension
force on the box in the direction of your motion.
Other forces on an object that do not result from direct contact are called field forces.
A common example is gravitation. All objects near the Earth’s surface are subject to a
downward force due to the Earth’s gravitational field.
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D.0.2.9 Weight Force

As discussed earlier, weight is different from mass. Weight is a force exerted on an object
within a gravitational field. It is, therefore, a field force. As with all forces, the weight force
is a vector quantity and its standard unit of measure is newtons(N). It is often represented
by the variable F.
The magnitude of the weight force on an object (F) equals the mass of the object multiplied
by the acceleration due to gravity (which is g if the object is near the Earth’s surface). As
with gravitational acceleration, the direction of the weight force vector is always straight
down.

F = m*g

As discussed earlier, a 90-kg astronaut will have a different weight on the Earth than he
does on the Moon. On the Earth he will weigh (90 kg)*(9.8 m/sˆ2) = 882 N, but on the
Moon he will weigh only about 1/6 as much (145.8 N), because the acceleration due to
gravity near the surface of the Moon is only 1.62 m/sˆ2.
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D.0.2.10 Normal Force

When an object is pressed against a surface, the object experiences an opposing contact
force that is perpendicular to the surface. This force is called a normal force, because
“normal” is a mathematical term meaning perpendicular. As with all forces, a normal
force is a vector quantity and its standard unit of measure is newtons (N). It is often
represented by the variable F.
Suppose a rectangular object is resting on a table in your kitchen. You already know the
object experiences a downward weight force, proportional to its mass. It also experiences an
upward normal force from the table, which in this case is equal in magnitude and opposite
in direction to the weight force on the object.

The normal force from a surface is always perpendicular to the point of contact. Therefore,
if an object is moving along a curved surface (e.g., a rollercoaster car on a curved track),
the direction of the normal force will change as the object moves along the curved path:
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D.0.2.11 Friction Force

For simplicity’s sake, many of the problem scenarios you encounter in this study will involve
frictionless surfaces, or will state that friction is negligible. However, some problems will
mention frictional force acting on a moving object, usually an object sliding across a surface.
As with all forces, a friction force is a vector quantity andits standard unit of measure is
newtons (N). A friction force (F) is a force along a surface that opposes the sliding of an
adjacent object across the surface. The friction force is parallel to the surface and opposite
in direction to the object’s motion.

205



D.0.2.12 Introduction to energy Energy can take many forms, but when properly

defined and measured, it turns out that the total energy of an isolated system does not

change over time. This law of nature is called conservation of energy. Notice that it uses

the terms “energy” and “isolated system,” so we will need to define those carefully.

For “isolated system”, we will first define a “system” to be a set of one or more objects

and then define “isolated system” as one where none of the objects inside the system interact

with objects outside the system. Because some systems are not isolated, we will also show

how to analyze a certain kind of non-isolated system that is particularly common.

For “energy,” we will define two forms of energy quite carefully and lump all other forms

of energy into a third, “catch-all” category. The three categories of energy are

• The kinetic energy of a moving object. We will define this carefully.

• The potential energy of a pair of interacting objects. This is energy that can be easily

converted into kinetic energy, which is why it is called “potential” energy. We will define

this carefully.

• The internal energy of an object. This category covers many kinds of energy, such as

temperature, chemical energy, or biological energy, that are not so easily converted to

kinetic energy. We will not define this category carefully because it encompasses so many

forms of energy.

Kinetic and potential energies are mechanical energies, while internal energy is not a

mechanical energy. From the general conservation of energy law we stated above, it follows

that, assuming the internal energy of the system does not change, then:

The total mechanical energy of an isolated system does not change.

This is a simple version of Conservation of Mechanical Energy. There is also a more

general version that works for certain kinds of non-isolated systems. We will first introduce

the simple version, then build up to the final, more complex version.

Because we want to focus on Conservation of Mechanical Energy, we will make the blanket

assumption throughout this experiment that the internal energies of objects do not change.

That is, we will assume that none of the objects in the examples, problems, or illustrations

ever change their temperature, their chemical energy, etc.
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D.0.2.13 Kinetic energy

One type of energy, called kinetic energy (KE), is associated with individual objects. It

depends only on an object’s mass and on the magnitude of its velocity. In particular, it is

defined via the formula:

KE = 0.5 * m * vˆ2

where m is the mass of the object and v is the magnitude of the velocity of the object

relative to a stationary point of reference, such as the Earth. Although the Earth has mass

and moves through space, it can be considered a stationary point of reference for other

objects near it, with zero velocity and, hence, zero kinetic energy.

The standard unit of energy is (kg*mˆ2)/sˆ2 which is also denoted as J (Joule).

Example: a box of mass 2 kg travels in a circle with a velocity of 3 m/s. What is its

kinetic energy at any point in the circle?

Solution:

KE = 0.5 * m * vˆ2
= 0.5 * (2 kg) * (3 m/s)ˆ2
= 9 kg*mˆ2/sˆ2 = 9 J
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D.0.2.14 Potential energy Suppose you toss a golf ball straight up so that it reaches

a peak of 10 meters before it turns around and falls to the ground. When it is on its way up,

say at 2 meters off the ground, it has a non-zero velocity so 0.5*m*vˆ2 is non-zero and thus

it has a non-zero kinetic energy. The golf ball slows down as it climbs, so its kinetic energy

decreases. At the very instant it reaches its peak, its velocity is zero for just that instant, so

0.5*m*vˆ2 is zero and thus its kinetic energy is zero at that instant. As the golf ball falls

down, it picks up speed, so it has a non-zero, increasing velocity, so 0.5*m*vˆ2 is non-zero

and increasing, and thus its kinetic energy is non-zero and increasing. In other words, while

the golf ball is in flight, its kinetic energy decreases to zero then increases again.

Conservation of Mechanical Energy suggests that the golf ball’s kinetic energy didn’t just

disappear as it rose, but instead was converted to another form of energy. As the golf ball

fell, its kinetic energy was returned to it, according to Conservation of Mechanical Energy.

So what is this “other form of energy” that borrows energy from kinetic energy and then

returns it?

When a form of energy is easily converted from kinetic energy and back, that form of

energy is called potential energy. Potential energy is associated with relative positions oftwo

objects: in the example above, different positions of the ball with respect to the Earth

account for the different values of the potential energy of the ball-Earth system.

We will not give a precise definition of “easily converted” in general nor of “potential

energy” in general. However, we will define precisely two common forms of potential energy:

gravitational potential energy and spring potential energy.
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D.0.2.15 Gravitational potential energy Gravitational potential energy exists when

two objects are pulled together by a gravitational force. Although gravitational forces exist

between any pair of objects, as long as they both have mass, the force is too small to bother

with unless one of the objects is very massive (like a planet) and the other object is fairly

close to it. In that case, gravitational potential energy is defined as:

GPE = m*g*h

where h is the height of the object above the level of origin, g is the constant gravitational

acceleration near the surface of the planet (9.8 m/sˆ2 for Earth), and m is the object’s mass.

Since we will only be interested in the change of GPE as an object moves with respect

to the Earth, we can choose the level of origin to be anywhere, as long as it is fixed with

respect to the Earth. For any object at the level of origin, its height h = 0, and therefore the

potential energy of the object-Earth pair GPE =0. GPE will be positive when the object is

above the level of origin, and it will be negative when the object is below it.

The unit of energy is kg*mˆ2/sˆ2, also denoted as J (Joule).

Example: Suppose a 0.1 kg ball is tossed straight up so that it peaks at 10 meters off

the surface of the Earth. Suppose we define the origin to be 2 meters off the surface of the

Earth. Thus, h =(10-2) = 8 m when the ball is at its peak, so the gravitational potential

energy at its peak is:

GPE = m*g*h
= (0.1 kg) * (9.8 m/sˆ2) * (8 m)
= 7.84 kg*mˆ2/sˆ2 = 7.84J

If the ball reaches the ground, the GPE of the ball-Earth pair at that point is:

GPE = m*g*h
= (0.1 kg) * (9.8 m/sˆ2) * (-2m)
= -1.96 J
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D.0.2.16 Spring potential energy A spring potential energy exists when one end of

a spring is anchored so that it does not move, and the other end exerts a force on an object

(e.g., see the Compressed spring in Figure 2).The value of the spring potential energy of an

object-spring pair is defined as:

SPE = 0.5 ∗ k ∗ d2

where k is a spring constant, and d is the extension (or compression) of the spring from

its equilibrium position. The spring constant k is a positive number that measures the

stiffness of a spring. The stiffer the spring, the larger the spring constant. The unit for a

spring constant is N/m (which is equivalent to kg/sˆ2). The equilibrium position of a spring

is the position of the unanchored end when the spring is not being compressed or extended.

The variable d measures how far the spring is compressed or extended, and it is a positive

scalar number in either case.

For the sake of simplicity, assume that all springs you encounter in this experiment are

ideal springs that have no mass of their own and do not degrade or deform, over time or due

to extended compression or extension.

The unit of energy is kg ∗ (m2)/(s2), also denoted as J (Joule).

Example: Figure 1 shows a spring attached to a wall at one end and a mass m at the

other end. Suppose its spring constant is 0.2 N/m. It is at its equilibrium position, so the

spring potential energy of the spring-mass pair is:

SPE = 0.5 ∗ k ∗ d2 = 0.5 ∗ (0.2N/m) ∗ (0m)2 = 0J

Figure 1

Figure 2 shows the spring compressed by 0.3 m. The spring potential energy of the

spring-mass pair is thus:

SPE = 0.5 ∗ k ∗ d2 = 0.5 ∗ (0.2N/m) ∗ (0.3m)2 = 0.009kg ∗ (m2)/(s2) = 0.009J
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Figure 2

Figure 3 shows the spring stretched by 0.6 m. The spring potential energy of the spring-

mass pair is thus:

SPE = 0.5 ∗ k ∗ d2 = 0.5 ∗ (0.2N/m) ∗ (0.6m)2 = 0.036kg ∗m2/s2 = 0.036J

Figure 3
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D.0.2.17 Total mechanical energy A system, as mentioned before, is just a set of

one or more objects. Intuitively, the total mechanical energy of a system should be just the

sum of the energies of all the objects in the system. However, potential energies are defined

only forpairs of objects. We include a potential energy in the sum only if both objects are

included in the system. Thus:

The total mechanical energy of a system is the sum of the kinetic energies of each object
in the system plus the sum of the potential energies of each pair of objects in the system
that have potential energies.

For example, consider an object X that is being pushed by two springs, Sa and Sb. The

two springs are attached to a platform that is floating in deep space (i.e., nowhere near a

planet). Let us consider all the possible contributions to total mechanical energy:

• Suppose that X is moving with velocity v and has mass m, so ith as kinetic energy

1
2
∗m ∗ v2.

• Suppose that springs Sa and Sb have no mass, so the kinetic energy of each spring is 0.

• Suppose that the spring constant of Sa is ka and it is compressed by da. Thus, the

potential energy of the pair X and Sais 1
2
∗ ka ∗ da2.

• Suppose that the spring constant of Sb is kb and it is compressed by db. Thus, the

potential energy of the pair X and Sb is 1
2
∗ kb ∗ db2.
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Now we can demonstrate that the total mechanical energy (i.e., the sum of each object’s

kinetic energy plus any potential energies of object pairs) depends on which set of objects

comprise the system:

• The total mechanical energy of {X, Sa, Sb} is 1
2
∗m∗v2 +0+0+ 1

2
∗ka∗da2 + 1

2
∗kb∗db2

• The total mechanical energy of {X, Sa} is 1
2
∗m ∗ v2 + 0 + 1

2
∗ ka ∗ da2

• The total mechanical energy of {X, Sb} is 1
2
∗m ∗ v2 + 0 + 1

2
∗ kb ∗ db2

• The total mechanical energy of {X} is 1
2
∗m ∗ v2

Similarly, gravitational potential energy is defined between a pair of objects, one of

which is usually a planet. For instance, if a rock of mass m is near the Earth and moving

with velocityv (relative to the Earth, which is to be considered stationary), then the total

mechanical energy of {rock, Earth} is 1
2
∗ m ∗ v2 + m ∗ g ∗ h, where h is the height of the

rock above a reference point. The total mechanical energy of {rock} is 1
2
∗m ∗ v2, because

the Earth is not in the system.
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D.0.2.18 Isolated and non-isolated systems A system is called isolated whenever

all of the objects in it have no physical interaction with objects outside it. If at least one

object in a system has a physical interaction with some object outside the system, then the

system is called non-isolated.

There are many kinds of physical interactions. One kind is a force that exists between a

pair of objects. For instance, if object A pushes object B, then A exerts a force on B. If A

is in the system and B is not, then the system is non-isolated. In particular, if object P is a

planet that exerts a non-negligible force on object O, then a system that has O but not P is

non-isolated.

For example, consider an object falling toward the Earth in a vacuum. Because it is in

a vacuum, nothing is touching it, so the only force on it is the gravitational force of the

Earth. If we define the system to be {object, Earth}, then it is isolated because nothing

is interacting with the objects in it. If we define the system to be just {object}, then the

system is non-isolated, because the Earth is exerting a force on the object.

There are also physical interactions between objects that are not due to forces. For

instance, if one object radiates heat and warms up another object, then there is no force

between them, but there is a physical interaction.
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D.0.2.19 Conservation of Mechanical Energy for isolated systems Having de-

fined the key terms “total mechanical energy” and “isolated system”, we can now return to

the simpler version of the law of Conservation of Mechanical Energy, which applies only to

isolated systems:

The total mechanical energy of an isolated system does not change.

Example: Suppose at time 1, a 0.1 kg ball is launched vertically upward from the surface

of the Earth with a velocity of 5 m/s. At time 2, it reaches its peak of 1.28 meters above

the surface of the Earth and its velocity is momentarily zero.

To analyze this situation with Conservation of Mechanical Energy, let us consider the

ball and the Earth to be a system. In order to keep the example simple, let us ignore air,

wind, ambient sound, sunlight, and all the other physical interactions that actually exist,

and treat this two-object system as isolated.

The law says that the total mechanical energy of {ball, Earth}at time 1 should equal the

total mechanical energy of {ball, Earth}at time 2. Let’s check: At time 1,

ME1 = KE1 + GPE1

where ME1 is the total mechanical energy at time1, KE1 is the total kinetic energy at

time 1, and GPE1 is the total gravitational potential energy at time 1. There is no spring

potential energy because there are no springs in the example. At time 2,

ME2 = KE2 + GPE2

where these variables refer to the total mechanical energy, kinetic energy, and gravita-

tional potential energy at time 2. Now let’s consider each type of energy. For KE1, the

Earth is stationary but the ball starts with a velocity of 5 m/s. Thus, KE1= 0 + 0.5*m*vˆ2

= 0.5 * (0.1 kg) * (5 m/s)ˆ2 = 1.25 J. For KE2, the Earth is stationary and the ball has

zero velocity as well. Thus,KE2 = 0+0 = 0.

For gravitational potential energy, we need to choose an origin so we can calculate a height

above it. For simplicity’s sake let us choose the surface of the Earth as the origin. Thus, for

GPE1, m*g*h1 is 0 because the height (h1) is zero; therefore, GPE1=0. ForGPE2=m*g*h2,

we have h2=1.28 m, so GPE2 = (0.1 kg) * (9.8 m/sˆ2) *(1.28 m) = 1.25 J.

Now we can check Conservation of Mechanical Energy; that is, does ME1=ME2? We

simply plug in the values we have calculated:
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ME1 = KE1 + GPE1

= 1.25 J + 0

ME2 = KE2 + GPE2

= 0 + 1.25 J

This shows that ME1=ME2. Essentially, the kinetic energy at time1 has been trans-

formed into gravitational potential energy at time2.
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D.0.2.20 Internal forces vs. external forces A system is non-isolated if there exists

at least one physical interaction between objects in the system and objects outside the

system. We can extend the law of Conservation of Mechanical Energy to handle a special

class of non-isolated system, where all the physical interactions are due to forces. In order

to do that, we first need to define several new terms: internal/external forces, work, and net

work. This page defines internal and external forces.

Recall that a force is defined only for a pair of objects: the object that the force acts on,

and the object that is exerting the force. For instance, when the Earth exerts a gravitational

force on a ball, there are two objects involved: the Earth and the ball. When a frictional

force slows down a sliding block, the surface (one object) is exerting a force on the sliding

block (the second object).

If there is a force involving a pair of objects, and we define the system to include only

one of them, then the force is crossing the system boundary and the system is non-isolated.

We call such a force an external force.

On the other hand, if both objects of the pair are inside the system, then we call the

force an internal force.
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D.0.2.21 Work The previous page defined internal and external forces, but we still need

to define work in order to handle the afore mentioned special class of non-isolated system

where all the physical interactions are due to forces. A completely general definition of work

can be stated using vector calculus, but we will not do so here. Instead, we will define work

only for a few rather common configurations.

Work is defined for a particular object and a particular force over a particular time

interval. We will assume that through the time period, (1) the force is constant and has

magnitude F, and (2)the object moves in a straight line and its displacement has magnitude

d. Given these assumptions, the work W done on the object by the force depends on the

relative direction of the force and the displacement:

• If the object is moving in the same direction as the force, then W=F*d (positive).

• If the object is moving in the opposite direction to the force, then W= -F*d (negative).

• If the object is moving perpendicular to the force, then W=0.

Differences in how we handle the work done by internal versus external forces will be dis-

cussed on later pages (e.g., regarding different choices of systems).
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D.0.2.22 Net work We have defined work for a single object, but Conservation of

Mechanical Energy applies to a system, which is a set of one or more objects. Thus, we need

to define the net work done on a system as the sum of the work done by the external forces

on objects inside the system. Notice that we only sum over theexternal forces and do not

include the internal ones.

For example, consider a crane that is lifting a block against gravity. If we define the

system to be {Earth, block} so that the crane is outside the system, then the force exerted

by the crane on the block is external whereas the gravitational force is internal. The net

work done on the system is the work done by the crane on the block. If the crane exerts a

force of magnitude F and lifts the block a displacement of magnitude d, then the work done

by the crane on the block (W) is F*d, so the net work on the system (Wnet)is also F*d.

On the other hand, if we define the system to be {block}, then both the crane and the

Earth are outside the system, so there are two external forces. As before, the work on the

block due to the crane is F*d. If we use Fw for the magnitude of the weight force due to

gravity, then the work done by the Earth is -Fw*d. (Note the minus sign, because the weight

force is downward but the block’s displacement is upward.) Thus, the net work done on the

system is Wnet=F*d-Fw*d.
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D.0.2.23 Conservation of Mechanical Energy for systems whose non-isolation

is due to forces Now we can extend the law of Conservation of Mechanical Energy to

systems which are not isolated, but whose non-isolation is due to forces and where no other

kind of physical interaction (e.g., light, sound, heat) exists. In this case, the law is

ME1 + Wnet = ME2

where ME1 is the total mechanical energy at time 1, ME2 is the total mechanical energy

at time 2, and Wnet is the net work done on the system during that time interval.

Example: Suppose a little girl on ice skates is given a slow push by her father, who is

standing still. The magnitude of the force exerted by the father is 0.2 N, and the distance

traveled by the little girl while she is being pushed is 0.5 m. What kinetic energy does the

little girl attain, starting from rest?

We can solve this problem by using a non-isolated system comprised of the little girl and

the Earth. We will treat the ice and the father as being outside the system. First, let us

classify all the forces in this situation as either internal or external, and compute the work

done by the external ones.

• The father exerts a force on the girl. It is external, and so the work done is the force’s

magnitude (0.2 N) times the magnitude of the girl’s displacement (0.5 m). Thus, the

work done is 0.10J.

• The ice exerts a normal force on the girl. It is external. The force is straight up, and

the girl moves horizontally, so the force and the displacement are perpendicular. Thus,

the work done by the normal force on the girl is 0.

• The ice exerts a tiny friction force on the girl. Although it is external, it is so small that

we can ignore the work done by it.

• The Earth exerts a gravitational force on the girl. This force is internal, because we are

including the Earth in the system.

Summing up the net work done during the time interval on the{girl, Earth} system, we

have Wnet=0.10 J.

Initially, the system’s total mechanical energy, ME1, is KE1 +GPE1. After the push

ends, the system’s energy, ME2, is KE2 + GPE2. Substituting these into conservation of
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energy, we have

KE1 + GPE1 + Wnet = KE2 + GPE2

The girl has the same height as she did initially, so GPE2=GPE1.Thus, we can simplify

the conservation of mechanical energy equation to

KE1 + Wnet = KE2

We know that KE1=0 because neither the girl nor the Earth are moving initially. We

know that KE2 is just the kinetic energy of the girl, because the Earth is still not moving.

After substituting these relationships for KE1 and KE2 into KE1 + Wnet = KE2, we obtain

Wnet = the girl’s kinetic energy, so her kinetic energy is0.10 J.
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D.0.2.24 Different choices of system On the preceding page, we chose {girl, Earth}

as the system, making the Earth’s gravitational force internal to the system. Suppose we

instead chose {girl} as the system. Now the Earth is outside the system, so that its gravita-

tional force becomes an external force.

Because we have added an external force, the net work done on the {girl} could be differ-

ent than the net work done on the {girl, Earth}. However, as it turns out, the gravitational

force is perpendicular to the girl’s displacement, so the work done by it on the girl is zero.

Thus, the net work done on {girl} is the same as the net work done on {girl, Earth}.

There is a second change in the analysis. With {girl, Earth} as the system, the total

mechanical energies, ME1 and ME2, include the girl/Earth gravitational potential energies,

GPE1 and GPE2. With{girl} as the system, the gravitational potential energies are excluded

because potential energies exist only between pairsof objects in a system. Thus, applying

the law to {girl, Earth}, we got KE1 + GPE1 + Wnet = KE2 + GPE2, whereas applying

the law to{girl}, we now get KE1 + Wnet = KE2. However, GPE1 = GPE2 with{girl,

Earth}, so the solutions converge and we get exactly the same answer for both choices of

system.

What happens if we choose {father, girl, Earth} as the system? This would make the

father’s push into an internal force (it was external). Hence, the net work on the 3-object

system would be zero(it was F*d, the work done by the father on the girl). With a little more

math, we can show that the girl’s kinetic energy would be zero, which is wrong! Thus, we

do not have total freedom when choosing a system. Only some choices give correct answers.

In order to know which choice of system to make, we must first discuss the differences

between conservative and non-conservative forces.
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D.0.2.25 Conservative and non-conservative forces A force is called conservative

if and only if we can define a potential energy for it. So far, we have defined potential

energies for gravitational forces and for spring forces, so those are the only conservative

forces introduced so far. All the other forces introduced so far (normal force, frictional force,

pulls by a crane, pushes by fathers, etc.) are non-conservativeforces.

Recall that the potential energy of a pair of objects depends only on their relative posi-

tion. Thus, if one object of the pair moves around during a time interval but comes back to

exactly the same position, then the potential energy of the pair has not changed during the

time interval. For the non-conservative forces, there is no definition of potential energy that

has this property, and that is why they are non-conservative.

For instance, suppose we tried to define a potential energy for the father’s force on his

little girl. If there was such a “father’s force potential energy,” then we would include it

when summing up total mechanical energy. Now suppose at time 1 the girl is not moving.

Next the father pushes her away and pulls her back a hundred times. At time 2, she is

back at the original position and not moving. Now her kinetic energy at both times is

zero, her gravitational potential energy has not changed, and moreover, her “father’s force

potential energy” has not changed either, because she is back where she started. Thus,

her total mechanical energy, which includes the “father’s force potential energy,” has not

changed. Yet we know he will have expended some biological energy (i.e., burned some

calories), and thus his internal energy has changed. Thus, we have a change in internal

energy without a compensating change in total mechanical energy. This violates the general

law of Conservation of Energy. Thus, it is impossible to define a potential energy for the

father’s push that will allow the conservation laws to hold.

For this experiment, you can assume that the only conservative forces are gravitational

and spring forces. Although a few other conservative forces are known in physics, they will

not appear in any of the examples or problems used in this experiment.
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D.0.2.26 Internal forces must be conservative When choosing a system, all the

internal forces must be conservative. As demonstrated earlier, when a non-conservative force

such as the father’s push is included as an internal force, the analysis is incorrect.

When we gather up all the various caveats that have been discussed, a final version of

the law of Conservation of Mechanical Energy can now be stated:

If a system can be chosen such that (a) all the internal forces are conservative, (b) external
forces are the only physical interactions between objects inside the system and objects
outside the system, and (c) no objects inside the system change their internal energy, then
ME1 + Wnet = ME2, where ME1 is the total mechanical energy at time 1, Wnet is the
net work done on the system by external forces between times 1 and 2, and ME2 is the
total mechanical energy of the system at time 2.

When the system is isolated, then there are no external forces, so the net work is zero

and so ME1 = ME2. Thus, the first version of Conservation of Mechanical Energy we

introduced, which applied only to isolated systems, is clearly just a special case of this more

general version.
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D.0.2.27 Summary

Below is a summary table of all the major work and energy principles covered in this
textbook. Please review it now before continuing the next phase of the experiment.

