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Abstract In many robot navigation scenarios, the robot is able to sadmtween
some number of operating modes. One such scenario is whebo& must de-
cide how to trade-off online between autonomous and huniesofgeration control.
When little prior knowledge about the performance of eachrafpe is known, the
robot must learn online to model their abilities and be ablake advantage of the
strengths of each. We present a bandit-based online cdaadidkection algorithm
that operates in this adjustable autonomy setting and metk@ises to optimize
overall navigational performance. We justify this techr@dhrough such a scenario
on logged data and demonstrate how the same technique caetaaioptimize
the use of high-resolution overhead data when its avaiiiis! limited?.

1 Introduction

Autonomous UGVs have advanced to a point where they are demipand reli-
able a large portion of the time. However, even the most ridut®nomous robotic
systems will struggle with certain situations. Fortungtel some domains it is rea-
sonable to assume that a human operator may be availableriodp of time to
provide remote tele-operation support. Full tele-opersis prohibitively expensive
for many applications due to the degree of required humamtiin and communi-
cations bandwidth, so a policy must determine under whictditions the robot or
the human are to take control.

It is important for such a system to be well-suited for onlirse. Not only is it
difficult to asses in advance how well the autonomy systerhpeitform in novel
environments, but human operator performance can alsodegrgnding on factors
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Fig. 1 For our experiments,
we used logs from the Crusher
unmanned ground vehicle.
The robot operates in com-
plex, natural environments
where the goal is to navigate
across large distances with the
aid of onboard and overhead
sensor data. Further infor-
mation about the system can
be found in [1]. The overhead
processing capabilities used to
plan prior routes and generate
features for our experiments
are described in [2].

such as bandwidth limitations, operator handicaps suciméted skill or familiar-
ity with the interface, fatigue and weather conditions. Ut situations, a learning
system can observe the performance of the autonomous @ehigarticular sit-
uations and compare that to performance under remote hgorgml in similar
situations. When the vehicle encounters similar situatioribe future, it can then
invoke whichever expert demonstrated better performaheaemote human or au-
tonomous vehicle. Such a capability would enable a singéraipr to assist many
UGVs, ensuring peak performance for the entire team withimmahhuman involve-
ment.

We pursue this problem using an on-line, reinforcemenniearapproach and
demonstrate its performance on logged data from the rugdjetéyrain UGV shown
in Fig. 1. The candidate selection system'’s goal is to leainterpret features from
available overhead sensor data in order to make candidateeshthat maximize
its overall long-term performance. This inevitably becsmadrade-off between ex-
ploring candidates’ performances in situations that wWitha it to learn more about
the world and taking advantage of their learned models tammiag current perfor-
mance.

We also show how this technique can be used to deal with Sosivahnere limited
high-resolution overhead data is available to aid the rgbotvigating through an
environment. Higher resolution overhead data can be usgmtiuce more accurate
traversal cost estimates that the UGV can use for better paith calculations but
often requires expensive and time-consuming aerial singeand a large amount
of bandwidth if remotely supplied to the vehicle. In sceaarivhere the availability
of such data is limited, our algorithm allows the robot taten allocate it to areas
where its impact will be maximized.

The next section presents background on adjustable autotexrhniques and
some example applications. Section 3 presents our onlindidate selection al-
gorithm, followed by experimental results in Section 4 andduding remarks in
Section 5.
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2 Related Work

We deal with the scenario where a human can contribute lihaitiention to improve
a mobile robot’s performance. In this scenario, a robotiteay operates somewhere
on the spectrum between full autonomy, where there is no hunvalvement, and
full tele-operation, where the human is in complete coraitcdll times. Scenarios
where the degree and methods of human interactions withtgahithin a system
can be varied dynamically in order to optimize performaneeadten referred to as
ones ofsliding autonomyor adjustable autonomjs, 4]. While most mobile robot
systems tend to lie on one of the two extremes of this specttfactively balancing
autonomy with limited human involvement can lead to sigaificimprovements in
safety, efficiency and overall cost.

In some scenarios where the human is the primary operagcgfonomy system
is intended to aid by request or when it detects a dangertuetisin [5, 6, 7, 8].
Similar approaches have been applied to automating reetitsks in surgery to
decrease surgeon fatigue [9].

In scenarios where the autonomy system is the default apetiaé system must
determine whether and when to transfer control to a humamifiL,a12]. Some have
suggested relinquishing control when there is an expectafihigh benefit [13, 14]
or the degree of uncertainty is high [15].

Goodrich and Schultz have written an extensive surveylarto the field of
Human-Robot Interaction exploring many additional apphes and applications
[16].

The key difference in our approach from the above-menti@pgutoaches is that
our system operates with no prior performance model or pterthined operator
transition rules. In many scenarios where prior performreanformation is unavail-
able, the ability to learn the capabilities of each potért#zndidate online allows
systems to better adapt to more diverse and challengingoemaents.