PRINCIPLE EQUATION
Kinetic energy KE = 0.5 * m * vˆ2

Gravitational potential energy GPE = m*g*h
Spring potential energy SPE = 0.5 * k * dˆ2
Total mechanical energy ME = KE + GPE + SPE

Work W = F*d
W = F*d if same direction
W = -F*d if opposite direction
W = 0 if perpendicular
Net work Wnet = Σ W = sigma(W) ( = sum of all Ws)

Conservation of mechanical energy ME0 + Wnet = ME1

(Wnet=0 if isolated system)
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APPENDIX E

PRE- AND POSTTEST QUESTIONS.

Please enter the answer to the following question in the space below. (Value: 2/100)

1. Ente r the equation that defines the kinetic energy of an object (remember to use * for

multiplication and f̂or exponentiation, and be sure to include an = sign):

Please enter the answer to the following question in the space below. (Value: 2/100)

2. Enter the equation that defines the gravitational potential energy of an object (remember

to use * for ultiplication and f̂or exponentiation, and be sure to include an = sign):

Please enter the answer to the following question in the space below. (Value: 2/100)

3. Enter the equation that defines the spring potential energy of an object (remember to use

* for multiplication and f̂or exponentiation, and be sure to include an = sign):

Please enter the answer to the following question in the space below. (Value: 2/100)
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4. During a time interval, an object moves in a straight line, a constant force acts on it, and

the force is in the same direction as the object’s motion. Enter the equation that defines

the work done on an object by the force (remember to use * for multiplication and f̂or

exponentiation, and be sure to include an = sign):

Please enter the answer to the following question in the space below. (Value: 2/100)

5. Enter the equation that defines the total mechanical energy of a system (remember to

use * for multiplication and f̂or exponentiation, and be sure to include an = sign):

Please select ALL of the possible answers to the following question from the list. (Value:

2/100)

6. Suppose an object is near Earth, moving, attached to a spring and acted on by an applied

force F. What does the kinetic energy of the object depend on directly? That is, what is

mentioned in the definition of kinetic energy? Check all that apply:

1. The mass of the object.

2. The magnitude of the object’s acceleration.

3. The direction of the object’s acceleration.

4. The magnitude of the object’s velocity.

5. The direction of the object’s velocity.

6. The magnitude of the object’s displacement.

7. The direction of the object’s displacement.

8. The magnitude of the force F.

9. The direction of the force F.

10. The spring constant of the spring.

11. The distance that the spring is compressed or extended.

12. The gravitational constant of the Earth.

13. The height of the object above the surface of the Earth.
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14. The absence of any other physical interactions between the object and its environment

other than the ones mentioned above (the spring, the Earth and the applied force F).

Please select ALL of the possible answers to the following question from the list. (Value:

2/100)

7. Suppose an object is near Earth, moving, attached to a spring and acted on by an applied

force F. What does the gravitational potential energy of the object depend on directly? That

is, what is mentioned in the definition of gravitational energy? Check all that apply:

1. The mass of the object.

2. The magnitude of the object’s acceleration.

3. The direction of the object’s acceleration.

4. The magnitude of the object’s velocity.

5. The direction of the object’s velocity

6. The magnitude of the object’s displacement.

7. The direction of the object’s displacement.

8. The magnitude of the force F.

9. The direction of the force F.

10. The spring constant of the spring.

11. The distance that the spring is compressed or extended.

12. The ravitational constant of the Earth.

13. The height of the object above the surface of the Earth.

14. The absence of any other physical interactions between the object and its environment

other than the ones mentioned above (the spring, the Earth and the applied force F).

Please select ALL of the possible answers to the following question from the list. (Value:

2/100)
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8. Suppose an object is near Earth, moving, attached to a spring and acted on by an applied

force F. What does the spring potential energy of the object depend on directly? That is,

what is mentioned in the definition of spring potential energy? Check all that apply:

1. The mass of the object.

2. The magnitude of the object’s acceleration.

3. The direction of the object’s acceleration.

4. The magnitude of the object’s velocity.

5. The direction of the object’s velocity.

6. The magnitude of the object’s displacement.

7. The direction of the object’s displacement.

8. The magnitude of the force F.

9. The direction of the force F.

10. The spring constant of the spring.

11. The distance that the spring is compressed or extended.

12. The gravitational constant of the Earth.

13. The height of the object above the surface of the Earth.

14. The absence of any other physical interactions between the object and its environment

other than the ones mentioned above (the spring, the Earth and the applied force F).

9. Suppose an object is near Earth, moving, attached to a spring and acted on by an applied

force F. What does the work done by F on the object depend on directly? That is, what is

mentioned in the definition of work done on an object? Check all that apply:

1. The mass of the object.

2. The magnitude of the object’s acceleration.

3. The direction of the object’s acceleration.

4. The magnitude of the object’s velocity.

5. The direction of the object’s velocity.

6. The magnitude of the object’s displacement.
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7. The direction of the object’s displacement.

8. The magnitude of the force F.

9. The direction of the force F.

10. The spring constant of the spring.

11. The distance that the spring is compressed or extended.

12. The gravitational constant of the Earth.

13. The height of the object above the surface of the Earth.

14. The absence of any other physical interactions between the object and its environment

other than the ones mentioned above (the spring, the Earth and the applied force F).

Please enter the answer to the following question in the space below. (Value: 4/100)

10. A toy cart moves with a kinetic energy of 30 J. If the magnitude of its velocity is doubled,

what will its kinetic energy be?

Please enter the answer to the following question in the space below. (Value: 4/100)

11. A force of SON is exerted on a given object. How far can the object move if 5000 J of

work are available to move it?
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Please enter the answer to the following question in the space below. (Value: 4/100)

12. A baseball with mass 0.145 kg is thrown straight up with an initial velocity of magnitude

20.0 mls. What is the work done by gravity on the baseball when it reaches a height of 18.0

m above the pitcher’s hand? (As you derive your answer, please show your work by typing

equations, explanations, etc. in the box below.)

Please enter the answer to the following question in the space below. (Value: 6/100)

13. An object of mass M is dropped from 10.0 m above the water surface. Use conservation

of mechanical energy to find the magnitude of its velocity 5.00 m above the water surface.

Neglect air resistance and assume it starts from rest. (As you derive your answer, please

show your work by typing equations, explanations, etc. in the box below.)

Please select one of the answers to the following question.(Value: 2/100)

14. A baseball with mass 0.145 kg is thrown straight up with an initial velocity of magnitude

25.0 mls. If we ignore the air friction, when the baseball is 20.0 m above the ground, the

magnitude of its velocity

1. does not depend on whether the baseball is moving upward or downward¡correct¿

2. depend on whether the baseball is moving upward or downward¡correct¿

Please enter the answer to the following question in the space below. (Value: 8/100)

15. A person pulls an 16.5 kg box across a floor by pulling on a rope with a constant force

of 47.5 N. The rope is horizontal. The frictional force on the box is 42.0 N. Determine the

magnitude of the velocity of the box after it has been pulled 6.50 m starting from an initial
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velocity of 1.18 mls. Use work energy concepts. Solutions using other methods will not be

recognized. You may take the floor to be the zero level of gravitational potential energy.

(As you derive your answer, please show your work by typing equations, explanations, etc.

in the box below.)

Please select one of the answers to the following question.(Value: 2/100)

16. A block is slowly pushed against a spring, compressing it at a constant speed. During

this time interval, the spring is exerting a force on the block. The work done by the spring

on the block is:

1. positive

2. zero

3. negative

Please select one of the answers to the following question.(Value: 2/100)

17. Two men, Tom and Jerry, push against a wall with the same force. Jerry stops after 10

min, while Tom is able to push for 5 min longer. Compare the work against the wall they

each do.

1. Tom does 50% more work than Jerry.

2. Jerry does 50% more work than Torn

3. Tom does 75% more work than Jerry.

4. Neither of them does any work.
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Please select one of the answers to the following question.(Value: 2/100)

18. A person pulls a box along the rough ground with a constant magnitude of velocity. If

we consider Earth and the box as our system, the work done by the person on the system is:

1. zero

2. nonzero

Please select one of the answers to the following question.(Value: 2/100)

19. When a student lifts a heavy box, the work done on the box by the Earth:

1. postive

2. negative

3. zero

4. need more information in order to answer.

Please select one of the answers to the following question.(Value: 2/100)

Q20*. An object can never have a negative kinetic energy. Used in study 1

1. True

2. False

Q20. For isolated systems, an increase in potential energy is always equal to: Used in

study 2 and 3

1. an increase in kinetic energy

2. a decrease in kinetic energy

3. an increase in mechanical energy
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4. a decrease in mechanical energy

5. cannot tell without more information.

Please select one of the answers to the following question.(Value: 6/100)

21. Suppose a heavy box is suspended by a rope. A man holding the rope slowly lowers the

box onto a spring. The box is moving at constant velocity. Consider the system to consist

of the box alone. The system’s total mechanical energy:

1. increases.

2. decreases.

3. stays the same.

4. we cannot tell; more information is needed

Please select one of the answers to the following question.(Value: 6/100)

22. Suppose a heavy box is suspended by a rope. A man holding the rope slowly lowers the

box onto a spring. The box is moving at constant velocity. Define the system to be the box

and the spring, but no other objects. The system’s total mechanical energy:

1. increases.

2. decreases.

3. stays the same.

4. we cannot tell; more information is needed.
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Please select one of the answers to the following question.(Value: 6/100)

23. Suppose a heavy box is suspended by a rope. A man holding the rope slowly lowers the

box onto a spring. The box is moving at constant velocity. Define the system to be the box

and the earth but no other objects. The system’s total mechanical energy:

1. increases.

2. decreases.

3. stays the same.

4. we cannot tell; more information is needed.

Please select one of the answers to the following question.(Value: 2/100)

24. You lift a ball at a constant velocity from a height hi to a greater height hf. Considering

the ball ALONE to be the system, which of the following statements is true?

1. The potential energy of the system increases.

2. The kinetic energy of the system decreases.

3. The earth does negative work on the system.

4. You do negative work on the system.

5. The source energy of the ball increases.

6. Two of the above.

7. None of the above.

Please select one of the answers to the following question.(Value: 2/100)

25. You lift a ball at constant velocity from a height hi to a greater height hf. Considering

the ball and the earth TOGETHER as the system, which of the following statements is true?

1. The potential energy of the system increases.
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2. The kinetic energy of the system decreases.

3. The earth does negative work on the system.

4. You do negative work on the system.

5. The source energy of the ball increases.

6. Two of the above.

7. None of the above.

26. Consider the diagram of the trajectory of a thrown tomato: J

1. At what point is the potential energy greatest?

2. At what point is the kinetic energy the least?

3. At what point is the kinetic energy greatest?

4. At what point is the kinetic energy decreasing and the potential energy increasing?

5. At what two points are the kinetic energies equal and the potential energies equal?

Please select one of the answers to the following question.(Value: 2/100)

27. Two marbles, one twice as massive as the other, are dropped to the ground from the

roof of a building. Ignore air resistance. Just before hitting the ground,the heavier marble

has:

1. as much kinetic energy as the lighter one

2. twice as much kinetic energy as the lighter
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3. one half as much kinetic energy as the lighter

4. one four times as much kinetic energy as the lighter one

5. square root of 2 (i.e., 1.414) times as much kinetic energy as the ligher one.

6. impossible to determine

Please select one of the answers to the following question.(Value: 2/100)

28. While flying along, a jet releases an empty propellent tank which eventually crashes

to the ground. Consider three cases: a)the jet is flying horizontally, b) the jet is climbing

upwards at a 45 degree angle, or, c) the jet is diving downwards at a 45 degree angle. In

all 3 cases, it is flying at the same speed and it releases the propellant tank from the same

height. Ignoring air friction, in which case is the tank’s speed greatest as it hits the ground?

1. The horizontal jet

2. The climbing jet

3. The diving jet

4. It doesn’t matter. The speed is the same in all three cases.

5. More information is needed in order to answer.

Please select one of the answers to the following question.(Value: 2/100)

29. Consider a system that consists of only the earth and box. A battery-powered motor

not considered part of the system lifts the box from the ground to a certain height above

the earth’s surface. Which statement below is most accurate after the box has been lifted

and corne to a stop?

1. The kinetic energy of the box has increased.

2. The kinetic energy of the box has decreased.

3. The total mechanical energy of the system remains the same, because the box is not

moving.
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4. The total mechanical energy of the system has decreased.

5. The total mechanical energy of the system has increased.

Please select one of the answers to the following question.(Value: 2/100)

30. You support an object and move it to the right with a constant velocity. You exert a

force F on it to oppose the gravitational attraction of the earth for the object. If you do not

raise the object or increase its velocity, and air friction is negligible, do you do work on the

object?

1. Yes

2. No

31. A steel ball is placed at position A on the curved, hard surface shown [insert diagram].

The surface is fixed to the table on which it sits so that it does not move. The ball is held

at rest at position A and then is released. It rolls smoothly along the surface. Which choice

below most nearly describes the greatest height attained by the ball on the other side of the

curve?

1. It will not get over the hill in the middle.

2. Significantly below position C

3. Almost to position C

4. Almost to position B

5. Slightly higher than position B
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Please select one of the answers to the following question.(Value: 4/100)

32. Two pucks on level, frictionless ice are shown above, pressed back by equal amounts

against identical springs. The pucks are the same size and shape, but one has four times the

mass of the other. The pucks are released and the springs propel them to the finish line. At

the finish line the kinetic energy of the less massive puck compare to the kinetic energy of

the more massive puck?

1. the same as the kinetic energy of the more massive puck.

2. four times the kinetic energy of the more massive puck.

3. twice the kinetic energy of the more massive puck.

4. half the the kinetic energy of the more massive puck.

5. one-fourth the kinetic energy of the more massive puck.

33. A puck sitting on level ice is pushed back against a spring that is attached to a wall.

This partially compresses the spring. The puck is released, and the spring propels it. If you

have only this spring, but a variety of different pucks, how could another puck be given more

energy? (i) Use a puck with less mass. (ii) Use a puck with more mass. (iii) Compress the

spring more.

1. i only

2. ii only

3. iii only

4. i and iii

5. ii and iii
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APPENDIX F

PRE- AND POST-TEST KCS
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APPENDIX G

TRAINING PROBLEMS

P1. At T0, a 2000 kg car is moving with a velocity of magnitude 22.35 m/s. Find the kinetic

energy of the car.

P2. A man pushes a 20.0 kg crate across a frictionless floor with a horizontal force of 24.0

N. What work is done by the man on the crate in displacing it by 5.0 m?

We define:

T0: the time point when the man starts pushing the crate.

T1: the time point when the man has finished pushing the crate 5.0 m

Please see diagram below.

P3. Jan’s mountain bike has a spring with a constant of 64 N/m in the front wheel suspen-

sion. At T0 the front wheel suspension gets compressed by 0.17m when she hits a bump.

How much energy does the wheel-spring pair store at that point? Please see diagram
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below.

P4. A 0.6 kg rock in space has a velocity of magnitude 2.0 m/s at point A and kinetic energy

of 7.50 J at point B. What is the net work done on the rock as it moves from A to B?

We define

T0: the time point when the rock is at point A.

T1: the time point when the rock is at point B.

P5. Suppose a 2000kg truck is dropped from a certain height above the ground, starting

from rest. Find the height from which it is dropped if it strikes the ground at 22.35 m/s.

Neglect air resistance. Assume that the origin is at the ground. We define

T0: the time point when the truck is dropped, from rest.

T1: the time point when it strikes the ground.

P6. At time T0, a 225 kg frictionless roller-coaster car reaches the top of the first hill with

a velocity of magnitude 3.0 m/s. At time T1, the car is at the point P1 and it reaches a

velocity of magnitude 7.8 m/s. At time T2, the car is at the point P2, 4 meters lower in

height than P1, and it reaches a velocity of magnitude 11.8 m/s. What is the magnitude

of the car’s instantaneous velocity at time T3, at the point when it reaches the base?

Assume that the origin is at the base of the roller-coaster and the height of the first hill

is 25 m above the base. Please see diagram below.
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P7. A vertical spring is compressed by 0.15 m. A 3.00 kg block is then placed on the spring

and released. At time T1, the block passes the spring’s equilibrium position. Then the

block flies into the air. At 0.2 s later, 0.404 m above the uncompressed spring, the

block has a velocity of 1.04 m/s. How high will the block go above the uncompressed

spring? What is the constant of the spring? Choose the origin to be at the top of the

uncompressed spring. We define

T0: the time point when the spring is compressed by 0.15 m with the block resting on

it.

T1: the time point when the block passes the spring’s equilibrium position.

T2: the time point when the block is 0.404 m above the spring’s equilibrium position.

T3: the time point when the block reaches its maximum height.

Please see diagram below.
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APPENDIX H

AN EXAMPLE OF STUDENT-CORDILLERA LOG FILE

Here is a student who is under the Exploratory Group solved P4 on Random-Cordillera.

Table H1: An Example of Student Log on Training Prob-

lem P4

Time speaker string Label

1 14:51:41 Tutor: [continue]This problem is a little more com-

plex than the problems that you have solved

so far, but I think you can handle it.

2 14:51:41 Tutor: [ent txt]What does the problem statement

ask you to find?

ELICIT

3 14:52:09 Student: Work done on the rock

4 14:52:26 Tutor: [continue]It asks you to find net work, more

specifically, net work done on the rock as it

moves from A to B.

5 14:52:36 Tutor: [ent txt]What are the units for net work? ELICIT

KC15

6 14:52:46 Student: J ”+KC15”

Continued on Next Page. . .
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Table H1: An Example of Student Log on Training Prob-

lem P4

Time speaker string Label

7 14:52:47 Tutor: Very good!

8 14:52:47 Tutor: [continue]Net work always refers to two time

points.

9 14:52:54 Tutor: [continue]In this problem, they are T0 and

T1. T0 is defined as the time when the rock

is at point A and T1 is defined as the time

when it is at point B.

10 14:53:04 Tutor: [continue]As always, let‘s first define vari-

ables and give values to some of them.

11 14:53:09 Tutor: [continue]I will define m to be the mass of

the rock.

12 14:53:14 Tutor: [continue]There are two variables that we can

define at both T0 and T1, the rock‘s magni-

tude of velocity and the rock‘s kinetic energy.

I will define them for you. Look at the vari-

able window after the next step.

13 14:53:24 Tutor: [ent txt]Which variable has a value 0.60 kg? ELICIT

14 14:53:46 Student: M

15 14:53:47 Tutor: Yes.

16 14:53:53 Tutor: [ent txt]Which variable has a value of 2.0

m/s?

ELICIT

17 14:54:16 Student: V0

18 14:54:17 Tutor: Okay.

Continued on Next Page. . .
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Table H1: An Example of Student Log on Training Prob-

lem P4

Time speaker string Label

19 14:54:18 Tutor: [main menu ‘num units‘] What is the value

of the kinetic energy of the rock at T1?

ELICIT

KC23

20 14:54:46 Student: 1.2m/s ”-KC23”

21 14:54:47 Tutor: I disagree with you.

22 14:54:47 Tutor: [continue]At T1,the rock is at point B, and

the problem says the rock‘s kinetic energy at

point B is 7.50 J.

”*KC23”

23 14:54:52 Tutor: [continue] Next let‘s identify the sought vari-

able.

24 14:54:55 Tutor: [continue]The problem asks for the net work

done on the rock from A to B. I will define

it as Wnet01 in the variable window.

TELL

25 14:55:00 Tutor: [continue] Our main goal is to calculate

Wnet01. There are two principles that are

involved in net work. One is the definition

of net work and the other is conservation of

mechanical energy for non-isolated systems.

Let‘s examine whether one or both of these

principles are applicable to this problem.

”*KC18

*KC28”

Continued on Next Page. . .
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Table H1: An Example of Student Log on Training Prob-

lem P4

Time speaker string Label

26 14:55:08 Tutor: [continue]According to the definition of net

work, the net work done on the rock is the

sum of the work done by the external forces

on the rock. From the problem statement,

there is no information given about the forces

acting on the rock(e.g. gravitational force).

So we cannot apply the first principle directly

to this problem.

”*KC18”

27 14:55:18 Tutor: [continue]Now let‘s examine the remaining

principle involving net work, namely conser-

vation of mechanical energy for non-isolated

systems. It should be applicable since we

don‘t have any other principles to try!

28 14:55:28 Tutor: [continue]Conservation of mechanical energy

for non-isolated systems in its generic form

says that when there are external forces act-

ing on a system, the net work done by these

forces on the system equals the change in the

total mechanical energy of the system.

”*KC28”

29 14:55:37 Tutor: [continue]The first thing we need to do is to

define a system because conservation of me-

chanical energy for non-isolated systems is

applied to a system, not an object.

”*KC28”
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30 14:55:45 Tutor: [continue]In this problem, let‘s simply select

the rock as the system.

TELL

31 14:55:48 Tutor: justify choose-system SKIP-

JUSTIFY

32 14:55:48 Tutor: [continue]Next, we need to define variables

for the total mechanical energy for the rock

system at T0 and at T1. I will define them as

TME0 and TME1 respectively. Please look

at the variable window on the next step.

33 14:55:56 Tutor: [continue]There is more than one way to solve

this problem. In the following discussion, I

may lead you on a bit of a detour at times

simply to help you practice applying some of

the principles.

34 14:56:03 Tutor: [continue]We will solve this problem in three

steps. First, we will calculate KE0, then we

will calculate v1, and finally we will calculate

Wnet01.

35 14:56:08 Tutor: [continue]So let‘s start with determining the

value of KE0.

36 14:56:11 Tutor: [continue]To calculate the rock‘s kinetic en-

ergy at T0, let‘s apply the definition of ki-

netic energy.

TELL

*KC20
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37 14:56:27 Tutor: [main menu ‘eqn‘]Please write the equation

for applying the definition of kinetic energy

to the rock at T0.

ELICIT

KC20

38 14:56:31 Student: ke0 = 1/2 * M * V02̂ ”+KC20”

39 14:56:32 Tutor: [main menu ‘num units‘]Since all the vari-

ables in the equation are known except for

KE0, we can calculate KE0 easily. What is

the value of KE0?

ELICIT

KC23

40 14:56:47 Student: 1.2J ”+KC23”

41 14:56:48 Tutor: Okay.

42 14:56:49 Tutor: [continue]Before we go any further, let‘s dis-

cuss this principle in a little more detail.

43 14:56:56 Tutor: [ent txt]Why does the rock have a non-zero

kinetic energy at T0?

Justify

ELICIT

KC20

44 14:57:17 Student: because it has a nonzero mass and a nonzero

magnitude of velocity

”+KC20”

45 14:57:18 Tutor: Yes.

46 14:57:19 Tutor: [continue]We do not know the direction of

the rock‘s velocity at T0 from the problem

statement. However, the direction of v0 does

not affect the rock‘s kinetic energy at T0.

TELL

*KC20
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47 14:57:23 Tutor: 58-ke0 discuss qualitative 2 Skip-

JUSTIFY

KC20

48 14:57:23 Tutor: [continue]We‘ve calculated KE0, recall that

our plan is to calculate v1 next.

49 14:57:26 Tutor: [continue]To calculate the rock‘s instanta-

neous magnitude of velocity at T1, we will

apply the definition of kinetic energy again.

TELL

*KC20

50 14:57:31 Tutor: [continue]Let me just write the equation for

you: KE1=1/2*m*v12̂.

TELL

*KC20

51 14:57:34 Tutor: [continue]From KE1=1/2*m*v12̂, we get

v12̂=KE1/(0.5*m). We substitute KE1 with

7.50 J and m with 0.60 kg. The equation

now becomes: v12̂= 7.50 J/(0.5* 0.60 kg).

The magnitude of velocity is always positive,

therefore, v1= 5.0 m/s.

TELL

*KC31

52 14:57:41 Tutor: 58-v1 discuss qualitative SKIP-

Justify

KC20

53 14:57:42 Tutor: [continue]Now that we know v1, we will con-

centrate on the sought quantity for this prob-

lem, that is, the net work done on the rock

system from A to B.
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54 14:57:48 Tutor: [continue]Our system consists of the rock and

we have planned to apply the conservation of

mechanical energy for non-isolated systems

from T0 to T1 to find the net work done on

the rock from point A to point B.

”*KC28”

55 14:57:54 Tutor: [continue]More specifically, we will first find

the system‘s total mechanical energy at T0,

then we will find it at T1, and finally we will

find the net work done on the rock from A to

B by examining the change in total mechan-

ical energy from T0 to T1.

56 14:58:00 Tutor: [continue]Let‘s use the definition of total me-

chanical energy to find TME0.

TELL

*KC24

57 14:58:04 Tutor: [continue]The generic equation for the defi-

nition of total mechanical energy is TME =

KE + GPE + SPE.

TELL

*KC24

58 14:58:08 Tutor: [continue]In this problem, the system only

has one object, the rock. Therefore, there are

no potential energies involved, neither gravi-

tational potential energy nor spring potential

energy.

”*KC21

*KC22”

59 14:58:09 Tutor: 58-tme0 discuss truth SKIP-

JUSTIFY

KC21
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60 14:58:10 Tutor: [main menu ‘eqn‘] Please write the equation

for the definition of total mechanical energy

for the rock system at T0.

ELICIT

KC24

61 14:58:33 Student: TME0 = KE0 ”+KC24”

62 Tutor: [main menu ‘num units‘]It is easy to infer the

value of TME0. Please calculate the value of

TME0.

ELICIT

KC23

63 14:58:52 Student: 1.2J ”+KC23”

64 14:58:53 Tutor: [cust menu ‘Yes, it is true—No, it is not

true—I do not know—Not enough informa-

tion‘]Equation TME0 = KE0 tells us that

the rock system‘s total mechanical energy is

equal to the rock‘s kinetic energy at T0. Is

it true *for any given time*?

ELICIT

KC24

65 14:59:29 Student: No, it is not true ”-KC24”

66 14:59:30 Tutor: I disagree with you.

67 14:59:31 Tutor: [continue]In fact ....it is true for any time

point in this problem.

”*KC24”

68 14:59:32 Tutor: [continue]This is because as long as the rock

is the only object in the system, there are

no potential energy involved, neither gravi-

tational potential energy nor spring potential

energy. Thus TME = KE at any given time

point.

TELL

*KC24

*KC21

*KC22
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69 14:59:40 Tutor: 58-tme0 discuss relevance SKIP-

JUSTIFY

KC28

70 14:59:41 Tutor: [continue]We have computed TME0, let‘s

calculate TME1 next.

71 14:59:43 Tutor: [continue]Since the total mechanical energy

is equal to kinetic energy at any given time

as long as the rock is the only object in a sys-

tem, let‘s use the definition of total mechan-

ical energy again to get the value for TME1.

TELL

*KC24

72 14:59:50 Tutor: [main menu ‘eqn‘] Please write the appropri-

ate equation for the definition of total me-

chanical energy of the system at T1.

ELICIT

KC24

73 14:59:58 Student: TME1 = KE1 ”+KC24”

74 14:59:59 Tutor: [main menu ‘num units‘]What is the value of

TME1?

ELICIT

*KC23

75 15:00:16 Student: 7.5J

76 15:00:17 Tutor: 58-tme1 discuss qualitative SKIP-

JUSTIFY

KC24

77 15:00:17 Tutor: 58-tme1 discuss truth SKIP-

JUSTIFY

KC24
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78 15:00:17 Tutor: [continue]We just calculated TME1 and

TME0, let‘s calculate the net work done on

the rock from A to B.

79 15:00:22 Tutor: [continue]As we have mentioned before, there

were two principles from the textbook which

apply to net work: one is the definition of

net work and the other is conservation of me-

chanical energy for non-isolated systems.

TELL

*KC28

*KC18

80 15:00:30 Tutor: [continue]The definition of the net work can-

not be applied to this problem because there

is no information given in the problem state-

ment about the forces on the rock. There-

fore, we will apply the remaining principle,

namely, conservation of mechanical energy

for non-isolated systems. We will start with

the generic equation.

81 15:00:38 Tutor: [main menu ‘form‘] What is the generic equa-

tion for conservation of mechanical energy for

non-isolated systems?

ELICIT

KC28q

82 15:01:06 Student: TME0 = TME1 ”-KC28q”

83 15:01:07 Tutor: That doesn‘t sound right to me.

84 15:01:08 Tutor: [continue]The generic equation for conserva-

tion of mechanical energy for non-isolated

systems: Wnet01 = TME1− TME0

”*KC28q”
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85 15:01:15 Tutor: [ent txt]What time points and bodies should

we use when applying the principle of conser-

vation of mechanical energy for non-isolated

systems?

ELICIT

KC28

86 15:01:57 Student: We should use the time points where the to-

tal mechanical energy changes.

”-KC28”

87 15:01:59 Tutor: [ent txt]What objects should you apply the

conservation of mechanical energy for non-

isolated systems to?

88 15:02:29 Student: the objects that are in motion ”-KC28”

89 15:02:31 Tutor: [continue]We have already defined the system

to be the rock. Therefore, we should apply

conservation of mechanical energy to the rock

system.

”*KC28”

90 15:02:37 Tutor: [continue]To apply conservation of mechani-

cal energy for non-isolated systems, we need

two time points.

91 15:02:47 Tutor: [ent txt]What time points should we use

when applying conservation of mechanical

energy for non-isolated systems?

92 15:03:30 Student: T0 and T1 ”+KC28”

93 15:03:32 Tutor: Okay.
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94 15:03:32 Tutor: [continue]Let me just write the equation for

conservation of mechanical energy for the

rock system between T0 and T1 for you:

TME0 + Wnet01 = TME1

TELL

*KC28

95 15:03:39 Tutor: [continue]Since we already know the values

for TME0 and TME1, we can calculate the

value of Wnet01 easily.

ELICIT

KC15

96 15:03:46 Tutor: [main menu ‘num units‘]Please calculate the

value of Wnet01.

97 15:03:56 Student: 6.3J ”+KC15”

98 15:03:58 Tutor: [continue]We have finished solving the whole

problem. Next let‘s do a little discussion.

99 15:04:00 Tutor: [cust menu ‘KE0—v1—TME1—TME0—Wnet01—All

are necessary—I do not know.‘]While solving

the problem, we calculated the variables in

the order of KE0, v1, TME0, TME1, and

Wnet01. Are any of these variable(s) not

necessary to solve the problem?

ELICIT

100 15:04:54 Student: v1

101 15:04:55 Tutor: Yes.

102 15:04:57 Tutor: [continue]The reason that we calculate v1 in

this problem is to practice the principle of

the definition of kinetic energy.
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103 15:05:02 Tutor: [cust menu ‘Yes, it is possible—No, it is not

possible—I do not know—Not enough infor-

mation‘]In this problem, we have selected the

rock as the system. Is it possible to define

potential energy for the rock system?

ELICIT

KC21

104 15:05:22 Student: No, it is not possible ”+KC21”

105 15:05:23 Tutor: Yes, I agree.

106 15:05:23 Tutor: 58-pe concept justification 2 SKIP-

Justify

KC21

107 15:05:23 Tutor: [continue]Next, we will change the place

where the rock is and discuss whether the

values of some variables would also change.

108 15:05:31 Tutor: [cust menu ‘increase—decrease—same—not

enough information—I do not know‘]Suppose

the 0.6 kg rock is put on the Earth and the

rock‘s kinetic energy at point B is still 7.5 J,

what will happen to the rock‘s magnitude of

velocity at the point B?

ELICIT

KC20

109 15:06:09 Student: same ”+KC20”

110 15:06:10 Tutor: Very good!

111 15:06:10 Tutor: 58-v1-ppd-discussion-2 SKIP-

JUSTIFY

KC20
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112 15:06:10 Tutor: [cust menu ‘increase—decrease—same—not

enough information—I do not

know.‘]Suppose the rock is on the Earth and

everything in the problem statement is kept

the same. What will happen to net work

done on the rock if we still choose the rock

alone as the system?

ELICIT

KC28

KC24

113 15:06:36 Student: same ”+KC28

+KC24”

114 15:06:37 Tutor: Sounds good.

115 15:06:37 Tutor: 58-wnet01-ppd-discussion-2 SKIP-

JUSTIFY

KC28

KC24

116 15:06:37 Tutor: [main menu ‘num units‘]Let‘s go back to the

situation where rock is in space. Look at the

variable window, tell me what is the magni-

tude of v0?

117 15:06:55 Student: 2m/s ”+KC31”

118 15:06:56 Tutor: Yes, I agree.

119 15:06:57 Tutor: [main menu ‘num units‘]What is the magni-

tude of v1?

120 15:07:08 Student: 5m/s ”+KC31”

121 15:07:09 Tutor: Excellent!
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122 15:07:11 Tutor: [continue]Although the magnitude of v1 (5.0

m/s) is bigger than the magnitude of v0 (2.0

m/s), we *cannot* infer that the rock‘s mag-

nitude of velocity is increasing during the

ENTIRE period from T0 to T1.

TELL

*KC31

*KC20

123 15:07:17 Tutor: [main menu ‘num units‘]Look at the variable

window, tell me what is the value of the

rock‘s kinetic energy at T0?

124 15:07:31 Student: 1.2J ”+KC23”

125 15:07:32 Tutor: Yes, I agree.

126 15:07:34 Tutor: [main menu ‘num units‘]What is the value of

KE1?

127 15:07:47 Student: 7.5J ”+KC23”

128 15:07:48 Tutor: Excellent!

129 15:07:50 Tutor: [continue]Compared with point A, the ki-

netic energy of the rock at point B is in-

creased.

TELL

*KC20

130 15:07:52 Tutor: [ent txt]Please try to explain why. Justify

ELICIT

KC20

131 15:08:17 Student: it is so because th evelocity of the rock has

increased from A to B

”+KC20”

132 15:08:18 Tutor: Very good!
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133 15:08:19 Tutor: [continue]Suppose there is point C on the

path of the rock between A to B. We do

not have enough information to say anything

about the kinetic energy of the rock at point

C compared with point A.

TELL

*KC20

134 15:08:27 Tutor: [continue]This is because we do not know

whether the rock‘s magnitude of velocity at

C is bigger than its magnitude of velocity at

A or not. It is possible that the rock continu-

ously increases its magnitude of velocity from

A to C then to B. It is also possible its mag-

nitude of velocity decreases from A to C and

then increases from C to B. It is even possi-

ble that it does not change its magnitude of

velocity from A to C and then increases its

magnitude of velocity from C to B.

Justify

TELL

*KC20

135 15:08:39 Tutor: [menu ’increase—decrease—same—not

enough information—I do not

know.’]Compared with point B, What

can you say about the kinetic energy of the

rock at point C?

ELICIT

KC20

136 15:09:12 Student: not enough information ”+KC20”

137 15:09:13 Tutor: Sounds good.
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138 15:09:13 Tutor: [ent txt]Please explain why. JUSTIFY

ELICIT

KC20

139 15:10:07 Student: It is so beacause the KE depends on the ve-

locity and we do not know the velocity of the

rock at point C.

”+KC20”

140 15:10:08 Tutor: [continue]Next, we will change the mass of

the rock and discuss whether the values of

some variables would also change.

141 15:10:10 Tutor: [continue]Suppose that the rock‘s mass in-

creased from 0.6 kg to 1 kg and the rock‘s

kinetic energy at point B was still 7.5 J, the

rock‘s magnitude of velocity at point B would

decrease.

TELL

*KC20

142 15:10:16 Tutor: [continue]It is because we are assuming that

the rock‘s kinetic energy at point B stays

same, 7.50 J, and if the rock‘s mass increases,

according to KE= 1/2*m*v2̂, then the mag-

nitude of rock‘s magnitude of velocity has to

decrease.

JUSTIFY

TELL

*KC20
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143 15:10:22 Tutor: [cust menu ‘increase—decrease—same—not

enough information—I do not

know.‘]Compared with point B, What

can you say about the kinetic energy of the

rock at point C?

ELICIT

KC20

144 15:10:46 Student: increase ”+KC20”

145 15:10:47 Tutor: I agree.

146 15:10:49 Tutor: [ent txt]Why? JUSTIFY

ELICIT

KC20

KC23

147 15:11:09 Student: It is so because the KE of a body depends on

it‘s mass

”-KC20”

148 15:11:10 Tutor: I disagree with you.

149 15:11:12 Tutor: [continue]Because the magnitude of rock

magnitude of velocity is still 2.0 m/s at point

A and the mass of the rock increases, accord-

ing to KE= 1/2*m*v2̂ the kinetic energy of

the rock at point A increases.

*KC20

*KC20q

*KC31
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150 15:11:18 Tutor: [cust menu ‘increase—decrease—same—not

enough information—I do not know.‘]Finally,

if the rock‘s mass were 1 kg instead of 0.6 kg

and the rock‘s magnitufe of velocity at point

A was still 2.0 m/s and the rock‘s kinetic

energy at point B was still 7.5 J, what will

happen to the net work done on the rock as

it moves from A to B?

ELICIT

KC28

KC24

KC20

151 15:11:59 Student: decrease ”+KC28,

+KC24,

+KC20”

152 15:12:00 Tutor: 58-inc mass3 2 SKIP-

JUSTIFY

KC28

KC24

KC20

153 15:12:02 Tutor: [cust menu ‘Yes, we can—No, we can-

not—not enough information—I do not

know.‘]If we already know that the work done

on the rock by force F is 9 J and we also know

that the rock is moving in the same direction

as F for 3 m in a straight line, can you infer

the magnitude of the force F?

ELICIT

KC14

154 15:12:28 Student: Yes, we can ”-KC14”
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155 15:12:29 Tutor: I disagree with you.

156 15:12:31 Tutor: [continue]No, we cannot infer anything about

the magnitude of the force F.

157 15:12:39 Tutor: 58-work concept justification SKIP-

JUSTIFY

KC14

158 15:12:39 Tutor: [continue]Let‘s go back to the original situ-

ation. The problem does not give any hint

about the path taken by the rock. However,

taking different paths would not affect our fi-

nal answer of the net work done on the rock

from A to B.

TELL

*KC28

*KC24

*KC20

159 15:12:49 Tutor: 58-compare path 2 SKIP-

JUSTIFY

KC28

KC24

KC20

KC15

160 15:12:49 Tutor: [continue]We‘re finished with this problem.

I think I should give you a more complex

problem next time.
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161 15:12:59 Tutor: [ent txt]The next problem will take about 40

minutes to complete. If you start this prob-

lem and do not have enough time to finish,

then you will have to start it over from the

beginning when you return for your next ses-

sion. Are you ready for the next problem?

162 15:13:30 Student: Yes
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APPENDIX I

AN EXAMPLE TUTORIAL SCRIPT

Example tutorial script for problem 58, listed as problem 4 in Appendix G.

g start

say ‘‘[start_problem 58]’’

do solving_problem

do discuss_problem

say ‘‘[cont]We’re finished with this problem. I think I should give

you a more complex problem next time.’’

do logout

g solving_problem

say ‘‘[cont]This problem is a little more complex than the problems

that you have solved so far, but I think you can handle

it.’’

do pre-discuss-problem

do time_points

say ‘‘[cont]As always, let’s first define variables and give values

to some of them.’’
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do given_soughts

do application

g pre-discuss-problem sem elicit

say ‘‘What does the problem statement ask you to find?’’

if ‘‘net work.’’ true

if ‘‘net work done on the rock as it moves from A to B.’’ true

otherwise say ‘‘[cont]It asks you to find net work, more specifically,

net work done on the rock as it moves from A to B.’’

say ‘‘What are the units for net work?’’

if ‘‘Joules.’’ true kc ‘‘+KC15’’

otherwise say ‘‘[cont]The units of the net work are Joules.’’

kc ’’-KC15 *KC15’’

g pre-discuss-problem sem tell

say ’’[cont]The problem statement asks us to find the net work done

on the rock when it moves from point A to point B.’’

say ’’[cont]The units for net work are Joules. ’’ kc ’’*KC15’’

g time_points

say ’’[cont]Net work always refers to two time points.’’

say ’’[cont]In this problem, they are T0 and T1. T0 is defined as the

time when the rock is at point A and T1 is defined as

the time when it is at point B.’’

say ’’[add ’T0’]’’

say ’’[add ’T1’]’’

say ’’[add ’rock’]’’

g given_soughts
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do list_givens

do list_soughts

g list_givens

say ’’[cont]I will define m to be the mass of the rock.’’

say ’’[add ’m’ omit=’value’]’’

say ’’[cont]There are two variables that we can define at both

T0 and T1, the rock’s magnitude of velocity and the

rock’s kinetic energy. I will define them for you.

Look at the variable window after the next step.’’

say ’’[add ’v0’ omit=’mag’]’’

say ’’[add ’KE0’ omit=’value’]’’

say ’’[add ’v1’ omit=’mag’]’’

say ’’[add ’KE1’ omit=’value’]’’

do list_mass

do list_v0

do list_ke1

g list_mass sem elicit

say ’’Which variable has a value {m.value}?’’

if ’’m’’ true

otherwise say ’’[cont]It is m.’’

say ’’[add ’m’]’’

g list_mass sem tell

say ’’[cont]From the problem statement, we know that m

has a value {m.value}.’’

say ’’[add ’m’]’’
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g list_v0 sem elicit

say ’’Which variable has a value of 2.0 m/s?’’

if ’’v0’’ true

otherwise say ’’[cont]v0. ’’

say ’’[add ’v0’]’’

g list_v0 sem tell

say ’’[cont]We can also see from the problem statement that

v0 has a value of 2.0 m/s.’’ kc ’’*KC31’’

say ’’[add ’v0’]’’

g list_ke1 sem elicit

say ’’[ask ’num_units’] What is the value of the kinetic

energy of the rock at T1?’’

if ’’{KE1.value}’’ true kc ’’+KC23’’

if ’’correct value, wrong/no unit’’

say ’’[cont]You entered

the correct value, but not the correct units.

The correct units for kinetic energy are J. ’’

kc ’’-KC23 *KC23’’

if ’’{KE0.value}’’

say ’’[cont] You seem to have calculated the value for

the kinetic energy of the rock at T0. Now we

are still listing the given values. At T1,the

rock is at point B, and the problem says the

rock’s kinetic energy at point B is {KE1.value}.

’’ kc ’’+KC23’’

otherwise say ’’[cont]At T1,the rock is at point B, and the

problem says the rock’s kinetic energy at

point B is {KE1.value}.’’ kc ’’*KC23’’
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say ’’[add ’KE1’]’’

g list_ke1 sem tell

say ’’[cont]At T1,the rock is at point B, and the problem

says the rock’s kinetic energy at point B

is {KE1.value}’’ kc ’’*KC23’’

say ’’[add ’KE1’]’’

g list_soughts

say ’’[cont] Next let’s identify the sought variable.’’

do list_h0

g list_h0 sem elicit

say ’’What is the sought quantity for this problem?’’

if ’’net work done on the rock from T0 to T1.’’ true

say ’’[cont]I defined it as Wnet01 in the

variable window.’’

otherwise say ’’[cont]The problem asks for the net work

done on the rock from A to B. I defined

it as Wnet01 in the variable window.’’

say ’’[add ’Wnet01’ omit=’value’]’’

g list_h0 sem tell

say ’’[cont]The problem asks for the net work done on the rock

from A to B. I will define it as Wnet01 in the

variable window.’’

say ’’[add ’Wnet01’ omit=’value’]’’

g application
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do global_discuss

say ’’[cont]So let’s start with determining the value of KE0.’’

do KE0

say ’’[cont]We’ve calculated KE0, recall that our plan is to

calculate v1 next.’’

do v1

say ’’[cont]Now that we know v1, we will concentrate on the sought

quantity for this problem, that is, the net work done on

the rock system from A to B. ’’

say ’’[cont]Our system consists of the rock and we have planned to

apply the conservation of mechanical energy for

non-isolated systems from T0 to T1 to find the net work done

on the rock from point A to point B.’’ kc ’’*KC28’’

say ’’[cont]More specifically, we will first find the system’s total

mechanical energy at T0, then we will find it at T1, and

finally we will find the net work done on the rock

from A to B by examining the change in total mechanical

energy from T0 to T1.’’

do TME0

say ’’[cont]We have computed TME0, let’s calculate TME1 next.’’

do TME1

say ’’[cont]We just calculated TME1 and TME0, let’s calculate the net

work done on the rock from A to B.’’

do CME01

g global_discuss

say ’’[cont] Our main goal is to calculate Wnet01. There are two

principles that are involved in net work. One is the definition of

net work and the other is conservation of mechanical energy for non-

isolated systems. Let’s examine whether one or both of these prin
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ciples are applicable to this problem.’’ kc ’’*KC18 *KC28’’

say ’’[cont]According to the definition of net work, the net work

done on the rock is the sum of the work done by the external forces

on the rock. From the problem statement, there is no information

given about the forces acting on the rock(e.g. gravitational force).

So we cannot apply the first principle directly to this problem.

’’ kc ’’*KC18’’

say ’’[cont]Now let’s examine the remaining principle involving net

work, namely conservation of mechanical energy for non-isolated

systems. It should be applicable since we don’t have any other

principles to try!’’

say ’’[cont]Conservation of mechanical energy for non-isolated

systems in its generic form says that when there are external

forces acting on a system, the net work done by these forces on

the system equals the change in the total mechanical energy of

the system.’’ kc ’’*KC28’’

say ’’[cont]The first thing we need to do is to define a system

because conservation of mechanical energy for non-isolated

systems is applied to a system, not an object.’’ kc ’’*KC28’’

do choose-system_1

say ’’[cont]Next, we need to define variables for the total mechanical

energy for the rock system at T0 and at T1. I will define them

as TME0 and TME1 respectively. Please look at the variable

window on the next step. ’’

say ’’[add ’TME0’ omit=’value’]’’

say ’’[add ’TME1’ omit=’value’]’’

say ’’[cont]There is more than one way to solve this problem. In the

following discussion, I may lead you on a bit of a detour at

times simply to help you practice applying some of the principles. ’’

say ’’[cont]We will solve this problem in three steps. First, we will
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calculate KE0, then we will calculate v1, and finally we will

calculate Wnet01.’’

g choose-system_1

do choose-system

do justify_choose-system sem justify

g choose-system sem elicit

say ’’[add ’rock’]’’

say ’’What would be your choice of the system for this problem?’’

if ’’rock’’ true

otherwise do bottom_out_choose-system

g justify_choose-system sem elicit

say ’’Why?’’

if ’’In this problem there is only one object: the rock. It is the

target object.’’ true

otherwise say ’’[cont]In this problem the target object is the rock

. Since we have no information about the forces being applied to

it, we do not have any clue whether there exist any other objects

besides the rock. Therefore, we choose the rock alone to be the

system.’’

g justify_choose-system sem tell

say ’’[cont]In this problem the target object is the rock. Since we

have no information about the forces being applied to it, we do

not have any clue whether there exist any other objects besides

the rock. Therefore, we choose the rock alone to be the system.’’
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g bottom_out_choose-system

say ’’[cont]Let’s choose the rock to be the system.’’

g choose-system sem tell

say ’’[add ’rock’]’’

say ’’[cont]In this problem, let’s simply select the rock as the

system. ’’

g KE0

do KE0_principle_selection

do KE0_write_eqn

do KE0_solve_equation

do KE0_discuss_truth rand sem justify

do KE0_discuss_qualitative

g KE0_principle_selection sem elicit

say ’’Which principle will help you calculate the rock’s kinetic

energy at T0? Please provide the name of the principle, not

an equation. ’’

if ’’Definition of kinetic energy. ’’ true kc ’’+KC20’’

otherwise say ’’[cont]Let’s apply the definition of kinetic

energy.’’ kc ’’-KC20 *KC20’’

say ’’[ask ’form’] What is the generic equation for the definition

of kinetic energy? KE=’’

if ’’{form_KE}’’ true kc ’’+KC20q’’

otherwise say ’’[cont]The generic equation for the definition of
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kinetic energy is: KE= {form_KE}’’ kc ’’-KC20q *KC20q’’

g KE0_principle_selection sem tell

say ’’[cont]To calculate the rock’s kinetic energy at T0, let’s

apply the definition of kinetic energy. ’’ kc ’’*KC20’’

say ’’[cont]The generic equation for the definition of kinetic

energy is KE={form_KE}.’’ kc ’’*KC20q’’

g KE0_write_eqn sem elicit

say ’’[ask ’eqn’]Please write the equation for applying the

definition of kinetic energy to the rock at T0.’’

if ’’{eqn_KE0}’’ true say ’’[add ’eqn_KE0’]’’ kc ’’+KC20q’’

if ’’equation with substituted values’’ do bo_KE0_sub_write_eqn

otherwise do bo_KE0_write_eqn kc ’’-KC20q’’

g KE0_write_eqn sem tell

say ’’[cont]Now I will write the equation for applying the

defin ition of kinetic energy to the rock at T0: {eqn_KE0}’’

kc ’’*KC20q’’

say ’’[add ’eqn_KE0’]’’

g bo_KE0_sub_write_eqn

say ’’[cont]You substituted problem values into the equation.