3 Approach

3.1 Contextual Multi-Armed Bandit Setting

The candidate selection problem involves choosing an tmefar each encoun-
tered situation from a set of candidate systems, in our desadtonomy system
and the human tele-operator, whose performance we assunesdmm some un-
known distribution. It is therefore intuitive to frame thpsoblem as an instance of
the commonly studiechulti-armed bandiproblem [17, 18, 19].

In thek-armed bandit setting, at each time stedpe world choosek losses (or
rewards)|¢, .. .,1¥, and the player makes a choice of an arm{1,...,k} without
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knowledge of the hidden losses. The player then observestbellossl| corre-
sponding to the chosen arm. Since the loss distributionsigkaown, there is an
inevitable conflict between minimizing the immediate loss @athering informa-
tion that will be useful for long-term performance. This ftem referred to as the
exploration-exploitation trade-offince we must choose betweexploringour un-
known loss distributions aneikploitingthe arm we currently believe to be best.

We deal with a more suitable variation of thanditsetting called theontextual
banditssetting where at each time stethe player also observes some contextual
informationx;, which can be used to determine which arm to pull [20]. We caepu
these features from commonly available overhead imagedyDAaFED 3 elevation
dat& for the given environment as described in [2].

As is common with bandit problems, our goal is to minimizeretgthe differ-
ence between the performance of the algorithm and that afghimal algorithm in
hindsight:

.
R= t;(h —1) 1)

wherel;" is the loss incurred in rourtcby the optimal strategy.

3.2 Exploration-Exploitation Trade-off

We choose to deal with the exploration-exploitation tradféhrough the use of con-
fidence bounds. With a model that is able to supply confidencadts, the widths
of the confidence bounds reflect the uncertainty of the dlyors knowledge. By
choosing the candidate with the highest upper confidencadestimate for the
specified featureg at each time step, the algorithm elegantly trades off batwee
exploration and exploitation. When uncertainty is high,asiog that candidate will
provide information that will quickly reduce uncertaintythat region of the feature
space. As we gain knowledge about each candidate, confithencels will shrink
and the candidates’ expected performances will begin tamtiethe selection pro-
cess. This approach was well-justified for the banditsregtind is shown to have
small regret [21].

2 The Digital Terrain Elevation Data (DTED) level of an ovealdeelevation data set specifies its
density of coverage where a higher level specifies denser gmiera
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3.3 Formalization

We frame online candidate selection problems as followseakh time step, we
get some contextual featunggor our environment and try to minimize our incurred
loss by choosing from one &fcandidates for that time stép

After each selection, the algorithm observes the noisynedé ofl! for only the
chosen candidate We model the distribution fdf as a Gaussian whose mean is a
linear function of the contextual featuresmodeled by vectop':

E({p', %) = p'x @)
We assume the estimates have Gaussian noise and are tbelisfabuted:

I} ~ Normal(l}, o?) (3)
We model this distribution online using a Bayesian linegression model as
described in [22]. Given a new data polpestimating the true variablg, our goal
is to compute a new estimate of the varial;iielk, assuming we have already seen
dataD = {{x}1..n,{l'}rc{1..t—13 }. We can compute this by integrating oyer

P alilx,D) = [ au pLalid Tx Pk i x.D)
We can compute the required distribution opras:
p(k'[if:x..D) 0 p(4'|D) [ () plk K )

In our linear-Gaussian model, this can be understood asimgvthe posterior
distribution fromp(u'|D) in light of a Gaussian likelihood that takes into account
noise.

Our computation of the posterior distributip(!'[I{, %, D) is as follows. We first
initialize our distribution to the prior distriQutiop(ui). Then, for every training
examplet, we multiply our distribution byp(li|u',%). Since the prior distribution
andp(l{|u', %) are normal, the posterior distribution is also normal.

This not only allows us to efficiently perform online updatésour model but
also provides a variance estimate for each prediction tedteat as our confidence
bound. We therefore tradkBayesian linear regression instances in parallel, one for
each candidate, and at each time step choose the candidatthevhighest upper
confidence bound prediction for that scenario.

3 In the case of choosing between a human and the autonomy systeri, We discuss this
problem in the more general case as it could also be applied tceangjdate selection setting such
as choosing between multiple autonomy systems, multiple human opecatmultiple overhead
data sources as shown later.
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4 Experimental Results

4.1 Adjustable Autonomy

Sy 2
Autonomy
better

(2.5sec)

Fig. 2 Aerial image of test site with course driven using each operatindenfleft) and the esti-
mated differences in traversal time in seconds per meter for teisising the final models learned
by the online candidate selection algorithm (right). Theoatgm found that human performance
tended to excel in open areas where the human was better abkeroret sparse obstacles and
drive more aggressively and at perimeters of heavy obstaclestvedruman’s situational aware-
ness allowed him to better handle environmental complexity.