Please use the variable labels instead.’’

do KE0_write_eqn

g bo_KE0_write_eqn

say ’’[add ’eqn_KE0’]’’

say ’’[cont]Let me write the equation for the rock’s kinetic
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energy at T0 for you: {eqn_KE0}. Please look at the equation

window.’’ kc ’’*KC20q’’

g KE0_solve_equation sem elicit

say ’’[ask ’num_units’]Since all the variables in the equation

are known except for KE0, we can calculate KE0 easily. What is

the value of KE0?’’

if ’’{KE0.value}’’ true kc ’’+KC23’’

if ’’correct value, wrong/no unit’’ say ’’[cont]You entered the

correct value, but not the correct units. The correct units for

kinetic energy are J. ’’ kc ’’-KC23 *KC23’’

otherwise do bo_KE0_solve_equation

say ’’[add ’KE0’]’’

g bo_KE0_solve_equation

say ’’[cont]I calculate the value for KE0 = 0.5*{m.value}*{v0.ma

g}^2= {KE0.value}’’ kc ’’*KC23’’

g KE0_solve_equation sem tell

say ’’[cont]Since all the variables in the equation are known

except KE0, we can calculate KE0 easily. KE0=0.5*{m.value}*

{v0.mag}^2= {KE0.value}’’ kc ’’*KC23’’

say ’’[add ’KE0’]’’

g KE0_discuss_truth sem elicit

say ’’[cont]Before we go any further, let’s discuss this

principle in a little more detail.’’

say ’’Why does the rock have a non-zero kinetic energy at T0?’’

if ’’Because the rock has a non-zero velocity at T0.’’ true kc ’’
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+KC20’’

if ’’Because the rock is moving at T0’’ true kc ’’+KC20’’

if ’’Because the rock’s magnitude of velocity at T0 is above 0’’

true kc ’’+KC20’’

otherwise say ’’[cont]Because the rock has a non-zero velocity

at T0 and the rock’s mass is not zero.’’ kc ’’-KC20 *KC20’’

g KE0_discuss_truth sem tell

say ’’[cont]Because the rock has a non-zero velocity at T0 and

the rock’s mass is not zero, the rock has a non-zero kinetic

energy at T0.’’ kc ’’*KC20’’

g KE0_discuss_qualitative

do KE0_discuss_qualitative_1

do KE0_discuss_qualitative_2 rand sem justify

g KE0_discuss_qualitative_1 sem elicit

say ’’[menu ’Yes, it would affect|No, it would not affect|I do

not know|Not enough information’]We do not know the direction

of the rock’s velocity at T0 from the problem statement. Would

the direction of v0 affect the rock’s kinetic energy at T0?’’

if ’’No, it would not affect’’ true kc ’’+KC20’’

otherwise say ’’[cont]Actually ... the direction of the rock at

T0 would not affect the rock’s kinetic energy at T0.’’

kc ’’-KC20 *KC20’’

g KE0_discuss_qualitative_1 sem tell

say ’’[cont]We do not know the direction of the rock’s velocity

at T0 from the problem statement. However, the direction of v0
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does not affect the rock’s kinetic energy at T0.’’ kc ’’*KC20’’

g KE0_discuss_qualitative_2 sem elicit

say ’’Why?’’

if ’’The rock’s kinetic energy only depends on the rock’s mass

and its magnitude of velocity, not the direction of the rock.’’

true kc ’’+KC20’’

if ’’The direction of the rock at T0 does not matter. Only

magnitude of velocity matters.’’ true kc ’’+KC20’’

otherwise say ’’[cont]The direction of the rock at T0 would not

affect the rock’s kinetic energy at T0 because the kinetic

energy depends on mass and the magnitude of velocity, not the

direction of the rock’s velocity.’’ kc ’’-KC20 *KC20’’

g KE0_discuss_qualitative_2 sem tell

say ’’[cont]This is because the kinetic energy only depends on

the rock’s mass and magnitude of velocity, not the direction of

the rock’s velocity.’’ kc ’’*KC20’’

g v1

do v1_principle_selection

do v1_write_eqn

do v1_solve_equation

do v1_discuss_qualitative rand

.

g v1_principle_selection sem elicit
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say ’’Which principle will help you calculate the rock’s

instantaneous magnitude of velocity at T1?’’

if ’’Definition of kinetic energy.’’ true kc ’’+KC20’’

otherwise say ’’[cont]We should apply the definition of kinetic

energy once again.’’ kc ’’-KC20 *KC20’’

g v1_principle_selection sem tell

say ’’[cont]To calculate the rock’s instantaneous magnitude of

velocity at T1, we will apply the definition of kinetic energy

again. ’’ kc ’’*KC20’’

g v1_write_eqn sem elicit

say ’’[ask ’eqn’]Please write the equation for how the

definition of kinetic energy applies to this problem at T1.’’

if ’’{eqn_KE1}’’ true say ’’[add ’eqn_KE1’]’’ kc ’’+KC20q’’

if ’’equation with substituted values’’ do bo_v1_sub_write_eqn

otherwise do bo_v1_write_eqn kc ’’-KC20q’’

g bo_v1_sub_write_eqn

say ’’[cont]You substituted problem values into the equation.

Please use the variable labels instead.’’

do v1_write_eqn

g bo_v1_write_eqn

say ’’[add ’eqn_KE1’]’’

say ’’[cont]Let me just write the equation for you: {eqn_KE1.

value}.’’ kc ’’*KC20q’’

g v1_write_eqn sem tell

say ’’[add ’eqn_KE1’]’’
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say ’’[cont]Let me just write the equation for you: {eqn_KE1.val

ue}.’’ kc ’’*KC20q’’

g v1_solve_equation sem elicit

say ’’[ask ’num_units’]Now it is easy to calculate the magnitude

of v1. What is the magnitude of v1?’’

if ’’{v1.mag}’’ true say ’’[add ’v1’]’’ kc ’’+KC31’’

if ’’correct value, wrong/no unit’’ say ’’[cont]You entered the

correct value, but not the correct units. The correct units for

velocity are m/s. ’’ kc ’’-KC31 *KC31’’

otherwise do bo_v1_solve_equation

say ’’[add ’v1’]’’

g bo_v1_solve_equation

say ’’[cont]From {eqn_KE1.value}, we get v1^2=KE1/(0.5*m). We

substitute KE1 with {KE1.value} and m with {m.value}. The

equation now becomes: v1^2={KE1.value}/(0.5*{m.value}). The

magnitude of velocity is always positive, therefore,

v1= {v1.mag}. ’’ kc ’’*KC31’’

g v1_solve_equation sem tell

say ’’[add ’v1’]’’

say ’’[cont]From {eqn_KE1.value}, we get v1^2=KE1/(0.5*m). We

substitute KE1 with {KE1.value} and m with {m.value}. The

equation now becomes: v1^2={KE1.value}/(0.5*{m.value}). The

magnitude of velocity is always positive, therefore, v1=

{v1.mag}.’’ kc ’’*KC31’’
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g v1_discuss_qualitative

say ’’[cont]Before going on to the next step, let’s think about

the application of this equation.’’

do v1_discuss_qualitative1

do v1_discuss_qualitative2 sem justify

g v1_discuss_qualitative1 sem elicit

say ’’[menu ’Yes, we can|No, we cannot|I do not know’]Can we

infer the direction of the velocity of the rock at T1 from the

rock’s kinetic energy at T1?’’

if ’’No. we cannot.’’ true kc ’’+KC20’’

otherwise say ’’[cont]No. We cannot get the direction of the

rock’s velocity.’’ kc ’’-KC20 *KC20’’

g v1_discuss_qualitative1 sem tell

say ’’[cont]We cannot infer anything about the direction of the

rock at T1 from the rock’s kinetic energy at T1. ’’ kc ’’*KC20’’

g v1_discuss_qualitative2 sem elicit

say ’’Please explain why.’’

if ’’Because the kinetic energy only depends on mass and the

magnitude of velocity, not the direction of velocity.’’

true kc ’’+KC20’’

otherwise say ’’[cont]This is because the kinetic energy only

depends on mass and the magnitude of velocity, not the

direction of velocity. ’’ kc ’’-KC20 *KC20’’

g v1_discuss_qualitative2 sem tell

say ’’[cont]This is because the kinetic energy only depends
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on mass and the magnitude of velocity, not the direction

of velocity. ’’ kc ’’*KC20’’

g TME0

do TME0_principle_selection

do TME0_write_eqn

do TME0_solve_equation

do TME0_discuss_qualitative

do TME0_discuss_relevance rand sem justify

g TME0_principle_selection

do TME0_principle_selection1

do TME0_principle_selection2

say ’’[cont]In this problem, the system only has one object, the

rock. Therefore, there are no potential energies involved,

neither gravitational potential energy nor spring potential

energy. ’’ kc ’’*KC21 *KC22’’

do TME0_discuss_truth rand

g TME0_principle_selection1 sem elicit

say ’’First, let’s find out TME0. Which principle will help you

find TME0? ’’

if ’’Definition of total mechanical energy.’’ true kc ’’+KC24’’

otherwise say ’’[cont]let’s use the definition of total

mechanical energy.’’ kc ’’-KC24 *KC24’’
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g TME0_principle_selection1 sem tell

say ’’[cont]Let’s use the definition of total mechanical energy

to find TME0.’’ kc ’’*KC24’’

g TME0_principle_selection2 sem elicit

say ’’[ask ’form’] What is the generic equation for the

definition of total mechanical energy? TME=’’

if ’’{form_TME}’’ true kc ’’+KC24q’’

otherwise say ’’[cont]The generic equation for the definition of

total mechanical energy is TME={form_TME}’’ kc ’’-KC24q *KC24q’’

g TME0_principle_selection2 sem tell

say ’’[cont]The generic equation for the definition of total

mechanical energy is TME={form_TME}.’’ kc ’’*KC24q’’

g TME0_write_eqn

say ’’[ask ’eqn’] Please write the equation for the definition

of total mechanical energy for the rock system at T0.’’

if ’’{eqn_TME0}’’ true say ’’[add ’eqn_TME0’]’’ kc ’’+KC24q’’

if ’’equation with substituted values’’ do bo_TME0_sub_write_eqn

otherwise do bo_TME0_write_eqn kc ’’-KC24q’’

g bo_TME0_sub_write_eqn

say ’’[cont]You substituted problem values into the equation.

Please use the variable labels instead.’’

do TME0_write_eqn

g bo_TME0_write_eqn

say ’’[add ’eqn_TME0’]’’

say ’’[cont]I have written the system’s total mechanical energy

284



equation at T0 for you: {eqn_TME0}’’ kc ’’*KC24q’’

g TME0_solve_equation sem elicit

say ’’[ask ’num_units’]It is easy to infer the value of TME0. Pl

ease calculate the value of TME0.’’

if ’’{TME0.value}’’ true say ’’[add ’TME0’]’’ kc ’’+KC23’’

if ’’correct value, wrong/no unit’’ say ’’[cont]You entered the

correct value, but not the correct units. The correct units for

total mechanical energy are J. ’’ kc ’’-KC23 *KC23’’

otherwise do bo_TME0_solve_equation

say ’’[add ’TME0’]’’

g bo_TME0_solve_equation

say ’’[cont]It is easy. TME0 and KE0 have the same value: {TME0.

value}’’ kc ’’*KC23’’

g TME0_solve_equation sem tell

say ’’[add ’TME0’]’’

say ’’[cont]From {eqn_TME0}, it is easy to infer the value of

TME0. TME0 and KE0 have the same value: {TME0.value}’’

kc ’’*KC23’’

g TME0_discuss_qualitative

do TME0_discuss_qualitative_1

do TME0_discuss_qualitative_2 sem justify

g TME0_discuss_qualitative_1 sem elicit
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say ’’[menu ’Yes, it is true|No, it is not true|I do not know|No

t enough information’]Equation {eqn_TME0.value} tells us that

the rock system’s total mechanical energy is equal to the rock

’s kinetic energy at T0. Is it true *for any given time*?’’

if ’’Yes, it is true.’’ true kc ’’+KC24’’

otherwise say ’’[cont]In fact ....it is true for any time point

in this problem. ’’ kc ’’-KC24 *KC24’’

g TME0_discuss_qualitative_1 sem tell

say ’’[cont]Equation {eqn_TME0.value} tells us that the system’s

total mechanical energy is equal to the rock’s kinetic energy

at T0. In fact, this is true for any given time point in

this problem.’’ kc ’’*KC24’’

g TME0_discuss_qualitative_2 sem elicit

say ’’Why?’’

if ’’Because as long as the rock is the only object in the

system, there are no potential energies involved. Thus the total

mechanical energy equals the rock’s kinetic energy at any given

time point. ’’ true kc ’’+KC24 +KC21 +KC22’’

otherwise say ’’[cont]This is because as long as the rock is the

only object in the system, there are no potential energies

involved, neither gravitational potential energy nor spring

potential energy. Thus the rock system’s total mechanical energy

equals the rock’s kinetic energy at any given time point. ’’ kc

’’-KC24 -KC21 -KC22 *KC24 *KC21 *KC22’’

g TME0_discuss_qualitative_2 sem tell

say ’’[cont]This is because as long as the rock is the only

object in the system, there are no potential energy involved,
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neither gravitational potential energy nor spring potential energy

. Thus TME = KE at any given time point. ’’

kc ’’*KC24 *KC21 *KC22’’

g TME0_discuss_truth

do TME0_discuss_truth1 sem justify

g TME0_discuss_truth1 sem elicit

say ’’Why are there no potential energies involved in this

problem?’’ rand

if ’’Because the rock is the only object in the system, there

are no potential energies involved. ’’ true kc ’’+KC21’’

otherwise say ’’[cont]Recall that potential energy is associated

with the relative positions of two objects. Because the rock

is the only object in the system, there are no potential

energies involved. ’’ kc ’’-KC21 *KC21’’

g TME0_discuss_truth1 sem tell

say ’’[cont]Next, I want to explain why there are no potential

energies involved in this problem.’’

say ’’[cont]Recall that potential energy is associated with the

relative positions of two objects. There is only one object

in this problem, the rock, and thus potential energy is not

involved in this problem. ’’ kc ’’*KC21’’

g TME0_discuss_relevance sem elicit

say ’’[cont]Let’s go back to continue our problem solving.’’
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say ’’Thinking from the perspective of the whole solution plan,

why do we need to calculate the system’s total mechanical

energy at T0?’’ rand

if ’’We can calculate the net work done on the rock from T0 to

T1. ’’ true kc ’’+KC28’’

otherwise say ’’[cont]Because if we already know TME0 and TME1,

we can calculate the net work on the rock from T0 to T1.’’ kc ’’

-KC28 *KC28’’

g TME0_discuss_relevance sem tell

say ’’[cont]Let’s go back to continue our problem solving.’’

say ’’[cont]Thinking from the perspective of the whole solution

plan, the reason that we need to calculate the system’s total

mechanical energy at T0 is so that we can calculate the net

work done on the rock from T0 to T1. ’’ kc ’’*KC28’’

g TME1

do TME1_principle_selection

do TME1_write_eqn

do TME1_solve_equation

do TME1_discuss_truth rand

do TME1_discuss_qualitative rand

g TME1_principle_selection sem elicit

say ’’[cont]Since the total mechanical energy is equal to

kinetic energy at any given time as long as the rock is the only

object in a system, it is simple to infer the value for TME1.’’

kc ’’*KC24’’

say ’’Which principle will help you find TME1? ’’
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if ’’Definition of total mechanical energy. ’’ true kc ’’+KC24’’

otherwise say ’’[cont]Let’s use the definition of total

mechanical energy again.’’ kc ’’-KC24 *KC24’’

g TME1_principle_selection sem tell

say ’’[cont]Since the total mechanical energy is equal to

kinetic energy at any given time as long as the rock is the only

object in a system, let’s use the definition of total mechanical

energy again to get the value for TME1.’’ kc ’’*KC24’’

g TME1_write_eqn

say ’’[ask ’eqn’] Please write the appropriate equation for the

definition of total mechanical energy of the system at T1.’’

if ’’{eqn_TME1}’’ true say ’’[add ’eqn_TME1’]’’ kc ’’+KC24q’’

if ’’equation with substituted values’’ do bo_TME1_sub_write_eqn

otherwise do bo_TME1_write_eqn kc ’’-KC24q’’

g bo_TME1_sub_write_eqn

say ’’[cont]You substituted problem values into the equation.

Please use the variable labels instead.’’

do TME1_write_eqn

g bo_TME1_write_eqn

say ’’[add ’eqn_TME1’]’’

say ’’[cont]Let me just write the system’s total mechanical

energy equation at T1 for you: {eqn_TME1.value}.’’ kc ’’*KC24q’’

g TME1_solve_equation sem elicit

say ’’[ask ’num_units’]What is the value of TME1?’’

if ’’{TME1.value}’’ true say ’’[add ’TME1’]’’ kc ’’+KC23’’
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if ’’correct value, wrong/no unit’’ say ’’[cont]You entered the

correct value, but not the correct units. The correct units for

total mechanical energy are J. ’’ kc ’’-KC23 *KC23’’

otherwise do bo_TME1_solve_equation

say ’’[add ’TME1’]’’

g bo_TME1_solve_equation

say ’’[cont]It is easy. TME1 and KE1 have the same value: {TME1.

value}’’ kc ’’*KC23’’

g TME1_solve_equation sem tell

say ’’[add ’TME1’]’’

say ’’[cont]We can easily get the value of TME1. TME1 and KE1

have the same value: {TME1.value} ’’ kc ’’*KC23’’

g TME1_discuss_truth

do TME1_discuss_truth1_1

do TME1_discuss_truth1_2 sem justify

do TME1_discuss_truth2 sem justify

g TME1_discuss_truth1_1 sem elicit

say ’’[cont]Ok, before going on to the next step, let me ask you

a few questions about the definition of total mechanical energy.’’

say ’’[menu ’Yes, it can be negative|No, it cannot be negative|I

do not know|Not enough information’]In this problem, can the

system’s total mechanical energy at any given time be negative? ’’

if ’’No, it cannot be negative.’’ true

otherwise say ’’[cont]Actually ... the system’s total mechanical
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energy at any given time cannot be negative. ’’

g TME1_discuss_truth1_1 sem tell

say ’’[cont]Okay, before going on to the next step, let me tell

you a few more things about the definition of total mechanical

energy.’’

say ’’[cont]In this problem, the rock system’s total mechanical

energy at any given time cannot be negative. ’’ kc ’’*KC24’’

g TME1_discuss_truth1_2 sem elicit

say ’’Please explain why.’’

if ’’Because TME = KE at any given time point, and the rock’s

kinetic energy cannot be negative.’’ true kc ’’+KC24 +KC20’’

otherwise say ’’[cont]This is because the rock system’s total me

chanical energy equals the rock’s kinetic energy at any given

time point, and the rock’s kinetic energy cannot be negative.

’’ kc ’’-KC24 -KC20 *KC24 *KC20’’

g TME1_discuss_truth1_2 sem tell

say ’’[cont]This is because the rock system’s total mechanical

energy equals the rock’s kinetic energy at any given time point

in this problem, therefore, the rock system’s total mechanical

energy at any given time cannot be negative. ’’ kc ’’*KC24 *KC20’’

g TME1_discuss_truth2 sem elicit

say ’’Explain why the rock’s kinetic energy at any time point

cannot be negative?’’

if ’’Because KE={form_KE.value}, and neither the rock’s mass
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nor the v^2 can be negative, then kinetic energy cannot be

negative. ’’ true kc ’’+KC20q +KC20’’

otherwise say ’’[cont]Because KE={form_KE.value}. Neither the ro

ck’s mass nor v^2 can be negative, then kinetic energy cannot

be negative. ’’ kc ’’-KC20 *KC20q *KC20’’

g TME1_discuss_truth2 sem tell

say ’’[cont]The reason that the rock’s kinetic energy cannot be

negative is because KE={form_KE.value}. Neither the rock’s

mass nor v^2 can be negative.’’ kc ’’*KC20q *KC20’’

g TME1_discuss_qualitative

do TME1_discuss_qualitative_1

do TME1_discuss_qualitative_2 sem justify

g TME1_discuss_qualitative_1 sem elicit

say ’’[menu ’Yes, we can|No, we cannot|I do not know|Not enough

information’]Given the system’s total mechanical energy is

equal to rock’s kinetic energy at any given time point

in this problem, can we say anything about the ROCK’s

total mechanical energy, instead of the system’s total

mechanical energy?’’

if ’’No, we cannot.’’ true kc ’’+KC24’’

otherwise say ’’[cont]Actually... No, we cannot.’’

kc ’’-KC24 *KC24’’

g TME1_discuss_qualitative_1 sem tell

say ’’[cont]Although the system’s total mechanical energy is equal

to the rock’s kinetic energy at any given time point in this

problem, we cannot refer to the rock’s total mechanical energy.
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’’kc ’’*KC24’’

g TME1_discuss_qualitative_2 sem elicit

say ’’Why?’’

if ’’Because the TME always refers to a system. In the problem,

we only have one object (the rock) in the system. But it

still only refers to the system of the rock, not the

object rock.’’ true kc ’’+KC24’’

otherwise say ’’[cont]This is because the total mechanical energy

always refers to a system. In the problem, we only have one

object in the system. But total mechanical energy must

still only refers to the system of the rock, not the

object rock.’’ kc ’’-KC24 *KC24’’

g TME1_discuss_qualitative_2 sem tell

say ’’[cont]This is because the total mechanical energy always

refers to a system. Here we only have one object in the

system, but total mechanical energy must still only

refers to the system of the rock, not the object

rock.’’ kc ’’*KC24’’

g CME01

do CME01_principle_selection

do CME01_argument_selection

do CME01_write_eqn

do CME01_solve_equation

say ’’[cont]We have finished solving the whole problem. Next let’s do

a little discussion.’’
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g CME01_principle_selection

do CME01_principle_selection2

do CME01_principle_selection3

g CME01_principle_selection2 sem elicit

say ’’Which principle will help you calculate the work done on

the rock from T0 to T1? Please provide the name of the

principle, not an equation. ’’

if ’’conservation of mechanical energy for non-isolated systems’’

true kc ’’+KC28’’

otherwise do temp-CME01_principle_selection2 kc ’’-KC28’’

g temp-CME01_principle_selection2 sem tell

say ’’[cont]As we have mentioned before, there were two

principles from the textbook which apply to net

work: one is the definition of net work and

the other is conservation of mechanical energy

for non-isolated systems.’’ kc ’’*KC28 *KC18’’

say ’’[cont]The definition of the net work cannot be

applied to this problem because there is no

information given in the problem statement about

the forces on the rock. Therefore, we will apply the

remaining principle, namely, conservation of

mechanical energy for non-isolated systems.

We will start with the generic equation.’’

kc ’’*KC18 *KC28’’

g CME01_principle_selection2 sem tell
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say ’’[cont]As we have mentioned before, there were two principl

es from the textbook which apply to net work: one is the

definition of net work and the other is conservation of mechanical

energy for non-isolated systems.’’ kc ’’*KC28 *KC18’’

say ’’[cont]The definition of the net work cannot be applied to

this problem because there is no information given in the

problem statement about the forces on the rock. Therefore, we will

apply the remaining principle, namely, conservation of

mechanical energy for non-isolated systems. We will start with the

generic equation.’’ kc ’’*KC18 *KC28’’

g CME01_principle_selection3 sem elicit

say ’’[ask ’form’] What is the generic equation for conservation

of mechanical energy for non-isolated systems?’’

if ’’{form_Wnet01}’’ true kc ’’+KC28q’’

otherwise say ’’[cont]The generic equation for conservation of

mechanical energy for non-isolated systems: {form_Wnet01}’’ kc ’’

-KC28q *KC28q’’

g CME01_principle_selection3 sem tell

say ’’[cont]The generic equation for conservation of mechanical

energy for non-isolated systems is: {form_Wnet01}’’ kc ’’*KC28q’’

g CME01_argument_selection sem elicit

say ’’What time points and bodies should we use when applying

the principle of conservation of mechanical energy for non-isola

ted systems?’’ answer ’’T0 and T1’’ answer ’’system’’

if ’’T0 and T1’’ true do-nomatch CME01_argument_miss_T kc ’’+KC28’’

if ’’system’’ true do-nomatch CME01_argument_miss_object kc ’’+KC

28’’
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if ’’rock’’ false do CME01_argument_rock_system

otherwise do CME01_argument_miss_both kc ’’-KC28’’

g CME01_argument_miss_both_time

say ’’[cont]To apply conservation of mechanical energy for

non-isolated systems, we need two time points.’’

say ’’What time points should we use when applying

conservation of mechanical energy for non-isolated

systems?’’

if ’’T0 and T1’’ true kc ’’+KC28’’

otherwise say ’’[cont]We should apply conservation of

mechanical energy for non-isolated systems at TWO

time points: T0 and T1.’’

kc ’’-KC28 *KC28’’

g CME01_argument_miss_T

say ’’[cont]We should apply conservation of mechanical

energy for non-isolated systems at TWO time points:

T0 and T1.’’ kc ’’*KC28’’

g CME01_argument_miss_object

say ’’What objects should you apply the conservation of

mechanical energy for non-isolated systems to?’’

opt sem already-rock-system

if ’’system’’ true kc ’’+KC28’’

if ’’rock’’ false do CME01_argument_rock_system

otherwise say ’’[cont]We have already defined the system

to be the rock. Therefore, we should apply

conservation of mechanical energy to the

rock system.’’ kc ’’-KC28 *KC28’’
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g CME01_argument_rock_system

say ’’Does the rock refer to the object or the system?’’

sem already-rock-system

if ’’system ’’ true kc ’’+KC28’’

otherwise say ’’[cont]We always use the term the total

mechanical energy in relation to a system. In this

problem, the rock is the system. Therefore, we

should apply conservation of mechanical

energy to the rock system. ’’ kc ’’-KC28 *KC28’’

g CME01_argument_miss_both

do CME01_argument_miss_object

do CME01_argument_miss_both_time

g CME01_argument_selection sem tell

say ’’[cont]We should apply conservation of mechanical energy

for non-isolated systems for the rock system on the time points:

T0 and T1.’’ kc ’’*KC28’’

g CME01_write_eqn sem elicit

say ’’[ask ’eqn’]Please write the equation for conservation of

mechanical energy for non-isolated systems for the rock system

on the time points: T0 and T1.’’

if ’’{eqn_CME01}’’ true say ’’[add ’eqn_CME01’]’’ kc ’’+KC28q’’

if ’’equation with substituted values’’ do bo_CME01_sub_write_eqn

otherwise do bo_CME01_write_eqn kc ’’-KC28q’’

g bo_CME01_sub_write_eqn
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say ’’[cont]You substituted problem values into the equation.