While we do not have the system infrastructure to be able tetddf online
between tele-operation and autonomous vehicle controkimalated such an on-
line scenario by using a pair of logged traversals of the samg course in west-
ern Pennsylvania by each candidate: a human tele-opesitay a high-bandwidth
camera system and the autonomy system. All locations wherg@ath of the hu-
man driver and the autonomous driver were in sufficient pnityiwere used as test
points for the system where the loss was measured by thedpafriome it took to
enter and exit a 3 meter radius window around that locatiemv Bverhead features
were convolved with a Gaussian kernel in order to blur tha,dateffect introducing
an influence from surrounding areas into each location. allesved the system to
learn a more realistic model since the rate of progress ateaddcation is heavily
influenced by factors from the surrounding area. Each tinendidate was chosen,
the traversal time for only the specified candidate was tedea the algorithm.

The course and estimated relative performance of eachdzatedising a trained
model appear in Fig. 2. Quantitative results comparing tgoréghm’s performance
to various alternatives appear in Fig. 3 and Table 1. Thergdtiworst-case and
random candidate algorithms used for comparison througihéipaper are those
that always choose the best-performing, worst-perforraimgjat random candidate
at each time step respectively.
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Fig. 3 Online operator selection performance: cumulative navigdtiioe for our algorithm and
various alternatives (left) and the average regret of @orithm over previous examples compared
to alternatives (right). Lower times represent better pentorces.

Table 1 Online Operator Selection Performance

Algorithm |Cumu|ative Time (seconoes[):’ercent Improvement over Always-Human

Online Algorithm 9551.7 9.41
Optimal 7809.3 25.94
Worst-Case 12791.0 -21.31
Always-Human 10544.4 0.00
Always-Autonom 10055.9 4.63
Random Driver 10307.4 2.95

2 Note that since 3 meter regions at example locations oftenapeetl with each other, these
cumulative traversal times are greater than the total navigditne.

4.2 Online Overhead Data Selection

We also show how this algorithm can be applied to scenaricarevthe vehicle
must decide online how to best utilize the availability ofivas-density overhead
data for upcoming navigation. We simulated this scenariaratyzing sets of multi-
waypoint logged runs from a field test at Fort Carson in Caloran various courses
using DTED levels 3, 4 and 5 overhead data. The candidatessafdr waypoint in
this case were the single choice of density of overhead dédta tised for computing
a prior path for that path segment. The candidate selectisters therefore had
the task of learning a mapping from the average of featuneega{computed from
overhead imagery and DTED 3 elevation data) within the seglbounding box
to the average traversal speed for the vehicle over that esgigai the path using
each candidate type of data. While DTED 5 data almost alwagtdtesl in the best
performance, we simulated a scenario where high-densityisiavailable for only
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a fraction of all segments: a maximum of 20% availability ®FED 5 and 30%
availability for DTED 4.

5sec

Fig. 4 Estimated traversal time in seconds per meter (in effect, brigbters identify for difficult

or hazardous locations) is shown for sample terrain used for emdrtlata selection experiments
with DTED 3 (left) and 5 (right) data. As expected, DTED 5 dskews large improvements in
navigation speed for difficult terrain (left portion of imagdsit does not provide nearly as much
benefit on roads and open fields (right portion of images).
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Fig. 5 Overhead data selection performance: sum of average navigsteed over each path
segment for our algorithm and various alternatives (left) gnedaverage regret of our algorithm
over previous segments (right).

At each step we used a linear program to optimize the allocstdf remaining
data availability using the predicted performance on atiaming segments from
the current learned models for each candidate. Selectioeach step were based
on the initial step of this locally computed optimal alldoat To avoid having to
solve an integer programming problem, we chose the cargigih the highest
allocation at the first step.
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Table 2 Online Overhead Data Selection Performance

Algorithm |Average Speed (meters / secorRBrcent Improvement over Random
Online Algorithm 2.45 5.60
Optimal 2.71 16.81
Worst-Case 2.04 -12.07
Random Data Sour¢e 2.32 0.00

The estimated rates of progress predicted by the trainecimoding DTED 3
and DTED 5 data sources appear in Fig. 4. Quantitative se$oitthis scenario
appear in Fig. 5 and Table 2. Our algorithm shows a clear ivgmnent over naive
or random approaches for both scenarios with quickly-caging regret properties.

5 Conclusion

We have presented an online algorithm for dealing with séesavhere the robot
must learn to trade-off between multiple operating modé® pgroposed approach
relies on a bandit-based framework and uses confidence boaiddal with exploration-
exploitation trade-offs. The algorithm was demonstratedveo scenarios relevant

to the mobile robotics domain and showed improved perfonmaver several al-
ternatives. We hope that such techniques will increase t¢hengial real-world ap-
plications of mobile robots by allowing them to adapt in ¥Bade to changing envi-
ronments and better allocate available resources.
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