Please use the variable labels instead.’’

do CME01_write_eqn

g bo_CME01_write_eqn

say ’’[add ’eqn_CME01’]’’

say ’’[cont]Let me just write the equation for conservation of

mechanical energy for the rock system between T0 and T1 for you:

{eqn_CME01}.’’ kc ’’*KC28q’’

g CME01_write_eqn sem tell

say ’’[add ’eqn_CME01’]’’

say ’’[cont]Let me just write the equation for conservation of

mechanical energy for the rock system between T0 and T1 for you:

{eqn_CME01}’’ kc ’’*KC28q’’

g CME01_solve_equation sem elicit

say ’’[cont]Since we already know the values for TME0 and TME1,

we can calculate the value of Wnet01 easily.’’

say ’’[ask ’num_units’]Please calculate the value of Wnet01.’’

if ’’{Wnet01.value}’’ true say ’’[add ’Wnet01’]’’ kc ’’+KC15’’

if ’’correct value, wrong/no unit’’ say ’’[cont]You entered the

correct value, but not the correct units. The correct units for

net works are J. ’’ kc ’’-KC15 *KC15’’

otherwise do bo_CME01_solve_equation

say ’’[add ’Wnet01’]’’

g bo_CME01_solve_equation

say ’’[cont]Based on: {eqn_CME01}, TME1={TME1.value}, and TME0= {

TME0.value}, we get: {TME0.value}+Wnet01={TME1.value}. That is:
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Wnet01={TME1.value}-{TME0.value}. I calculate the value for

Wnet01 to be {Wnet01.value}. ’’ kc ’’*KC15’’

g CME01_solve_equation sem tell

say ’’[cont]Since we already know the values for TME0 and TME1,

we can calculate the value of Wnet01 easily.’’

say ’’[add ’Wnet01’]’’

say ’’[cont]Based on: {eqn_CME01}, TME1={TME1.value}, and TME0=

{TME0.value}, we get: {TME0.value}+Wnet01={TME1.value}. That

is: Wnet01={TME1.value}-{TME0.value}. I calculate the value for

Wnet01 to be {Wnet01.value}. ’’ kc ’’*KC15’’

g discuss_problem

do extra_step

say ’’[cont]The reason that we calculate v1 in this problem is to

practice the principle of the definition of kinetic energy. ’’

do PE_concept_justification

say ’’[cont]Next, we will change the place where the rock is and

discuss whether the values of some variables would also change.’’

do v1-ppd-discussion

do Wnet01-ppd-discussion

do inc_dec

say ’’[cont]Next, we will change the mass of the rock and discuss

whether the values of some variables would also change.’’

do inc_mass

do work_concept sem justify

do compare_path

g extra_step sem elicit
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say ’’[menu ’KE0|v1|TME1|TME0|Wnet01|All are necessary|I do not know

’]While solving the problem, we calculated the variables in the

order of KE0, v1, TME0, TME1, and Wnet01. Are any of these

variable(s) not necessary to solve the problem?’’

if ’’v1’’ true

otherwise say ’’[cont]Actually ... v1 was not necessary for solving

the problem. ’’

g extra_step sem tell

say ’’[cont]While solving the problem, we calculated the variables

in the order of KE0, v1, TME0, TME1, and Wnet01. However, v1 was

not necessary for solving the problem. ’’

g PE_concept_justification

do PE_concept_justification_1

do PE_concept_justification_2 rand sem justify

g PE_concept_justification_1 sem elicit

say ’’[menu ’Yes, it is possible|No, it is not possible|I do not

know|Not enough information’]In this problem, we have selected the

rock as the system. Is it possible to define potential energy for

the rock system?’’

if ’’No, it is not possible’’ true kc ’’+KC21’’

otherwise say ’’[cont]Actually ... it is not possible to define

potential energy for the rock system.’’ kc ’’-KC21 *KC21’’

g PE_concept_justification_1 sem tell

300



say ’’[cont]In this problem, we have selected the rock as the system

and we *cannot* define a potential energy for the rock system.

’’ kc ’’*KC21’’

g PE_concept_justification_2 sem elicit

say ’’Why not?’’

if ’’Potential energy can be defined only for a system which contains

two or more objects but here we only have only one object as the

system (the rock).’’ true kc ’’+KC21’’

otherwise say ’’[cont]This is because potential energy is energy

associated with the configuration of two or more objects. Thus

potential energy can be defined only for a system which contains

two or more objects. Here we only have the rock to select as the

system and thus we cannot define a potential energy for the rock.’’

kc ’’-KC21 *KC21’’

g PE_concept_justification_2 sem tell

say ’’[cont]This is because potential energy is an energy associated

with the configuration of two or more objects. Thus potential

energy can be defined only for a system which contains two

or more objects.’’ kc ’’*KC21’’

say ’’[cont]In this problem, we only have the rock to select as the

system. Therefore, we cannot define a potential energy for the

rock. ’’

g v1-ppd-discussion

do v1-ppd-discussion-1

do v1-ppd-discussion-2 rand sem justify
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g v1-ppd-discussion-1 sem elicit

say ’’[menu ’increase|decrease|same|not enough information|I do not

know’]Suppose the 0.6 kg rock is put on the Earth and the rock’s

kinetic energy at point B is still 7.5 J, what will happen to

the rock’s magnitude of velocity at the point B?’’

if ’’same’’ true kc ’’+KC20’’

if ’’{v1.mag}’’ true kc ’’+KC20 +KC31’’

otherwise say ’’[cont]Actually ... the rock’s magnitude of velocity

should be same, still be {v1.mag}. ’’ kc ’’-KC20 *KC20 *KC31’’

g v1-ppd-discussion-1 sem tell

say ’’[cont]Suppose the rock is put on the Earth and the rock’s

kinetic energy at point B is still 7.5 J, then the rock’s magnitude

of velocity at the point B is still {v1.mag}.’’ kc ’’*KC20 *KC31’’

g v1-ppd-discussion-2 sem elicit

say ’’Why?’’

if ’’Because if the rock’s KE at point B and the rock’s mass stay

the same, the rock’s magnitude of velocity at the point B is the

same.’’ true kc ’’+KC20’’

otherwise say ’’[cont]Because if the rock’s kinetic energy at point

B and the rock’s mass stay the same, then according to KE={form_

KE} the rock’s magnitude of velocity at the point B is the same.’’

kc ’’-KC20 *KC20q *KC20’’

g v1-ppd-discussion-2 sem tell

say ’’[cont]Because the kinetic energy stays the same and the rock’

s mass stays the same, then according to KE={form_KE} the rock’s

magnitude of velocity at the point B is same.’’ kc ’’*KC20q *KC20’’
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g Wnet01-ppd-discussion

do Wnet01-ppd-discussion-1

do Wnet01-ppd-discussion-2 rand sem justify

g Wnet01-ppd-discussion-1 sem elicit

say ’’[menu ’increase|decrease|same|not enough information|I do not

know.’]Suppose the rock is on the Earth and everything in the

problem statement is kept the same. What will happen to net work

done on the rock if we still choose the rock alone as the system?’’

if ’’same’’ true kc ’’+KC28 +KC24’’

otherwise say ’’[cont]Actually ... It should be the same:{Wnet01.va

lue}.’’ kc ’’-KC28 -KC24 *KC28 *KC24 *KC15’’

g Wnet01-ppd-discussion-2 sem elicit

say ’’Why?’’ rand

if ’’Since the rock is the only object in the system. The TME = KE

any given time. The rock’s KE0 and KE1 are still the same as

those when the rock is in space. Therefore, the TME1 and TME2 are the

same as those when the rock is in space. Therefore, the Wnet01 i

s still the same as when the rock is in space. ’’ true kc ’’+KC28

+KC24q’’

otherwise do tepm-Wnet01-ppd-discussion kc ’’-KC28 -KC24’’

g tepm-Wnet01-ppd-discussion

say ’’[cont]Let me explain it to you step by step. ’’

say ’’[cont]The rock is still the only object in the system and thus

the systems’ total mechanical energy is still equal to its

kinetic energy at any given time. ’’ kc ’’*KC24’’
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say ’’[cont]The rock’s kinetic energy at T0 and T1 are still t

he same as those when the rock is in space because m, v0, an

d KE1 is kept the same. Therefore, the system’s TME1 and TME

2 are the same as those when the rock is in space. ’’ kc ’’*KC20’’

say ’’[cont]As a result, the net work done on the rock from T0

to T1 is still the same as when the rock is in space. ’’

kc ’’*KC28’’

g Wnet01-ppd-discussion-1 sem tell

say ’’[cont]Suppose the rock is on the Earth and everything in the

problem statement is kept the same. If we still choose the rock a

lone as the system, then the net work done on the rock from T0 to

T1 is still {Wnet01.value}. ’’ kc ’’*KC28 *KC24 *KC15’’

g Wnet01-ppd-discussion-2 sem tell

say ’’[cont]Let me explain it to you step by step. ’’

say ’’[cont]Since the rock is still the only object in the system a

nd thus the systems’ total mechanical energy is still equal to

its kinetic energy at any given time. ’’ kc ’’*KC24’’

say ’’[cont]The rock’s kinetic energy at T0 and T1 are still the

same as those when the rock is in space because m, v0, and KE1 is

kept the same. Therefore, the system’s TME1 and TME2 are the same

as those when the rock is in space. ’’ kc ’’*KC20’’

say ’’[cont]As a result, the net work done on the rock from T0 to T1

is still the same as when the rock is in space. ’’ kc ’’*KC28’’

g inc_dec
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say ’’[ask ’num_units’]Let’s go back to the situation where rock is

in space. Look at the variable window, tell me what is the

magnitude of v0?’’

if ’’{v0.mag}’’ true kc ’’+KC31’’

if ’’correct value, wrong/no unit’’ say ’’[cont]You entered the

correct value, but not the correct units. The correct units for

velocity are m/s. ’’ kc ’’-KC31 *KC31’’

otherwise say ’’[cont]We can also see from the variable window that

v0 has a value of 2.0 m/s.’’ kc ’’*KC31’’

say ’’[ask ’num_units’]What is the magnitude of v1?’’

if ’’{v1.mag}’’ true kc ’’+KC31’’

if ’’correct value, wrong/no unit’’ say ’’[cont]You entered the

correct value, but not the correct units. The correct units for

velocity are m/s. ’’ kc ’’-KC31 *KC31’’

otherwise say ’’[cont]We can also see from the variable window that

v1 has a value of 5.0 m/s.’’ kc ’’*KC31’’

do v1_discuss_qualitative3

say ’’[ask ’num_units’]Look at the variable window, tell me what is

the value of the rock’s kinetic energy at T0?’’

if ’’{KE0.value}’’ true kc ’’+KC23’’

if ’’correct value, wrong/no unit’’ say ’’[cont]You entered the

correct value, but not the correct units. The correct units for

kinetic energy are J. ’’ kc ’’-KC23 *KC23’’

otherwise say ’’[cont]We can also see from the variable window that

KE0 has a value of {KE0.value}.’’ kc ’’*KC23’’

say ’’[ask ’num_units’]What is the value of KE1?’’

if ’’{KE1.value}’’ true kc ’’+KC23’’

if ’’correct value, wrong/no unit’’ say ’’[cont]You entered the

correct value, but not the correct units. The correct units for

kinetic energy are J. ’’ kc ’’-KC23 *KC23’’
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otherwise say ’’[cont]We can also see from the variable window that

KE1 has a value of {KE1.value}.’’ kc ’’*KC23’’

do compare_A_B

do compare_C_A

do compare_C_B

g compare_A_B

do compare_A_B_1

do compare_A_B_2 sem justify

g compare_A_B_1 sem elicit

say ’’[menu ’increase|decrease|same|not enough information|I do not

know.’]Compared with point A, what can you say about the kinetic

energy of the rock at point B?’’

if ’’Increases’’ true kc ’’+KC20’’

otherwise say ’’[cont]Actually ... It is increased.’’ kc ’’-KC20 *KC2

0’’

g compare_A_B_1 sem tell

say ’’[cont]Compared with point A, the kinetic energy of the rock

at point B is increased.’’ kc ’’*KC20’’

g compare_A_B_2 sem elicit

say ’’Please try to explain why.’’

if ’’Because {KE1.value} is bigger than {KE0.value}, therefore, it

is increased. ’’ true kc ’’+KC20 +KC23’’

otherwise say ’’[cont]This is a bit of a trick question. The problem

doesn’t say why the kinetic energy increase, but instead just

gives initial conditions (v0=2 m/s) and final conditions (KE1= 7.5

J) that imply that the kinetic energy has increased because {KE1
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.value} is bigger than {KE0.value}.’’ kc ’’*KC23 *KC31’’

g compare_A_B_2 sem tell

say ’’[cont]The problem doesn’t say why the kinetic energy increase

but we can infer it from the fact that KE1= {KE1.value} is

bigger than the value of KE0: {KE0.value}.’’ kc ’’*KC23’’

g v1_discuss_qualitative3 sem elicit

say ’’[menu ’increase|decrease|same|not enough information|I do

not know’]What can we infer about that the rock’s magnitude of

velocity during the ENTIRE period from T0 to T1 given that

the magnitude of v1 (5.0 m/s) is bigger than the magnitude of v0

(2.0 m/s)?’’ kc ’’*KC31’’

if ’’not enough information.’’ true kc ’’+KC20’’

otherwise say ’’[cont]We do not have enough information to

deduce how the rock’s magnitude of velocity changes during the

process from T0 to T1. ’’ kc ’’-KC20 *KC20’’

g v1_discuss_qualitative3 sem tell

say ’’[cont]Although the magnitude of v1 (5.0 m/s) is bigger

than the magnitude of v0 (2.0 m/s), we *cannot* infer that the

rock’s magnitude of velocity is increasing during the ENTIRE

period from T0 to T1. ’’ kc ’’*KC31 *KC20’’

g compare_C_A

do compare_C_A_1

do compare_C_A_2 sem justify

g compare_C_A_1 sem elicit

say ’’[menu ’increase|decrease|same|not enough information|I do not
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know.’]Suppose there is point C on the path of the rock between

A to B. Compared with point A, what can you say about the kinetic

energy of the rock at point C?’’

if ’’Not enough information.’’ true kc ’’+KC20’’

otherwise say ’’[cont]Actually ... We do not have enough information

to say about the kinetic energy of the rock at point C. ’’ kc ’’-

KC20 *KC20’’

g compare_C_A_1 sem tell

say ’’[cont]Suppose there is point C on the path of the rock

between A to B. We do not have enough information to say anything

about the kinetic energy of the rock at point C compared with point A

. ’’ kc ’’*KC20’’

g compare_C_A_2 sem elicit

say ’’Please explain why.’’

if ’’We do not know whether the rock’s magnitude of velocity at C i

s bigger than its magnitude of velocity at A or not.’’ true

kc ’’+KC20’’

otherwise say ’’[cont]We do not know whether the rock’s magnitude

of velocity at C is bigger than its magnitude of velocity at A or

not. It is possible that the rock continuously increases its

magnitude of velocity from A to C then to B. It is also possible

its magnitude of velocity decreases from A to C and then

increases magnitude of velocity from C to B. It is even possible

that it does not change its magnitude of velocity from A to C

and then increase its magnitude of velocity from C to B.

Therefore, we do not have enough information to say about the
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relationship between the kinetic energy of the rock at point

C and at point A.’’ kc ’’-KC20 *KC20’’

g compare_C_A_2 sem tell

say ’’[cont]This is because we do not know whether the rock’s

magnitude of velocity at C is bigger than its magnitude of

velocity at A or not. It is possible that the rock continuously

increases its magnitude of velocity from A to C then to B. It is

also possible its magnitude of velocity decreases from A to C and

then increases from C to B. It is even possible that it does not

change its magnitude of velocity from A to C and then increases

its magnitude of velocity from C to B.’’ kc ’’*KC20’’

g compare_C_B

do compare_C_B_1

do compare_C_B_2 sem justify

g compare_C_B_1 sem elicit

say ’’[menu ’increase|decrease|same|not enough information|I do not

know.’]Compared with point B, What can you say about the kinetic

energy of the rock at point C?’’

if ’’Not enough information.’’ true kc ’’+KC20’’

otherwise say ’’[cont]Actually ... We do not have enough information

to say about the kinetic energy of the rock at point C compared

with point B either. ’’ kc ’’-KC20 *KC20’’
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g compare_C_B_1 sem tell

say ’’[cont]Similarly, we do not have enough information to say any

thing about the kinetic energy of the rock at point C compared

with point B either.’’ kc ’’*KC20’’

g compare_C_B_2 sem elicit

say ’’Please explain why.’’

if ’’We do not have enough information about the relationship

between the rock’s magnitude of velocity at point C and at B.’’

kc ’’+KC20’’

otherwise say ’’[cont]The answer is similar to reasons that we do

not have enough information about the relationship between the

rock’s magnitude of velocity at point A and point C, it is

because we do not know whether the magnitude of the rock’s

magnitude of velocity at C is bigger than its magnitude of

velocity at B or not. That is, we do not have enough information

about the relationship between the rock’s magnitude of velocity a

t point C and at B.’’ kc ’’-KC20 *KC20’’

g compare_C_B_2 sem tell

say ’’[cont]Because we do not know whether the rock’s magnitude of

velocity at C is bigger than its magnitude of velocity at B or not.

That is, we do not have enough information about the relationship

between the rock’s magnitude of velocity at point C and at B. ’’

kc ’’*KC20’’

g work_concept
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do work_concept_whether

do work_concept_justification rand sem justify

g work_concept_whether sem elicit

say ’’[menu ’Yes, we can|No, we cannot|not enough information|

I do not know.’]If we already know that the work done on the rock

by f orce F is 9 J and we also know that the rock is moving in the

same direction as F for 3 m in a straight line, can you infer the

magnitude of the force F?’’ kc ’’*KC15’’

if ’’No, we cannot.’’ true

otherwise say ’’[cont]No, we cannot infer anything about the

magnitude of the force F. ’’

g work_concept_whether sem tell

say ’’[cont]If we already know that the work done on the rock by

force F is 9 J and we also know that the rock is moving in the

same direction as F for 3 m in a straight line,

we *cannot* infer the magnitude of the force F.’’ kc ’’*KC14 *KC15’’

g work_concept_justification sem elicit

say ’’Why not?’’

if ’’Because we do not know whether F is a constant force or not.’’

true kc ’’+KC14’’

otherwise say ’’[cont]It is because we do not know whether F is a

constant force or not. If F is a constant force, we can apply

W=F* d to get that F = W/d= (9 J)/(3 m) = 3 N; however, in most

cases, F is not constant force. Therefore, we *cannot* apply

W=F*d to get the magnitude of the F.’’

kc ’’-KC14 *KC14q *KC14 *KC15’’
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g work_concept_justification sem tell

say ’’[cont]It is because we do not know whether F is a constant

force or not. Only if F is a constant force, we can apply W=F*d

to get that F = W/d= (9 J)/(3 m) = 3 N; however, in most cases,

F is not constant force. Therefore, we *cannot* apply W=F*d to

get the magnitude of the F.’’ kc ’’*KC14 *KC14q *KC15’’

g inc_mass

do inc_mass1_1

do inc_mass1_2 rand sem justify

do inc_mass2_1

do inc_mass2_2 rand sem justify

do inc_mass3_1

do inc_mass3_2 rand sem justify

g inc_mass1_1 sem elicit

say ’’[menu ’increase|decrease|same|not enough information|

I do not know.’]Suppose the rock’s mass increased from 0.6 kg to

1 kg and the rock’s kinetic energy at point B was still 7.5 J,

what would happen to the rock’s magnitude of velocity at point B?’’

kc ’’*KC23’’

if ’’decrease’’ true kc ’’+KC20’’

otherwise say ’’[cont]Actually ... the rock’s magnitude of velocity

decreases at point B. ’’ kc ’’-KC20 *KC20’’

g inc_mass1_1 sem tell

say ’’[cont]Suppose that the rock’s mass increased from 0.6 kg to 1
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kg and the rock’s kinetic energy at point B was still 7.5 J,

the rock’s magnitude of velocity at point B would decrease. ’’

kc ’’*K C20 *KC23’’

g inc_mass1_2 sem elicit

say ’’Why?’’

if ’’It decreases because if the rock’s KE at point B stays same,

{KE1.value} and the rock’s mass increased from 0.6 kg to 1 kg.

According to KE={form_KE.value}, the magnitude of velocity would

have to decrease.’’ true kc ’’+KC20q +KC20 +KC23’’

otherwise say ’’[cont]It decreases because we are assuming that the

rock’s kinetic energy at point B stays same, {KE1.value} but the

rock’s mass increased from 0.6 kg to 1 kg. According to KE=

{form _KE.value}, the magnitude of velocity would have to

decrease.’’ k c ’’-KC20 *KC20q *KC20 *KC23’’

g inc_mass1_2 sem tell

say ’’[cont]It is because we are assuming that the rock’s kinetic

energy at point B stays same, {KE1.value}, and if the rock’s

mass increases, according to KE={form_KE}, then the magnitude

of rock’s magnitude of velocity has to decrease.’’

kc ’’*KC20 *KC20q *KC23’’

g inc_mass2_1 sem elicit

say ’’[menu ’increase|decrease|same|not enough information|

I do not know.’]Suppose the rock’s mass were 1 kg instead

of 0.6 kg and y et the rock’s magnitude of velocity at point

A was still 2.0 m/s. What will happen to the rock’s kinetic

energy at point A?’’ kc ’’*KC31’’
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if ’’Increase’’ true kc ’’+KC20’’

otherwise say ’’[cont]Actually ... the rock’s kinetic energy at

point A increases.’’ kc ’’-KC20 *KC20’’

g inc_mass2_1 sem tell

say ’’[cont]Suppose the rock still has a velocity of magnitude of

2.0 m/s at point A but the rock’s mass increased from 0.6 kg

to 1 kg, then the rock’s kinetic energy at point A should

increase.’’ k c ’’*KC31 *KC20’’

g inc_mass2_2 sem elicit

say ’’Why?’’ rand

if ’’Because the magnitude of velocity stays the same and the

mass increases, therefore the kinetic energy at point A

increases.’’ true kc ’’+KC20’’

otherwise say ’’[cont]Because the magnitude of rock magnitude

of velocity is still 2.0 m/s at point A and the mass of

the rock increases, according to KE={form_KE.value} the

kinetic energy of the rock at point A increases.’’

kc ’’-KC20 *KC20 *KC20q *KC31’’

g inc_mass2_2 sem tell

say ’’[cont]Because the rock’s magnitufe of velocity is still

2.0 m /s at point A and the mass of the rock increases,

according to KE ={form_KE.value} the kinetic energy of

the rock at point A increases.’’ kc ’’*KC20 *KC20q *KC31’’

g inc_mass3_1 sem elicit

say ’’[menu ’increase|decrease|same|not enough information|I do not

know.’]Finally, if the rock’s mass were 1 kg instead of 0.6 kg
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and the rock’s magnitufe of velocity at point A was still

2.0 m/ s and the rock’s kinetic energy at point B was still

7.5 J, what will happen to the net work done on the rock

as it moves from A to B?’’ kc ’’*KC31 *KC23’’

if ’’Decrease’’ true kc ’’+KC28 +KC24 +KC20’’

otherwise say ’’[cont]Actually ... the net work done on the rock as

it moves from A to B will *decrease*. ’’

kc ’’-KC28 -KC24 -KC20 *K C28 *KC24 *KC20’’

g inc_mass3_2 sem elicit

say ’’Why?’’

if ’’Because the rock’s kinetic energy at point A increases

and it s kinetic energy at point B is same. Therefore,

the net work done on the rock from A to B has to decrease.’’

true kc ’’+KC28 +KC24 +KC20’’

otherwise do temp-inc_mass3 kc ’’-KC28 -KC24 -KC20’’

g temp-inc_mass3

say ’’[cont]This is a tricky question. So I will explain it to

you step by step.’’

say ’’[cont]Given that the rock still has a velocity of

magnitude 2.0 m/s at point A and a kinetic energy of 7.50

J at point B, the rock’s kinetic energy at point A

increases when the rock’s mass increases from 0.6 kg

to 1 kg. The new value is 0.5* 1 kg * ({v0.mag})^2 =

2 J while the old value is 0.5* 0.6kg * ({v0.mag})^2

= {KE0.value}’’ kc ’’*KC20 *KC20q *KC23 *KC31’’

say ’’[cont]In other words, the system’s new TME1 is the same

as the old TME1, which is {TME1.value} but the system’s
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new TME0 is 2 J, which is bigger than the old TME0,

which is {TME0.value}.’’

kc ’’*KC24 *KC23’’

say ’’[cont] According to {eqn_CME01}, we have Wnet01= TME1 -

TME0. When the rock’s mass increased from 0.6 kg to

1 kg, the TME0 increased but TME1 remained the same,

therefore, Wnet01 must decrease. That is, the net work

done on the rock as it moves from A to B *decreases*

as the rock’s mass increases from 0.6 kg to 1 kg.’’

kc ’’*KC28q *KC28’’

g inc_mass3_1 sem tell

say ’’[cont]Finally, if the rock’s mass were 1 kg instead of 0.6 kg

and the rock’s magnitude of velocity at point A was still

2.0 m/ s and the rock’s kinetic energy at point B was still

7.5 J, the net work done on the rock as it moves from A to B

would decrease.’’

kc ’’*KC28 *KC24 *KC20 *KC23 *KC31’’

g inc_mass3_2 sem tell

say ’’[cont]Next, I will explain it to you step by step. The rock’s

kinetic energy at point A increases when the rock’s mass increases

from 0.6 kg to 1 kg. The new value is 0.5* 1 kg * ({v0.mag})^2 = 2 J

while the old value is 0.5* 0.6 kg * ({v0.mag})^2 = {KE0. value}.

’’ kc ’’*KC20 *KC20q *KC23 *KC31’’

say ’’[cont]In other words, the system’s new TME1 is the same as

the old TME1, which is {TME1.value} but the system’s new TME0 is

2 J, which is bigger than the old TME0, which is {TME0.value}.’’

kc ’’*KC24 *KC23’’

say ’’[cont] According to {eqn_CME01}, we have Wnet01= TME1 -TME0.
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When the rock’s mass increased from 0.6 kg to 1 kg, the TME0

increased but TME1 remained the same, therefore, Wnet01 must

decrease. That is, the net work done on the rock as it moves

from A to B *decreases* as the rock’s mass increases from 0.6

kg to 1 kg.’’ kc ’’*KC28q *KC28’’

g compare_path

do compare_path_1

do compare_path_2 rand sem justify

g compare_path_1 sem elicit

say ’’[menu ’Yes, it would affect|No, it would not affect|

I do not know|not enough information|I do not know.’]Let’s go

back to the original situation. The problem does not give any

hint about the path taken by the rock. Would taking different

paths affect our final answer of the net work done on the rock

from A to B? ’’

if ’’No, it would not affect.’’ true kc ’’+KC28 +KC24 +KC20’’

otherwise say ’’[cont]Actually ... taking different paths would not

affect our final answer of the net work done on the rock

from A to B. ’’ kc ’’-KC28 -KC24 -KC20 *KC28 *KC24 *KC20’’

g compare_path_1 sem tell

say ’’[cont]Let’s go back to the original situation. The problem does

not give any hint about the path taken by the rock. However,

taking different paths would not affect our final answer of the

net work done on the rock from A to B. ’’

kc ’’*KC28 *KC24 *KC20’’
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g compare_path_2 sem elicit

say ’’Why? ’’

if ’’As long as the rock’s mass, the rock’s magnitude of v0 and v1 are

still the same, then Wnet01 is still {Wnet01.value}. ’’

true kc ’’+KC28 +KC24 +KC20 +KC15’’

otherwise say ’’[cont]This is because the path that the rock took

from point A to point B was not involved in the problem solving,

only the rock’s mass, the rock’s magnitude of velocity at T0 and

T1 were involved. Thus, as long as they are still the same,

Wnet01 is still {Wnet01.value}. ’’

kc ’’-KC28 -KC24 -KC20 *KC28 *KC24 *KC 20 *KC15’’

g compare_path_2 sem tell

say ‘‘[cont]This is because the path that the rock took from point

A to point B was not involved in the problem solving, only the

rock’s mass, the rock’s magnitude of velocity at T0 and T1 were

involved. Thus, as long as they are still the same, Wnet01 is

still {Wnet01.value}. ’’ kc ’’*KC28 *KC24 *KC20 *KC15’’
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APPENDIX J

STUDY 2: TUTORIAL FEATURES
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APPENDIX K

STUDY 2: DICHGAIN TUTORIAL TACTICS

Policy: KC-general policy on Justify/Skip-Justify

Features: [18]

ECR: 0.572656

ECR Lower Bound: 0.19178

Mapping: [.3060]

States: [’0 skip’,’1 else’]

Policy: KC-general policy on Elicit/Tell

Features: [5,9,17,30]

ECR: 0.974232

ECR Lower Bound: 0.262842

Mapping: [11.0000,0.5,.5063,.6459]

States: [’1:1:1:1 tell’,’0:0:1:1 elicit’,’0:1:1:0 tell’,’0:0:0:0 elicit’,’1:1:1:0 tell’,’0:1:0:0

elicit’,’1:0:1:0 tell’,’1:1:0:0 tell’,’1:1:0:1 tell’,’0:1:0:1 tell’,’1:0:0:0 elicit’,’1:0:1:1

elicit’,’1:0:0:1 else’,’0:1:1:1 elicit’,’0:0:0:1 elicit’,’0:0:1:0 elicit’]
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Policy: 1aetb

Features: [10,13,16,29]

ECR: 20.196

ECR Lower Bound: 5.18551

Mapping: [None,162727.8586,.4961,.7333]

States: [’COMP:0:0:0 elicit’,’MED:1:0:0 elicit’,’COMP:1:0:0 tell’,’MED:1:1:0

tell’,’COMP:0:0:1 tell’,’COMP:1:1:0 tell’,’COMP:1:0:1 tell’,’MED:0:0:0

elicit’,’MED:1:0:1 elicit’,’COMP:0:1:0 elicit’,’MED:0:0:1 elicit’,’COMP:0:1:1

elicit’,’MED:1:1:1 tell’,’COMP:1:1:1 elicit’,’MED:0::1 elicit’,’MED:0:1:1

elicit’,’MED:0:1:0 elicit’,’MED:0::0 elicit’]

aKC number. In this case, it is a KC-specific policy on KC1. Same below
bType of tutorial decisions. “et” refers to Elicit/Tell decisions while “skip” refers to Justify/Skip-

Justify decisions

Policy: 3et

Features: [9,12,16,17]

ECR: -25.2687

ECR Lower Bound: -45.363

Mapping: [0.5,1575.5233,.4980,.5558]

States: [’0:0:1:1 elicit’,’0:1:1:0 elicit’,’0:0:0:0 elicit’,’0:1:0:0 elicit’,’0:0::1 tell’,’0:1:0:1

tell’,’0:1:1:1 elicit’,’0:0:0:1 elicit’,’0:0:1:0 tell’]

Policy: 5et

Features: [9,13,15,25]

ECR: -4.57221

ECR Lower Bound: -13.6603

Mapping: [0.5,80963.9211,1.0000,2.0000]

States: [’1:1:1:1 elicit’,’0:0:1:1 elicit’,’0:1:1:0 tell’,’0:0:0:0 elicit’,’1:1:1:0 elicit’,’0:1:0:0

tell’,’1:0:1:0 elicit’,’1:1:0:0 elicit’,’1:1:0:1 elicit’,’0:1:0:1 elicit’,’1:0:0:0 elicit’,’1:0:1:1

elicit’,’1:0:0:1 elicit’,’0:1:1:1 elicit’,’0:0:0:1 tell’,’0:0:1:0 elicit’]
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Policy: 9et

Features: [12]

ECR: 63.9232

ECR Lower Bound: 58.7516

Mapping: [1056.5808]

States: [’0 tell’, ’1 else’]

Policy: 12skip

Features: [5,9,15,17]

ECR: 0

ECR Lower Bound: 0

Mapping: [65.0000,0.5,1.0000,.4422]

States: [’1:1:1:1 noskip’,’0:1:1:0 noskip’,’1:1:1:0 noskip’,’0:1:0:0 noskip’,’1:1:0:0

noskip’,’1:1:0:1 noskip’,’0:1:0:1 noskip’,’0:1:1:1 noskip’]

Policy: 12et

Features: [5,9,15,17]

ECR: 0

ECR Lower Bound: 0

Mapping: [65.0000,0.5,1.0000,.4422]

States: [’1:1:1:1 elicit’,’0:1:1:0 elicit’,’1:1:1:0 elicit’,’0:1:0:0 elicit’,’1:1:0:0 elicit’,’1:1:0:1

elicit’,’0:1:0:1 elicit’,’0:1:1:1 elicit’]
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Policy: 13et

Features: [5,9,15,28]

ECR: 14.5194

ECR Lower Bound: 1.08511

Mapping: [166.0000,0.5,1.0000,5.0000]

States: [’1:1:1:1 elicit’,’0:0:1:1 elicit’,’0:1:1:0 elicit’,’0:0:0:0 elicit’,’1:1:1:0 elicit’,’0:1:0:0

elicit’,’1:0:1:0 tell’,’1:1:0:0 elicit’,’1:1:0:1 elicit’,’0:1:0:1 elicit’,’1:0:0:0 elicit’,’1:0:1:1

tell’,’1:0:0:1 tell’,’0:1:1:1 elicit’,’0:0:0:1 elicit’,’0:0:1:0 elicit’]

Policy: 14skip

Features: [5,9,15,18]

ECR: 17.6695

ECR Lower Bound: 14.503

Mapping: [94.0000,0.5,1.0000,.3517]

States: [’1:1:1:1 else’,’0:0:1:1 else’,’0:1:1:0 else’,’0:0:0:0 noskip’,’1:1:1:0 else’,’0:1:0:0

else’,’1:0:1:0 noskip’,’1:1:0:0 else’,’1:1:0:1 else’,’0:1:0:1 else’,’1:0:0:0 noskip’,’1:0:1:1

noskip’,’1:0:0:1 else’,’0:1:1:1 else’,’0:0:1:0 noskip’]

Policy: 14et

Features: [9]

ECR: 54.151

ECR Lower Bound: 47.8956

Mapping: [0.5]

States: [’0 tell’,’1 elicit’]
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Policy: 15et

Features: [5,9,15,17]

ECR: 0

ECR Lower Bound: 0

Mapping: [344.0000,0.5,1.0000,.4565]

States: [’1:1:1:1 elicit’,’0:0:1:1 elicit’,’0:1:1:0 elicit’,’0:0:0:0 tell’,’1:1:1:0 elicit’,’0:1:0:0

elicit’,’1:0:1:0 elicit’,’1:1:0:0 elicit’,’1:1:0:1 elicit’,’0:1:0:1 elicit’,’1:0:0:0 elicit’,’1:0:1:1

elicit’,’1:0:0:1 elicit’,’0:1:1:1 elicit’,’0:0:0:1 elicit’,’0:0:1:0 elicit’]

Policy: 17et

Features: [5,9,15,17]

ECR: 3.27521

ECR Lower Bound: 0.574497

Mapping: [88.5000,0.5,1.0000,.5610]

States: [’0:0:1:1 else’,’0:0:0:0 elicit’,’1:0:1:0 elicit’,’1:0:0:0 else’,’1:0:1:1 elicit’,’1:0:0:1

else’,’0:0:0:1 elicit’,’0:0:1:0 else’]

Policy: 18et

Features: [5,9,15,17]

ECR: 0

ECR Lower Bound: 0

Mapping: [1.0000,0.5,1.0000,.4578]

States: [’1:1:1:1 elicit’,’0:1:1:0 elicit’,’1:1:1:0 elicit’,’1:1:0:0 elicit’,’1:1:0:1 elicit’,’0:1:1:1

elicit’]
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Policy: 20skip

Features: [5,14,15,26]

ECR: 4.28925

ECR Lower Bound: 0.376654

Mapping: [52.0000,0.5,1.0000,.5405]

States: [’1:1:1:1 skip’,’0:0:1:1 else’,’0:1:1:0 else’,’0:0:0:0 noskip’,’1:1:1:0 noskip’,’0:1:0:0

else’,’1:0:1:0 else’,’1:1:0:0 else’,’1:1:0:1 skip’,’0:1:0:1 else’,’1:0:0:0 skip’,’1:0:1:1

else’,’1:0:0:1 skip’,’0:1:1:1 else’,’0:0:0:1 else’,’0:0:1:0 noskip’]

Policy: 20et

Features: [5,10,15,26]

ECR: 4.80774

ECR Lower Bound: 0.753813

Mapping: [52.0000,None,1.0000,.5405]

States: [’0:SIM:1:0 tell’,’1:SIM:1:1 tell’,’1:MED:0:1 tell’,’0:COMP:0:0

elicit’,’1:MED:0:0 elicit’,’1:COMP:1:0 elicit’,’0:MED:1:0 elicit’,’1:MED:1:0

elicit’,’1:COMP:0:0 else’,’1:MED:1:1 tell’,’0:SIM:0:0 tell’,’1:COMP:1:1

elicit’,’0:COMP:1:1 elicit’,’1:SIM:1:0 elicit’,’0:MED:0:0 elicit’,’0:COMP:1:0

else’,’1:SIM:0:0 tell’,’0:SIM:1:1 tell’,’0:MED:1:1 tell’,’0:SIM:0:1 tell’,’0:MED:0:1

tell’,’0:COMP:0:1 tell’,’1:SIM:0:1 tell’,’1:COMP:0:1 else’]
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Policy: 21skip

Features: [5,10,15,18]

ECR: 17.958

ECR Lower Bound: 12.1813

Mapping: [50.0000,None,0.0001,.2990]

States: [’1:MED:0:1 else’,’0:COMP:0:0 else’,’1:MED:0:0 else’,’1:COMP:1:0

else’,’0:MED:1:0 else’,’1:MED:1:0 noskip’,’1:COMP:0:0 noskip’,’1:MED:1:1

else’,’1:COMP:1:1 skip’,’0:COMP:1:1 skip’,’0:MED:0:0 else’,’0:COMP:1:0

skip’,’0:MED:1:1 else’,’0:MED:0:1 else’,’0:COMP:0:1 skip’,’1:COMP:0:1 else’]

Policy: 21et

Features: [5,10,15,29]

ECR: 15.4776

ECR Lower Bound: 7.84628

Mapping: [50.0000,None,0.0001,.7179]

States: [’1:MED:0:1 tell’,’0:COMP:0:0 else’,’1:MED:0:0 tell’,’1:COMP:1:0

elicit’,’0:MED:1:0 elicit’,’1:MED:1:0 tell’,’1:COMP:0:0 else’,’1:MED:1:1

tell’,’1:COMP:1:1 else’,’0:COMP:1:1 elicit’,’0:MED:0:0 elicit’,’0:COMP:1:0

elicit’,’0:MED:1:1 elicit’,’0:MED:0:1 tell’,’0:COMP:0:1 elicit’,’1:COMP:0:1 elicit’]

Policy: 22skip

Features: [5,9,24,30]

ECR: 27.4539

ECR Lower Bound: 9.55924

Mapping: [56.0000,0.5,75.0000,.6452]

States: [’1:1:1:1 else’,’0:0:1:1 skip’,’0:1:1:0 else’,’0:0:0:0 noskip’,’1:1:1:0 else’,’0:1:0:0

else’,’1:0:1:0 noskip’,’1:1:0:0 else’,’1:1:0:1 else’,’0:1:0:1 else’,’1:0:0:0 else’,’1:0:1:1

else’,’1:0:0:1 else’,’0:1:1:1 else’,’0:0:0:1 noskip’,’0:0:1:0 noskip’]
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Policy: 22et

Features: [5,14,15,17]

ECR: 9.39791

ECR Lower Bound: -5.36517

Mapping: [56.0000,0.5,1.0000,.5120]

States: [’1:1:1:1 tell’,’0:0:1:1 elicit’,’0:1:1:0 elicit’,’0:0:0:0 tell’,’1:1:1:0 tell’,’0:1:0:0

elicit’,’1:0:1:0 elicit’,’1:1:0:0 tell’,’1:1:0:1 elicit’,’0:1:0:1 elicit’,’1:0:0:0 tell’,’1:0:1:1

elicit’,’1:0:0:1 tell’,’0:1:1:1 elicit’,’0:0:0:1 tell’,’0:0:1:0 else’]

Policy: 23skip

Features: [5,14,16,28]

ECR: 47.2221

ECR Lower Bound: 30.2939

Mapping: [96.0000,0.5,.4979,2.0000]

States: [’1:1:1:1 else’,’0:0:1:1 noskip’,’0:1:1:0 noskip’,’0:0:0:0 skip’,’1:1:1:0

noskip’,’0:1:0:0 noskip’,’1:0:1:0 else’,’1:1:0:0 noskip’,’1:1:0:1 noskip’,’0:1:0:1

noskip’,’1:0:0:0 else’,’1:0:1:1 else’,’1:0:0:1 noskip’,’0:1:1:1 noskip’,’0:0:0:1

skip’,’0:0:1:0 skip’]

Policy: 23et

Features: [5]

ECR: 42.4539

ECR Lower Bound: 22.8901

Mapping: [96.0000]

States: [’0 else’, ’1 tell’]
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Policy: 24skip

Features: [5,9,15,18]

ECR: 2.92158

ECR Lower Bound: -0.302659

Mapping: [61.0000,0.5,1.0000,.2981]

States: [’0:0:1:1 skip’,’0:0:0:0 noskip’,’1:0:1:0 noskip’,’1:0:0:0 noskip’,’1:0:1:1

else’,’1:0:0:1 else’,’0:0:0:1 noskip’,’0:0:1:0 noskip’]

Policy: 24et

Features: [13,14,15,29]

ECR: 7.23353

ECR Lower Bound: 2.71676

Mapping: [91143.4986,0.5,1.0000,.7353]

States: [’1:1:1:1 tell’,’0:0:1:1 tell’,’0:1:1:0 tell’,’0:0:0:0 tell’,’1:1:1:0 elicit’,’0:1:0:0

else’,’1:0:1:0 elicit’,’1:1:0:0 else’,’1:1:0:1 tell’,’0:1:0:1 tell’,’1:0:0:0 else’,’1:0:1:1

elicit’,’1:0:0:1 tell’,’0:1:1:1 else’,’0:0:0:1 tell’,’0:0:1:0 else’]

Policy: 25et

Features: [5,10,29,30]

ECR: 22.5096

ECR Lower Bound: 7.75064

Mapping: [400.5000,None,.7273,.6347]

States: [’1:MED:0:1 tell’,’0:COMP:0:0 else’,’1:MED:0:0 tell’,’1:COMP:1:0

tell’,’0:MED:1:0 else’,’1:MED:1:0 tell’,’1:COMP:0:0 elicit’,’1:MED:1:1

tell’,’1:COMP:1:1 elicit’,’0:COMP:1:1 tell’,’0:MED:0:0 elicit’,’0:COMP:1:0

elicit’,’0:MED:1:1 else’,’0:MED:0:1 elicit’,’0:COMP:0:1 else’,’1:COMP:0:1 tell’]
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Policy: 26skip

Features: [9,13,15,26]

ECR: 19.2677

ECR Lower Bound: 8.82795

Mapping: [0.5,166692.6890,1.0000,.3333]

States: [’0:0:1:1 noskip’,’0:1:1:0 else’,’0:0:0:0 else’,’0:1:0:0 else’,’0:1:0:1 noskip’,’0:1:1:1

skip’,’0:0:0:1 noskip’,’0:0:1:0 else’]

Policy: 26et

Features: [5,9,15,26]

ECR: 18.7551

ECR Lower Bound: 10.592

Mapping: [70.0000,0.5,1.0000,.3333]

States: [’0:0:1:1 tell’,’0:0:0:0 tell’,’1:0:1:0 tell’,’1:0:0:0 elicit’,’1:0:1:1 elicit’,’1:0:0:1

else’,’0:0:0:1 else’,’0:0:1:0 elicit’]

Policy: 27skip

Features: [9,13,15,17]

ECR: 10.5732

ECR Lower Bound: 2.7791

Mapping: [0.5,164567.3945,1.0000,.5406]

States: [’0:0:1:1 else’,’0:1:1:0 noskip’,’0:0:0:0 skip’,’0:1:0:0 noskip’,’0:1:0:1 else’,’0:1:1:1

else’,’0:0:0:1 else’,’0:0:1:0 noskip’]
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Policy: 27et

Features: [5,10,27,30]

ECR: 16.7804

ECR Lower Bound: 5.94975

Mapping: [74.0000,None,.3077,.6270]

States: [’1:MED:0:1 else’,’0:COMP:0:0 elicit’,’1:MED:0:0 elicit’,’1:COMP:1:0

tell’,’0:MED:1:0 tell’,’1:MED:1:0 tell’,’1:COMP:0:0 else’,’1:MED:1:1

tell’,’1:COMP:1:1 tell’,’0:COMP:1:1 elicit’,’0:MED:0:0 elicit’,’0:COMP:1:0

tell’,’0:MED:1:1 else’,’0:MED:0:1 elicit’,’0:COMP:0:1 elicit’,’1:COMP:0:1 else’]

Policy: 28skip

Features: [5,9,15,27]

ECR: 13.9743

ECR Lower Bound: 6.00922

Mapping: [59.0000,0.5,1.0000,.2083]

States: [’0:0:1:1 noskip’,’0:0:0:0 else’,’1:0:1:0 else’,’1:0:0:0 skip’,’1:0:1:1 else’,’1:0:0:1

skip’,’0:0:0:1 skip’,’0:0:1:0 else’]

Policy: 28et

Features: [9,13,16,27]

ECR: 15.2862

ECR Lower Bound: 2.52373

Mapping: [0.5,81595.8369,.4916,.2083]

States: [’0:0:1:1 else’,’0:1:1:0 tell’,’0:0:0:0 tell’,’0:1:0:0 tell’,’0:1:0:1 elicit’,’0:1:1:1

tell’,’0:0:0:1 elicit’,’0:0:1:0 elicit’]
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Policy: 31et

Features: [5,9,15,17]

ECR: 1.29047

ECR Lower Bound: -8.00777

Mapping: [425.0000,0.5,0.0001,.5046]

States: [’1:1:1:1 elicit’,’0:0:1:1 elicit’,’0:1:1:0 tell’,’0:0:0:0 elicit’,’1:1:1:0 elicit’,’0:1:0:0

tell’,’1:0:1:0 else’,’1:1:0:0 tell’,’1:1:0:1 tell’,’0:1:0:1 elicit’,’1:0:0:0 elicit’,’1:0:1:1

tell’,’1:0:0:1 else’,’0:1:1:1 tell’,’0:0:0:1 elicit’,’0:0:1:0 else’]

Policy: 32et

Features: [9,12,26,30]

ECR: 14.5397

ECR Lower Bound: 0.175324

Mapping: [0.5,2387.6022,.4000,.6000]

States: [’0:0:1:1 tell’,’0:1:1:0 tell’,’0:0:0:0 elicit’,’0:1:0:0 tell’,’0:1:0:1 tell’,’0:1:1:1

tell’,’0:0:0:1 tell’,’0:0:1:0 elicit’]
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APPENDIX L

STUDY 3: EXAMPLE LOG 50 FEATURES

Representating the Sample Dialogue in Table 5.2 By 50 Feature Variables

Table L1: Student Autonomy Features

Ordera: 29 30 31 32 33 34 35 36 37
Speakerb S T S T S T S T S
TMOVEc nil tell nil elicit nil elicit skippable nil tell nil

v27tellsSinceElicitA 0 nil 0.08 nil 0 nil 0 nil 0.08
v28pctElicitA 0.5 nil 0.49 nil 0.51 nil 0.52 nil 0.51
v29stuWordsToTuWordsA 0.32 nil 0.32 nil 0.3 nil 0.31 nil 0.31
v30stuWordsToTuWordsSessionA 0.21 nil 0.21 nil 0.2 nil 0.2 nil 0.2
v31pctTellsKCSessionA 0.62 nil 0.62 nil 0.64 nil 0.63 nil 0.63

aThe number of the decision orders in the tutorial dialogue on KC20
b“S:” refers to the current state when the tutor make the decision while “T:” means that it is tutor

decision turn
cThe action the tutor decided to take
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Table L2: Problem Solving Context

Order: 29 30 31 32 33 34 35 36 37
Speaker S T S T S T S T S
TMOVE nil tell nil elicit nil elicit skippable nil tell nil

v12EarlyTrainingPS 0 nil 0 nil 0 nil 0 nil 0
v13SimpleProblemPS 0.5 nil 0.5 nil 0.5 nil 0.5 nil 0.5
v14DuringWalkThroughPS 1 nil 1 nil 1 nil 1 nil 1
v15nKCsPS 0.12 nil 0.12 nil 0.15 nil 0.15 nil 0.15
v16nKCsSessionPS 0.28 nil 0.28 nil 0.3 nil 0.3 nil 0.3
v17newLevelDifficultyPS 1 nil 1 nil 1 nil 1 nil 1
v18conceptDifficultyPS 0.56 nil 0.5 nil 0.15 nil 0.15 nil 0.55
v19QuantativeDegreePS 0.5 nil 1 nil 0 nil 0 nil 0
v20numPhysConceptsTutorDialogueSessionPS 0.35 nil 0.35 nil 0.39 nil 0.39 nil 0.39
v21tutAverageConceptsPS 0.82 nil 0.82 nil 0.84 nil 0.84 nil 0.84
v22tutAverageConceptsSessionPS 0.66 nil 0.66 nil 0.68 nil 0.68 nil 0.68
v23tutConceptsToWordsPS 0.87 nil 0.87 nil 0.88 nil 0.88 nil 0.88
v24tutConceptsToWordsSessionPS 0.74 nil 0.74 nil 0.75 nil 0.75 nil 0.75
v25tutAverageWordsPS 0.85 nil 0.85 nil 0.86 nil 0.86 nil 0.86
v26tutAverageWordsSessionPS 0.75 nil 0.75 nil 0.76 nil 0.76 nil 0.76

Table L3: Background Features

Order: 29 30 31 32 33 34 35 36 37
Speaker S T S T S T S T S
TMOVE nil tell nil elicit nil elicit skippable nil tell nil

v48genderBG 0 nil 0 nil 0 nil 0 nil 0
v49ageBG 0.38 nil 0.38 nil 0.38 nil 0.38 nil 0.38
v50MathSatBG 0.8 nil 0.8 nil 0.8 nil 0.8 nil 0.8
v51VerbalSatBG 0.67 nil 0.67 nil 0.67 nil 0.67 nil 0.67
v52pretestBG 0.69 nil 0.69 nil 0.69 nil 0.69 nil 0.69
v53averagePhysConceptsStudentDialogueSD 0.19 nil 0.19 nil 0.18 nil 0.19 nil 0.19

Table L4: Student Dialogue Features

Order: 29 30 31 32 33 34 35 36 37
Speaker S T S T S T S T S
TMOVE nil tell nil elicit nil elicit skippable nil tell nil

v53averagePhysConceptsStudentDialogueSD 0.19 nil 0.19 nil 0.18 nil 0.19 nil 0.19
v54numStudentConceptualDialogueSD 0.23 nil 0.23 nil 0.23 nil 0.25 nil 0.25
v55stuConceptToWordRatioSD 0.1 nil 0.1 nil 0.1 nil 0.1 nil 0.1
v56stuAverageWordsSD 0.41 nil 0.41 nil 0.41 nil 0.42 nil 0.42
v57stuAverageConceptSD 0.31 nil 0.31 nil 0.3 nil 0.31 nil 0.31
v58averagePhysConceptsStudentDialogueSessionSD 0.19 nil 0.19 nil 0.18 nil 0.19 nil 0.19
v59numStudentConceptualDialogueSessonSD 0.44 nil 0.44 nil 0.44 nil 0.47 nil 0.47
v60stuConceptToWordRatioSessionSD 0.1 nil 0.1 nil 0.1 nil 0.1 nil 0.1
v61stuAverageWordsSessionSD 0.14 nil 0.14 nil 0.14 nil 0.14 nil 0.14
v62stuAverageConceptSessionSD 0.31 nil 0.31 nil 0.3 nil 0.31 nil 0.31
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APPENDIX M

STUDY 3: NORMGAIN AND INVNORMGAIN TUTORIAL TACTICS

(FEATURES)
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Table M1: NormGain Tutorial Tactics:

KC action #features Corpus Selection Method ECR Lower Bound Upper Bound
KC1 ET 1 DichGain 0 36.33 13.76 44.11
Cols: v24tutConceptsToWordsSessionPS

KC14 ET 1 Comb 0 9.97 9.85 10.06
Cols: v5durationBetweenDecisionT

KC14 JS 1 Exp 0 10.89 10.89 10.89
Cols: v12EarlyTrainingPS

KC20 ET 3 Exp ECR 14.25 10.04 18.12
Cols: v18conceptDifficultyPS v23tutConceptsToWordsPS v26tutAverageWordsSessionPS

KC20 JS 5 Exp PCA-Hedge 20.23 15.11 22.12
Cols: v9TimeInSessionT v15nKCsPS v28pctElicitA v56stuAverageWordsSD

v62stuAverageConceptSessionSD

KC21 JS 3 Exp PCA-Hedge 32.26 29.8 34.59
Cols: v13SimpleProblemPS v18conceptDifficultyPS v20numPhysConceptsTutorDialogueSessionPS

KC21 ET 3 Exp Upper Bound 20.99 15.2 26.64
Cols: v15nKCsPS v18conceptDifficultyPS v30stuWordsToTuWordsSessionA

KC22 JS 5 Exp Upper Bound 37.02 22.45 47.12
Cols: v23tutConceptsToWordsPS v24tutConceptsToWordsSessionPS v27tellsSinceElicitA

v46nIncorrectKCPM v47nIncorrectKCSessionPM

KC22 ET 2 Exp Hedge 33.42 10.55 40.08
Cols: v23tutConceptsToWordsPS v27tellsSinceElicitA

KC24 JS 6 Exp Upper Bound 20.05 16.09 24.45
Cols: v14DuringWalkThroughPS v18conceptDifficultyPS v49ageBG v59numStudentConceptualDialogueSessonSD

v60stuConceptToWordRatioSessionSD v62stuAverageConceptSessionSD

KC24 ET 4 DichGain ECR 13.51 8.41 16.35
Cols: v10TimeBetweenSessionT v14DuringWalkThroughPS v18conceptDifficultyPS

v55stuConceptToWordRatioSD

KC27 ET 4 Exp PCA-Random 48.51 38.9 57
Cols: v5durationBetweenDecisionT v17newLevelDifficultyPS v23tutConceptsToWordsPS

v35pctOverallCorrectSessionPM

KC27 JS 4 Exp ECR 55.68 30.89 44.05
Cols: v9TimeInSessionT v25tutAverageWordsPS v27tellsSinceElicitA v56stuAverageWordsSD

KC28 JS 3 DichGain Upper Bound 30.11 15.82 41
Cols: v15nKCsPS v24tutConceptsToWordsSessionPS v54numStudentConceptualDialogueSD

KC28 ET 5 DichGain Upper Bound 20.45 8.45 30.43
Cols: v5durationBetweenDecisionT v16nKCsSessionPS v18conceptDifficultyPS v29stuWordsToTuWordsA

v41nCorrectKCSessionPM

KC-general ET 4 Exp Lower Bound 4.51 1.38 8.33
Cols: v5durationBetweenDecisionT v18conceptDifficultyPS v27tellsSinceElicitA v46nIncorrectKCPM

KC-general JS 5 DichGain ECR 9.84 6.77 12.19
Cols: v16nKCsSessionPS v17newLevelDifficultyPS v23tutConceptsToWordsPS v25tutAverageWordsPS

v27tellsSinceElicitA
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Table M2: InvNormGain Tutorial Tactics:

KC action #features Corpus Selection Method ECR Lower Bound Upper Bound
KC0 JS 4 DichGain ECR 28.7 21.91 33.91
Columns: v17newLevelDifficultyPS v23tutConceptsToWordsPS v25tutAverageWordsPS

v27tellsSinceElicitA
KC1 ET 2 DichGain Upper Bound 70.39 62.26 74.12
Cols: v19QuantativeDegreePS v41nCorrectKCSessionPM

KC14 ET 1 DichGain 0 87.63 87.63 87.63
Cols: v10TimeBetweenSessionT

KC14 JS 1 Comb 0 86.67 86.67 86.67
Cols: v12EarlyTrainingPS

KC20 ET 3 Exp PCA-Lower Bound 31.15 26.91 34.98
Cols: v19QuantativeDegreePS v23tutConceptsToWordsPS v25tutAverageWordsPS

KC20 JS 5 DichGain Random 41.43 33.99 47.57
Cols: v13SimpleProblemPS v14DuringWalkThroughPS v18conceptDifficultyPS v44pctCorrectKCPM

v55stuConceptToWordRatioSD

KC21 ET 6 Exp Hedge 23.43 18.01 27.06
Cols: v5durationBetweenDecisionT v14DuringWalkThroughPS v19QuantativeDegreePS

v55stuConceptToWordRatioSD v56stuAverageWordsSD v61stuAverageWordsSessionSD

KC21 JS 3 Exp ECR 46.74 41.83 51.55
Cols: v18conceptDifficultyPS v35pctOverallCorrectSessionPM v45pctCorrectKCSessionPM

KC22 JS 4 DichGain ECR 95.36 88.01 103.16
Cols: v5durationBetweenDecisionT v19QuantativeDegreePS v27tellsSinceElicitA v32pctCorrectPM

KC22 ET 3 Exp ECR 79.29 58.21 102.28
Cols: v24tutConceptsToWordsSessionPS v26tutAverageWordsSessionPS v27tellsSinceElicitA

KC24 JS 2 DichGain Upper Bound 49.19 33.14 61.55
Cols: v17newLevelDifficultyPS v47nIncorrectKCSessionPM

KC24 ET 2 DichGain ECR 36.36 30.77 42.19
Cols: v14DuringWalkThroughPS v18conceptDifficultyPS

KC27 ET 4 DichGain Lower Bound 37.7 28.76 45.02
Cols: v5durationBetweenDecisionT v9TimeInSessionT v19QuantativeDegreePS v27tellsSinceElicitA

KC27 JS 5 DichGain Hedge 60.04 40.64 50.87
Cols: v9TimeInSessionT v40nCorrectKCPM v42pctOverallCorrectKCPM v46nIncorrectKCPM

v56stuAverageWordsSD

KC28 ET 3 DichGain ECR 67.97 51.86 81.84
Cols: v5durationBetweenDecisionT v18conceptDifficultyPS v46nIncorrectKCPM

KC28 JS 5 Exp Upper Bound 67.37 35.71 58.29
Cols: v14DuringWalkThroughPS v15nKCsPS v25tutAverageWordsPS v46nIncorrectKCPM

v60stuConceptToWordRatioSessionSD

KC-general ET 5 DichGain Upper Bound 9.28 5.94 12.54
Cols: v16nKCsSessionPS v18conceptDifficultyPS v23tutConceptsToWordsPS v31pctTellsKCSessionA

v35pctOverallCorrectSessionPM

KC-general ET 5 DichGain Upper Bound 9.28 5.94 12.54
Cols: v16nKCsSessionPS v18conceptDifficultyPS v23tutConceptsToWordsPS v31pctTellsKCSessionA

v35pctOverallCorrectSessionPM

339



APPENDIX N

STUDY 3: NORMAGAIN TUTORIAL TACTICS (POLICIES)

Policy: ’KC-general policy on Elicit/Tell’

Features: [5,18,27,46]

ECR: 4.505940

ECR Lower Bound: 1.381010

Mapping: [[22.00581],[0.29775,0.60095],[2.3034],[88.0896,143.231]]

States: [’0:0:0:0 elicit’,’0:0:0:1 tell’,’0:0:0:2 elicit’,’0:0:1:0 elicit’,’0:0:1:1 tell’,’0:0:1:2

tell’,’0:1:0:0 elicit’,’0:1:0:1 tell’,’0:1:0:2 tell’,’0:1:1:0 elicit’,’0:1:1:1 else’,’0:1:1:2

tell’,’0:2:0:0 elicit’,’0:2:0:1 tell’,’0:2:0:2 else’,’0:2:1:0 elicit’,’0:2:1:1 else’,’0:2:1:2

else’,’1:0:0:0 tell’,’1:0:0:1 tell’,’1:0:0:2 tell’,’1:0:1:0 elicit’,’1:0:1:1 tell’,’1:0:1:2

tell’,’1:1:0:0 elicit’,’1:1:0:1 tell’,’1:1:0:2 tell’,’1:1:1:0 elicit’,’1:1:1:1 else’,’1:1:1:2

tell’,’1:2:0:0 elicit’,’1:2:0:1 tell’,’1:2:0:2 elicit’,’1:2:1:0 elicit’,’1:2:1:1 tell’,’1:2:1:2 tell’]
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Policy: ’KC-general policy on Justify/Skip-Justify’

Features: [16,17,23,25,27]

ECR: 9.844580

ECR Lower Bound: 6.774750

Mapping: [[92.26325,183.4505],[0.5],[0.075178],[22.759655,23.592848],[1.0]]

States: [’0:0:0:0:0 noskip’,’0:0:0:0:1 noskip’,’0:0:0:1:0 skip’,’0:0:0:1:1 noskip’,’0:0:0:2:0

noskip’,’0:0:0:2:1 skip’,’0:0:1:0:0 noskip’,’0:0:1:0:1 noskip’,’0:0:1:1:0 noskip’,’0:0:1:1:1

noskip’,’0:0:1:2:0 noskip’,’0:0:1:2:1 skip’,’0:1:0:0:0 skip’,’0:1:0:0:1 noskip’,’0:1:0:1:0

noskip’,’0:1:0:1:1 skip’,’0:1:0:2:0 noskip’,’0:1:0:2:1 noskip’,’0:1:1:0:0 skip’,’0:1:1:0:1

noskip’,’0:1:1:1:0 noskip’,’0:1:1:1:1 noskip’,’0:1:1:2:0 noskip’,’0:1:1:2:1

skip’,’1:0:0:0:0 noskip’,’1:0:0:0:1 noskip’,’1:0:0:1:0 noskip’,’1:0:0:1:1 noskip’,’1:0:0:2:0

skip’,’1:0:0:2:1 noskip’,’1:0:1:0:0 noskip’,’1:0:1:0:1 noskip’,’1:0:1:1:0 noskip’,’1:0:1:1:1

noskip’,’1:0:1:2:0 noskip’,’1:0:1:2:1 noskip’,’1:1:0:0:0 skip’,’1:1:0:0:1 skip’,’1:1:0:1:0

noskip’,’1:1:0:1:1 noskip’,’1:1:0:2:0 skip’,’1:1:0:2:1 noskip’,’1:1:1:0:0 noskip’,’1:1:1:0:1

noskip’,’1:1:1:1:0 noskip’,’1:1:1:1:1 skip’,’1:1:1:2:0 noskip’,’1:1:1:2:1 noskip’,’2:0:0:0:0

noskip’,’2:0:0:1:0 skip’,’2:0:0:1:1 noskip’,’2:0:0:2:0 noskip’,’2:0:0:2:1 noskip’,’2:0:1:1:0

noskip’,’2:0:1:1:1 noskip’,’2:0:1:2:0 noskip’,’2:0:1:2:1 skip’,’2:1:0:0:0 skip’,’2:1:0:1:0

skip’,’2:1:0:1:1 skip’,’2:1:0:2:0 noskip’,’2:1:0:2:1 skip’,’2:1:1:1:0 skip’,’2:1:1:1:1

noskip’,’2:1:1:2:0 noskip’,’2:1:1:2:1 skip’]

Policy: 1aetb’

Features: [24]

ECR: 36.331200

ECR Lower Bound: 13.755700

Mapping: [[0.062402,0.071909]]

States: [’0 elicit’,’1 tell’,’2 elicit’]

aKC number. In this case, means it is a KC-specific policy on KC1. Same below
bType of tutorial decisions. “et” refers to Elicit/Tell decisions while “skip” refers to Justify/Skip-

Justify decisions
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Policy: 14et’

Features: [5]

ECR: 9.966550

ECR Lower Bound: 9.848810

Mapping: [[160.073973]]

States: [’0 elicit’,’1 else’]

Policy: 14skip’

Features: [12]

ECR: 10.887100

ECR Lower Bound: 10.887100

Mapping: [[0.5]]

States: [’0 skip’,’1 noskip’]

Policy: 20et’

Features: [18,23,26]

ECR: 14.254900

ECR Lower Bound: 10.036400

Mapping: [[0.3778],[0.073981],[22.577706]]

States: [’0:0:0 elicit’,’0:0:1 elicit’,’0:1:0 tell’,’0:1:1 else’,’1:0:0 else’,’1:0:1 elicit’,’1:1:0

elicit’,’1:1:1 elicit’]
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Policy: 20skip’

Features: [9,15,28,56,62]

ECR: 20.227600

ECR Lower Bound: 15.113600

Mapping: [[3040.799131],[65.0135],[0.493592],[4.176873],[0.28604]]

States: [’0:0:0:0:0 noskip’,’0:0:0:0:1 skip’,’0:0:0:1:0 skip’,’0:0:0:1:1 skip’,’0:0:1:0:0

noskip’,’0:0:1:0:1 skip’,’0:0:1:1:0 noskip’,’0:0:1:1:1 skip’,’0:1:0:0:0 skip’,’0:1:0:0:1

noskip’,’0:1:0:1:0 skip’,’0:1:0:1:1 noskip’,’0:1:1:0:0 noskip’,’0:1:1:0:1 noskip’,’0:1:1:1:0

noskip’,’0:1:1:1:1 noskip’,’1:0:0:0:0 noskip’,’1:0:0:0:1 skip’,’1:0:0:1:0 noskip’,’1:0:0:1:1

skip’,’1:0:1:0:0 noskip’,’1:0:1:0:1 noskip’,’1:0:1:1:0 noskip’,’1:0:1:1:1 noskip’,’1:1:0:0:0

skip’,’1:1:0:0:1 noskip’,’1:1:0:1:0 skip’,’1:1:0:1:1 skip’,’1:1:1:0:0 noskip’,’1:1:1:0:1

noskip’,’1:1:1:1:0 noskip’,’1:1:1:1:1 noskip’]

Policy: 21et’

Features: [15,18,30]

ECR: 20.993900

ECR Lower Bound: 15.201400

Mapping: [[44.15375],[0.30125,0.6075],[0.08421]]

States: [’0:0:0 elicit’,’0:0:1 elicit’,’0:1:0 elicit’,’0:1:1 elicit’,’0:2:0 elicit’,’0:2:1 elicit’,’1:0:0

elicit’,’1:0:1 elicit’,’1:1:0 elicit’,’1:1:1 tell’,’1:2:0 else’,’1:2:1 else’]

Policy: 21skip’

Features: [13,18,20]

ECR: 32.255300

ECR Lower Bound: 29.801900

Mapping: [[0.75],[0.30125,0.6075],[235.1497,468.0707]]

States: [’0:0:0 noskip’,’0:0:1 noskip’,’0:0:2 skip’,’0:1:0 else’,’0:1:1 else’,’0:1:2 else’,’0:2:0

noskip’,’0:2:1 noskip’,’0:2:2 noskip’,’1:0:0 else’,’1:0:1 skip’,’1:0:2 else’,’1:1:0

noskip’,’1:1:1 noskip’,’1:1:2 noskip’,’1:2:0 skip’,’1:2:1 skip’,’1:2:2 skip’]
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Policy: 22et’

Features: [23,27]

ECR: 33.419600

ECR Lower Bound: 10.554100

Mapping: [[0.067549,0.07119,0.074431],[2.2836]]

States: [’0:0 elicit’,’0:1 tell’,’1:0 tell’,’1:1 else’,’2:0 tell’,’2:1 else’,’3:0 tell’,’3:1 else’]

Policy: 22skip’

Features: [23,24,27,46,47]

ECR: 37.015500

ECR Lower Bound: 22.445200

Mapping: [[0.067549,0.07119,0.074431],[0.067915],[2.2836],[4.197,7.44825],[9.085]]

States: [’0:0:0:0:0 noskip’,’0:0:0:0:1 else’,’0:0:0:1:0 else’,’0:0:0:1:1 else’,’0:0:1:0:0

else’,’0:0:1:0:1 else’,’0:0:1:1:0 else’,’0:0:1:1:1 else’,’0:0:1:2:0 else’,’0:1:0:0:0

else’,’0:1:1:0:0 else’,’1:0:0:0:0 noskip’,’1:0:0:0:1 else’,’1:0:0:1:0 skip’,’1:0:0:1:1

else’,’1:0:0:2:0 skip’,’1:0:0:2:1 else’,’1:0:1:0:0 noskip’,’1:0:1:0:1 else’,’1:0:1:1:0

else’,’1:0:1:1:1 skip’,’1:0:1:2:0 noskip’,’1:0:1:2:1 else’,’1:1:0:0:0 else’,’1:1:0:0:1

else’,’1:1:0:1:0 skip’,’1:1:0:1:1 noskip’,’1:1:0:2:0 else’,’1:1:0:2:1 skip’,’1:1:1:0:0

else’,’1:1:1:0:1 else’,’1:1:1:1:0 else’,’1:1:1:1:1 noskip’,’1:1:1:2:1 else’,’2:0:0:0:0

skip’,’2:0:0:0:1 else’,’2:0:0:1:0 else’,’2:0:0:1:1 noskip’,’2:0:0:2:0 else’,’2:0:0:2:1

skip’,’2:0:1:0:0 else’,’2:0:1:1:0 noskip’,’2:0:1:1:1 else’,’2:0:1:2:0 noskip’,’2:0:1:2:1

noskip’,’2:1:0:0:0 skip’,’2:1:0:0:1 else’,’2:1:0:1:0 noskip’,’2:1:0:1:1 else’,’2:1:0:2:0

else’,’2:1:0:2:1 noskip’,’2:1:1:0:0 else’,’2:1:1:0:1 else’,’2:1:1:1:0 skip’,’2:1:1:1:1

noskip’,’2:1:1:2:0 else’,’2:1:1:2:1 else’,’3:0:0:0:0 else’,’3:0:0:1:0 else’,’3:0:0:2:0

else’,’3:0:0:2:1 else’,’3:0:1:0:0 else’,’3:0:1:2:0 else’,’3:0:1:2:1 else’,’3:1:0:0:0

else’,’3:1:0:0:1 skip’,’3:1:0:1:0 else’,’3:1:0:1:1 else’,’3:1:0:2:0 else’,’3:1:0:2:1

else’,’3:1:1:0:0 else’,’3:1:1:0:1 noskip’,’3:1:1:1:0 else’,’3:1:1:1:1 else’,’3:1:1:2:0

else’,’3:1:1:2:1 skip’]
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Policy: 24et’

Features: [10,14,18,55]

ECR: 13.511000

ECR Lower Bound: 8.405400

Mapping: [[218512.016452],[0.5],[0.52575],[0.07082,0.086168,0.106655]]

States: [’0:0:0:0 else’,’0:0:0:1 elicit’,’0:0:0:2 elicit’,’0:0:0:3 elicit’,’0:0:1:0 else’,’0:0:1:1

tell’,’0:0:1:2 tell’,’0:0:1:3 tell’,’0:1:0:0 else’,’0:1:0:1 else’,’0:1:0:2 else’,’0:1:0:3

elicit’,’0:1:1:0 else’,’0:1:1:1 else’,’0:1:1:2 else’,’0:1:1:3 else’,’1:0:0:0 elicit’,’1:0:0:1

elicit’,’1:0:0:2 else’,’1:0:0:3 elicit’,’1:0:1:0 elicit’,’1:0:1:1 else’,’1:0:1:2 elicit’,’1:0:1:3

tell’,’1:1:0:0 elicit’,’1:1:0:1 tell’,’1:1:0:2 elicit’,’1:1:0:3 elicit’,’1:1:1:0 else’,’1:1:1:1

else’,’1:1:1:2 else’,’1:1:1:3 else’]
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Policy: 24skip’

Features: [14,18,49,59,60,62]

ECR: 20.046000

ECR Lower Bound: 16.093400

Mapping: [[0.5],[0.341425],[20.999997],[14.0911],[0.1],[0.266733]]

States: [’0:0:0:0:0:0 noskip’,’0:0:0:0:1:0 skip’,’0:0:0:1:0:0 skip’,’0:0:0:1:0:1

skip’,’0:0:0:1:1:0 noskip’,’0:0:0:1:1:1 skip’,’0:0:1:0:0:0 noskip’,’0:0:1:0:1:0

skip’,’0:0:1:1:0:0 skip’,’0:0:1:1:0:1 skip’,’0:0:1:1:1:0 skip’,’0:0:1:1:1:1

skip’,’0:1:0:0:0:0 skip’,’0:1:0:0:0:1 noskip’,’0:1:0:0:1:0 skip’,’0:1:0:0:1:1

skip’,’0:1:0:1:0:0 noskip’,’0:1:0:1:0:1 noskip’,’0:1:0:1:1:0 noskip’,’0:1:0:1:1:1

skip’,’0:1:1:0:0:0 noskip’,’0:1:1:0:0:1 noskip’,’0:1:1:0:1:0 noskip’,’0:1:1:0:1:1

skip’,’0:1:1:1:0:0 skip’,’0:1:1:1:0:1 noskip’,’0:1:1:1:1:0 skip’,’0:1:1:1:1:1

skip’,’1:0:0:0:0:0 skip’,’1:0:0:0:0:1 skip’,’1:0:0:0:1:0 skip’,’1:0:0:0:1:1 skip’,’1:0:0:1:0:0

noskip’,’1:0:0:1:0:1 noskip’,’1:0:0:1:1:0 noskip’,’1:0:0:1:1:1 skip’,’1:0:1:0:0:0

skip’,’1:0:1:0:0:1 skip’,’1:0:1:0:1:0 skip’,’1:0:1:0:1:1 noskip’,’1:0:1:1:0:0

skip’,’1:0:1:1:0:1 noskip’,’1:0:1:1:1:0 skip’,’1:0:1:1:1:1 skip’,’1:1:0:0:0:0

skip’,’1:1:0:0:0:1 skip’,’1:1:0:0:1:0 noskip’,’1:1:0:0:1:1 noskip’,’1:1:0:1:0:0

noskip’,’1:1:0:1:0:1 noskip’,’1:1:0:1:1:0 noskip’,’1:1:0:1:1:1 noskip’,’1:1:1:0:0:0

skip’,’1:1:1:0:0:1 noskip’,’1:1:1:0:1:0 noskip’,’1:1:1:0:1:1 skip’,’1:1:1:1:0:0

noskip’,’1:1:1:1:0:1 noskip’,’1:1:1:1:1:0 skip’,’1:1:1:1:1:1 noskip’]

Policy: 27et’

Features: [5,17,23,35]

ECR: 48.509500

ECR Lower Bound: 38.899400

Mapping: [[78.989305],[0.5],[0.072768],[0.348344]]

States: [’0:0:0:0 else’,’0:0:0:1 else’,’0:0:1:0 else’,’0:0:1:1 else’,’0:1:0:0 else’,’0:1:0:1

tell’,’0:1:1:0 else’,’0:1:1:1 tell’,’1:0:0:0 tell’,’1:0:0:1 tell’,’1:0:1:0 elicit’,’1:0:1:1

tell’,’1:1:0:0 tell’,’1:1:0:1 else’,’1:1:1:0 else’,’1:1:1:1 else’]
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Policy: 27skip’

Features: [9,25,27,56]

ECR: 55.684600

ECR Lower Bound: 30.887000

Mapping: [[3657.04962],[22.760564,23.335972],[0.999999],[4.203393]]

States: [’0:0:0:0 skip’,’0:0:0:1 skip’,’0:0:1:0 skip’,’0:0:1:1 noskip’,’0:1:0:0 noskip’,’0:1:0:1

noskip’,’0:1:1:0 noskip’,’0:1:1:1 noskip’,’0:2:0:0 skip’,’0:2:0:1 skip’,’0:2:1:0

skip’,’0:2:1:1 noskip’,’1:0:0:0 noskip’,’1:0:0:1 noskip’,’1:0:1:0 skip’,’1:0:1:1

skip’,’1:1:0:0 skip’,’1:1:0:1 noskip’,’1:1:1:0 skip’,’1:1:1:1 noskip’,’1:2:0:0 skip’,’1:2:0:1

noskip’,’1:2:1:0 noskip’,’1:2:1:1 noskip’]

Policy: 28et’

Features: [5,16,18,29,41]

ECR: 20.446500

ECR Lower Bound: 8.450380

Mapping: [[73.053098],[114.40575],[0.393393],[0.046351],[32.2232]]

States: [’0:0:0:0:0 tell’,’0:0:0:1:0 elicit’,’0:0:1:0:0 else’,’0:0:1:1:0 elicit’,’0:1:0:0:0

else’,’0:1:0:0:1 tell’,’0:1:0:1:0 else’,’0:1:0:1:1 else’,’0:1:1:0:0 else’,’0:1:1:0:1

tell’,’0:1:1:1:0 elicit’,’0:1:1:1:1 tell’,’1:0:0:0:0 elicit’,’1:0:0:1:0 tell’,’1:0:1:0:0

elicit’,’1:0:1:1:0 tell’,’1:1:0:0:0 else’,’1:1:0:0:1 tell’,’1:1:0:1:0 elicit’,’1:1:0:1:1

else’,’1:1:1:0:0 else’,’1:1:1:0:1 tell’,’1:1:1:1:0 tell’,’1:1:1:1:1 tell’]

Policy: 28skip’

Features: [15,24,54]

ECR: 30.114700

ECR Lower Bound: 15.824200

Mapping: [[20.42295],[0.075692],[21.0157]]

States: [’0:0:0 noskip’,’0:0:1 noskip’,’0:1:0 noskip’,’0:1:1 noskip’,’1:0:0 noskip’,’1:0:1

skip’,’1:1:0 noskip’,’1:1:1 skip’]
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Policy: ’KC-general policy on Elicit/Tell’

Features: [16,18,23,31,35]

ECR: 9.282570

ECR Lower Bound: 5.942560

Mapping: [[113.0632],[0.2696,0.60035],[0.075261],[0.2993,0.61905,0.78495],[0.2504]]

States: [’0:0:0:0:0 elicit’,’0:0:0:0:1 tell’,’0:0:0:1:0 elicit’,’0:0:0:1:1 elicit’,’0:0:0:2:0

elicit’,’0:0:0:2:1 elicit’,’0:0:0:3:0 elicit’,’0:0:1:0:0 elicit’,’0:0:1:0:1 tell’,’0:0:1:1:0

elicit’,’0:0:1:1:1 elicit’,’0:0:1:2:0 elicit’,’0:0:1:2:1 elicit’,’0:0:1:3:0 elicit’,’0:1:0:0:0

elicit’,’0:1:0:0:1 tell’,’0:1:0:1:0 else’,’0:1:0:1:1 tell’,’0:1:0:2:0 elicit’,’0:1:0:2:1

else’,’0:1:0:3:0 elicit’,’0:1:1:0:0 elicit’,’0:1:1:0:1 tell’,’0:1:1:1:0 tell’,’0:1:1:1:1

tell’,’0:1:1:2:0 elicit’,’0:1:1:2:1 tell’,’0:1:1:3:0 tell’,’0:2:0:0:0 elicit’,’0:2:0:0:1

elicit’,’0:2:0:1:0 elicit’,’0:2:0:1:1 elicit’,’0:2:0:2:0 elicit’,’0:2:0:2:1 elicit’,’0:2:0:3:0

elicit’,’0:2:1:0:1 tell’,’0:2:1:1:0 elicit’,’0:2:1:1:1 elicit’,’0:2:1:2:0 elicit’,’0:2:1:2:1

elicit’,’0:2:1:3:0 else’,’1:0:0:1:0 elicit’,’1:0:0:1:1 elicit’,’1:0:0:2:0 elicit’,’1:0:0:2:1

elicit’,’1:0:0:3:0 elicit’,’1:0:1:1:0 elicit’,’1:0:1:1:1 tell’,’1:0:1:2:0 elicit’,’1:0:1:2:1

elicit’,’1:0:1:3:0 tell’,’1:1:0:1:0 elicit’,’1:1:0:1:1 tell’,’1:1:0:2:0 else’,’1:1:0:2:1

tell’,’1:1:0:3:0 elicit’,’1:1:1:1:0 elicit’,’1:1:1:1:1 tell’,’1:1:1:2:0 elicit’,’1:1:1:2:1

tell’,’1:1:1:3:0 elicit’,’1:2:0:1:0 elicit’,’1:2:0:1:1 tell’,’1:2:0:2:0 else’,’1:2:0:2:1

tell’,’1:2:0:3:0 elicit’,’1:2:1:1:0 elicit’,’1:2:1:1:1 tell’,’1:2:1:2:0 elicit’,’1:2:1:2:1

tell’,’1:2:1:3:0 elicit’]
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Policy: ’KC-general policy on Justify/Skip-Justify’

Features: [17,23,25,27]

ECR: 28.701200

ECR Lower Bound: 21.911800

Mapping: [[0.5],[0.075178],[22.759655,23.592848],[1.0]]

States: [’0:0:0:0 noskip’,’0:0:0:1 noskip’,’0:0:1:0 noskip’,’0:0:1:1 noskip’,’0:0:2:0

noskip’,’0:0:2:1 noskip’,’0:1:0:0 noskip’,’0:1:0:1 noskip’,’0:1:1:0 noskip’,’0:1:1:1

noskip’,’0:1:2:0 noskip’,’0:1:2:1 skip’,’1:0:0:0 skip’,’1:0:0:1 noskip’,’1:0:1:0

noskip’,’1:0:1:1 skip’,’1:0:2:0 noskip’,’1:0:2:1 skip’,’1:1:0:0 skip’,’1:1:0:1

noskip’,’1:1:1:0 noskip’,’1:1:1:1 noskip’,’1:1:2:0 noskip’,’1:1:2:1 skip’]

Policy: ’1aetb’

Features: [19,41]

ECR: 70.394200

ECR Lower Bound: 62.264200

Mapping: [[0.066964],[22.0]]

States: [’0:0 elicit’,’0:1 tell’,’1:0 tell’,’1:1 tell’]

aKC number. In this case, it is a KC-specific policy on KC1. Same below
bType of tutorial decisions. “et” refers to Elicit/Tell decisions while “skip” refers to Justify/Skip-

Justify decisions

Policy: ’14et’

Features: [10]

ECR: 87.631600

ECR Lower Bound: 87.631600

Mapping: [[0.0]]

States: [’0 tell’,’1 tell’]
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Policy: ’14skip’

Features: [12]

ECR: 86.666700

ECR Lower Bound: 86.666700

Mapping: [[0.5]]

States: [’0 noskip’,’1 noskip’]

Policy: ’20et’

Features: [19,23,25]

ECR: 31.148800

ECR Lower Bound: 26.913700

Mapping: [[0.22755,0.71735],[0.073981],[22.954695]]

States: [’0:0:0 elicit’,’0:0:1 elicit’,’0:1:0 elicit’,’0:1:1 elicit’,’1:0:0 else’,’1:0:1 else’,’1:1:0

elicit’,’1:1:1 elicit’,’2:0:0 tell’,’2:0:1 tell’,’2:1:0 elicit’,’2:1:1 elicit’]

Policy: ’20skip’

Features: [13,14,18,44,55]

ECR: 41.425700

ECR Lower Bound: 33.987700

Mapping: [[0.75],[0.5],[0.530107],[0.133398],[0.07486,0.10008]]

States: [’0:0:0:0:0 noskip’,’0:0:0:0:1 noskip’,’0:0:0:0:2 noskip’,’0:0:0:1:0 noskip’,’0:0:0:1:1

noskip’,’0:0:0:1:2 skip’,’0:0:1:0:0 skip’,’0:0:1:0:1 noskip’,’0:0:1:0:2 noskip’,’0:0:1:1:0

skip’,’0:0:1:1:1 noskip’,’0:0:1:1:2 skip’,’0:1:0:0:0 skip’,’0:1:0:0:1 noskip’,’0:1:0:0:2

skip’,’0:1:0:1:0 skip’,’0:1:0:1:1 skip’,’0:1:0:1:2 skip’,’0:1:1:0:0 noskip’,’0:1:1:0:1

noskip’,’0:1:1:0:2 skip’,’0:1:1:1:0 noskip’,’0:1:1:1:1 noskip’,’0:1:1:1:2 noskip’,’1:0:1:0:0

noskip’,’1:0:1:0:1 noskip’,’1:0:1:0:2 noskip’,’1:0:1:1:0 skip’,’1:0:1:1:1 skip’,’1:0:1:1:2

noskip’,’1:1:0:0:0 noskip’,’1:1:0:0:1 skip’,’1:1:0:0:2 skip’,’1:1:0:1:0 noskip’,’1:1:0:1:1

skip’,’1:1:0:1:2 noskip’]
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Policy: 21et

Features: [5,14,19,55,56,61]

ECR: 23.429100

ECR Lower Bound: 18.009100

Mapping: [[50.00604],[0.5],[0.2361,0.7172],[0.079174,0.102734],[3.92965,5.668881],[5.8023]]

States: [’0:0:0:0:0:0 else’,’0:0:0:0:1:0 elicit’,’0:0:0:0:1:1 else’,’0:0:0:0:2:1 elicit’,

’0:0:0:1:0:0 elicit’,’0:0:0:1:1:0 elicit’,’0:0:0:1:1:1 else’,’0:0:0:1:2:0 elicit’,

’0:0:0:1:2:1 elicit’,’0:0:0:2:0:0 elicit’,’0:0:0:2:1:0 elicit’,’0:0:0:2:1:1 elicit’,

’0:0:0:2:2:0 elicit’,’0:0:0:2:2:1 else’,’0:0:1:0:0:0 else’,’0:0:1:0:1:0 else’,

’0:0:1:0:1:1 elicit’,’0:0:1:0:2:1 else’,’0:0:1:1:0:0 else’,’0:0:1:1:1:0 else’,

’0:0:1:1:1:1 elicit’,’0:0:1:1:2:0 elicit’,’0:0:1:1:2:1 elicit’,’0:0:1:2:0:0 else’,

’0:0:1:2:1:0 elicit’,’0:0:1:2:2:0 else’,’0:0:1:2:2:1 else’,’0:0:2:0:0:0 elicit’,

’0:0:2:0:1:0 elicit’,’0:0:2:0:1:1 elicit’,’0:0:2:0:2:1 elicit’,’0:0:2:1:0:0 elicit’,

’0:0:2:1:1:0 elicit’,’0:0:2:1:1:1 tell’,’0:0:2:1:2:0 elicit’,’0:0:2:1:2:1 tell’,

’0:0:2:2:0:0 elicit’,’0:0:2:2:1:0 tell’,’0:0:2:2:1:1 elicit’,’0:0:2:2:2:0 elicit’,

’0:1:0:0:0:0 else’,’0:1:0:0:1:0 tell’,’0:1:0:0:1:1 elicit’,’0:1:0:0:2:0 elicit’,

’0:1:0:0:2:1 elicit’,’0:1:0:1:0:0 elicit’,’0:1:0:1:0:1 tell’,’0:1:0:1:1:0 elicit’,

’0:1:0:1:1:1 tell’,’0:1:0:1:2:0 else’,’0:1:0:1:2:1 tell’,’0:1:0:2:0:0 elicit’,

’0:1:0:2:1:0 elicit’,’0:1:0:2:1:1 elicit’,’0:1:0:2:2:0 else’,’0:1:0:2:2:1 tell’,

’0:1:1:0:0:0 tell’,’0:1:1:0:1:0 elicit’,’0:1:1:0:1:1 else’,’0:1:1:0:2:0 elicit’,

’0:1:1:0:2:1 tell’,’0:1:1:1:0:0 tell’,’0:1:1:1:1:0 else’,’0:1:1:1:1:1 elicit’,

’0:1:1:1:2:0 tell’,’0:1:1:1:2:1 tell’,’0:1:1:2:0:0 tell’,’0:1:1:2:1:0 elicit’,

’0:1:1:2:1:1 else’,’0:1:1:2:2:0 else’,’0:1:1:2:2:1 elicit’,’0:1:2:0:0:0 tell’,

’0:1:2:0:0:1 tell’,’0:1:2:0:1:0 elicit’,’0:1:2:0:1:1 elicit’,’0:1:2:0:2:1 elicit’,

’0:1:2:1:0:0 tell’,’0:1:2:1:0:1 tell’,’0:1:2:1:1:0 elicit’,’0:1:2:1:1:1 tell’,

’0:1:2:1:2:0 tell’,’0:1:2:1:2:1 elicit’,’0:1:2:2:0:0 tell’,’0:1:2:2:1:0 elicit’,

’0:1:2:2:1:1 elicit’,’0:1:2:2:2:0 tell’,’0:1:2:2:2:1 elicit’,’1:0:0:0:0:0 else’,

’1:0:0:0:1:0 else’,’1:0:0:0:1:1 else’,’1:0:0:0:2:1 else’,’1:0:0:1:0:0 else’,

’1:0:0:1:1:0 elicit’,’1:0:0:1:1:1 tell’,’1:0:0:1:2:0 elicit’,’1:0:0:1:2:1 else’,

’1:0:0:2:0:0 else’,’1:0:0:2:1:0 elicit’,’1:0:0:2:1:1 elicit’,’1:0:0:2:2:0 tell’,
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’1:0:0:2:2:1 elicit’,’1:0:1:0:0:0 elicit’,’1:0:1:0:1:0 tell’,’1:0:1:0:1:1 elicit’,

’1:0:1:0:2:1 elicit’,’1:0:1:1:0:0 tell’,’1:0:1:1:1:0 else’,’1:0:1:1:1:1 elicit’,

’1:0:1:1:2:1 tell’,’1:0:1:2:0:0 elicit’,’1:0:1:2:1:0 elicit’,’1:0:1:2:2:0 elicit’,

’1:0:1:2:2:1 tell’,’1:0:2:0:0:0 tell’,’1:0:2:0:1:0 tell’,’1:0:2:0:1:1 tell’,

’1:0:2:0:2:1 tell’,’1:0:2:1:0:0 tell’,’1:0:2:1:1:0 elicit’,’1:0:2:1:1:1 tell’,

’1:0:2:1:2:0 elicit’,’1:0:2:1:2:1 elicit’,’1:0:2:2:0:0 tell’,’1:0:2:2:1:0 tell’,

’1:0:2:2:1:1 elicit’,’1:0:2:2:2:0 elicit’,’1:0:2:2:2:1 elicit’,’1:1:0:0:0:0 tell’,

’1:1:0:0:0:1 else’,’1:1:0:0:1:0 tell’,’1:1:0:0:1:1 else’,’1:1:0:0:2:0 elicit’,

’1:1:0:0:2:1 elicit’,’1:1:0:1:0:0 tell’,’1:1:0:1:0:1 elicit’,’1:1:0:1:1:0 else’,

’1:1:0:1:1:1 tell’,’1:1:0:1:2:0 elicit’,’1:1:0:1:2:1 tell’,’1:1:0:2:0:0 elicit’,

’1:1:0:2:0:1 else’,’1:1:0:2:1:0 tell’,’1:1:0:2:1:1 else’,’1:1:0:2:2:0 tell’,

’1:1:0:2:2:1 elicit’,’1:1:1:0:0:0 tell’,’1:1:1:0:0:1 tell’,’1:1:1:0:1:0 tell’,

’1:1:1:0:1:1 elicit’, ’1:1:1:0:2:0 tell’, ’1:1:1:0:2:1 elicit’, ’1:1:1:1:0:0 elicit’,

’1:1:1:1:0:1 elicit’, ’1:1:1:1:1:0 else’, ’1:1:1:1:1:1 tell’, ’1:1:1:1:2:0 tell’,

’1:1:1:1:2:1 elicit’, ’1:1:1:2:0:0 tell’, ’1:1:1:2:0:1 elicit’, ’1:1:1:2:1:0 tell’,

’1:1:1:2:1:1 tell’, ’1:1:1:2:2:0 tell’, ’1:1:1:2:2:1 tell’, ’1:1:2:0:0:0 elicit’,

’1:1:2:0:1:0 elicit’, ’1:1:2:0:1:1 elicit’, ’1:1:2:0:2:1 tell’, ’1:1:2:1:0:0 tell’,

’1:1:2:1:0:1 elicit’, ’1:1:2:1:1:0 elicit’, ’1:1:2:1:1:1 tell’, ’1:1:2:1:2:0 elicit’,

’1:1:2:1:2:1 elicit’, ’1:1:2:2:0:0 tell’, ’1:1:2:2:1:0 tell’, ’1:1:2:2:1:1 tell’,

’1:1:2:2:2:0 elicit’]

Policy: ’21skip’

Features: [18, 35, 45]

ECR: 46.744200

ECR Lower Bound: 41.828300

Mapping: [[0.30125, 0.6075], [0.25015, 0.45635], [0.25015, 0.45635]]

States: [’0:0:0 else’, ’0:1:1 else’, ’0:2:2 else’, ’1:0:0 else’, ’1:1:1 noskip’, ’1:2:2 else’, ’2:0:0

skip’, ’2:1:1 noskip’, ’2:2:2 noskip’]
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Policy: ’22et’

Features: [24, 26, 27]

ECR: 79.291800

ECR Lower Bound: 58.21120

Mapping: [[0.067915], [21.303669], [2.2836]]

States: [’0:0:0 else’, ’0:0:1 elicit’, ’0:1:0 else’, ’0:1:1 elicit’, ’1:0:0 else’, ’1:0:1 elicit’,

’1:1:0 else’, ’1:1:1 elicit’]

Policy: 22skip’

Features: [5, 19, 27, 32]

ECR: 95.363400

ECR Lower Bound: 88.012500

Mapping: [[631.9412], [0.25], [2.459, 6.635], [0.498302]]

States: [’0:0:0:0 noskip’, ’0:0:0:1 noskip’, ’0:0:1:0 noskip’, ’0:0:1:1 noskip’, ’0:0:2:0

noskip’, ’0:0:2:1 noskip’, ’1:0:0:0 noskip’, ’1:0:0:1 noskip’, ’1:0:1:0 noskip’, ’1:0:1:1

noskip’, ’1:0:2:0 noskip’, ’1:0:2:1 noskip’, ’1:1:0:0 noskip’, ’1:1:0:1 skip’, ’1:1:1:0

noskip’, ’1:1:1:1 noskip’]

Policy: ’24et’

Features: [14, 18]

ECR: 36.355700

ECR Lower Bound: 30.768000

Mapping: [[0.5], [0.52575]]

States: [’0:0 elicit’, ’0:1 tell’, ’1:0 elicit’, ’1:1 else’]
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Policy: ’24skip’

Features: [17, 47]

ECR: 49.194000

ECR Lower Bound: 33.139500

Mapping: [[0.5], [13.31575]]

States: [’0:0 noskip’, ’0:1 noskip’, ’1:0 noskip’, ’1:1 skip’]

Policy: ’27et’

Features: [5, 9, 19, 27]

ECR: 37.696400

ECR Lower Bound: 28.755200

Mapping: [[76.037616], [3933.717329], [0.21775, 0.71775], [0.999999]]

States: [’0:0:0:0 else’, ’0:0:0:1 elicit’, ’0:0:1:0 else’, ’0:0:1:1 elicit’, ’0:0:2:0 elicit’, ’0:0:2:1

elicit’, ’0:1:0:0 elicit’, ’0:1:0:1 elicit’, ’0:1:1:0 else’, ’0:1:1:1 elicit’, ’0:1:2:0 tell’,

’0:1:2:1 elicit’, ’1:0:0:0 else’, ’1:0:0:1 elicit’, ’1:0:1:0 else’, ’1:0:1:1 elicit’, ’1:0:2:0 tell’,

’1:0:2:1 tell’, ’1:1:0:0 tell’, ’1:1:0:1 elicit’, ’1:1:1:0 else’, ’1:1:1:1 elicit’, ’1:1:2:0 tell’,

’1:1:2:1 tell’]

Policy: ’27skip’

Features: [9, 40, 42, 46, 56]

ECR: 60.041000

ECR Lower Bound: 40.637100

Mapping: [[4831.936247], [6.2033], [0.5205], [6.40425], [3.70513]]

States: [’0:0:0:0:0 skip’, ’0:0:0:0:1 skip’, ’0:0:0:1:0 noskip’, ’0:0:0:1:1 noskip’, ’0:0:1:0:0

skip’, ’0:0:1:0:1 skip’, ’0:1:0:1:0 noskip’, ’0:1:0:1:1 noskip’, ’0:1:1:0:0 noskip’,

’0:1:1:0:1 noskip’, ’0:1:1:1:1 noskip’, ’1:0:0:0:0 skip’, ’1:0:0:0:1 skip’, ’1:0:0:1:0

noskip’, ’1:0:0:1:1 skip’, ’1:0:1:0:0 noskip’, ’1:0:1:0:1 noskip’, ’1:1:0:1:0 noskip’,

’1:1:1:0:0 noskip’, ’1:1:1:0:1 noskip’, ’1:1:1:1:1 noskip’]
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Policy: ’28et’

Features: [5, 18, 46]

ECR: 67.974200

ECR Lower Bound: 51.863700

Mapping: [[73.053098], [0.393393], [5.3352]]

States: [’0:0:0 else’, ’0:0:1 tell’, ’0:1:0 tell’, ’0:1:1 tell’, ’1:0:0 else’, ’1:0:1 tell’, ’1:1:0

elicit’, ’1:1:1 tell’]

Policy: ’28skip’

Features: [14, 15, 25, 46, 60]

ECR: 67.365600

ECR Lower Bound: 35.707600

Mapping: [[0.5], [15.10085], [22.754688, 23.282859], [5.191], [0.103777]]

States: [’0:0:0:0:0 noskip’, ’0:0:1:0:0 skip’, ’0:0:1:0:1 noskip’, ’0:1:0:0:0 noskip’,

’0:1:0:0:1 skip’, ’0:1:0:1:0 noskip’, ’0:1:0:1:1 noskip’, ’0:1:1:0:0 skip’, ’0:1:1:0:1

noskip’, ’0:1:1:1:0 skip’, ’0:1:1:1:1 noskip’, ’0:1:2:0:0 noskip’, ’0:1:2:0:1 skip’,

’0:1:2:1:0 noskip’, ’0:1:2:1:1 noskip’, ’1:0:0:0:0 skip’, ’1:0:0:0:1 noskip’, ’1:0:0:1:1

skip’, ’1:0:1:0:0 noskip’, ’1:0:1:0:1 noskip’, ’1:0:1:1:1 noskip’, ’1:0:2:0:0 skip’,

’1:0:2:0:1 noskip’, ’1:0:2:1:1 skip’]
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