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Abstract In many robot navigation scenarios, the robot is able to choose between
some number of operating modes. One such scenario is when a robot must de-
cide how to trade-off online between autonomous and human tele-operation control.
When little prior knowledge about the performance of each operator is known, the
robot must learn online to model their abilities and be able to take advantage of the
strengths of each. We present a bandit-based online candidate selection algorithm
that operates in this adjustable autonomy setting and makeschoices to optimize
overall navigational performance. We justify this technique through such a scenario
on logged data and demonstrate how the same technique can be used to optimize
the use of high-resolution overhead data when its availability is limited1.

1 Introduction

Autonomous UGVs have advanced to a point where they are competent and reli-
able a large portion of the time. However, even the most robust autonomous robotic
systems will struggle with certain situations. Fortunately, in some domains it is rea-
sonable to assume that a human operator may be available for periods of time to
provide remote tele-operation support. Full tele-operation is prohibitively expensive
for many applications due to the degree of required human attention and communi-
cations bandwidth, so a policy must determine under which conditions the robot or
the human are to take control.

It is important for such a system to be well-suited for onlineuse. Not only is it
difficult to asses in advance how well the autonomy system will perform in novel
environments, but human operator performance can also varydepending on factors
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1 Many of the images in this paper are best viewed in color
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Fig. 1 For our experiments,
we used logs from the Crusher
unmanned ground vehicle.
The robot operates in com-
plex, natural environments
where the goal is to navigate
across large distances with the
aid of onboard and overhead
sensor data. Further infor-
mation about the system can
be found in [1]. The overhead
processing capabilities used to
plan prior routes and generate
features for our experiments
are described in [2].

such as bandwidth limitations, operator handicaps such as limited skill or familiar-
ity with the interface, fatigue and weather conditions. In such situations, a learning
system can observe the performance of the autonomous vehicle in particular sit-
uations and compare that to performance under remote human-control in similar
situations. When the vehicle encounters similar situationsin the future, it can then
invoke whichever expert demonstrated better performance:the remote human or au-
tonomous vehicle. Such a capability would enable a single operator to assist many
UGVs, ensuring peak performance for the entire team with minimal human involve-
ment.

We pursue this problem using an on-line, reinforcement learning approach and
demonstrate its performance on logged data from the rugged,all-terrain UGV shown
in Fig. 1. The candidate selection system’s goal is to learn to interpret features from
available overhead sensor data in order to make candidate choices that maximize
its overall long-term performance. This inevitably becomes a trade-off between ex-
ploring candidates’ performances in situations that will allow it to learn more about
the world and taking advantage of their learned models to maximize current perfor-
mance.

We also show how this technique can be used to deal with scenarios where limited
high-resolution overhead data is available to aid the robotin navigating through an
environment. Higher resolution overhead data can be used toproduce more accurate
traversal cost estimates that the UGV can use for better prior path calculations but
often requires expensive and time-consuming aerial surveying and a large amount
of bandwidth if remotely supplied to the vehicle. In scenarios where the availability
of such data is limited, our algorithm allows the robot to learn to allocate it to areas
where its impact will be maximized.

The next section presents background on adjustable autonomy techniques and
some example applications. Section 3 presents our online candidate selection al-
gorithm, followed by experimental results in Section 4 and concluding remarks in
Section 5.
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2 Related Work

We deal with the scenario where a human can contribute limited attention to improve
a mobile robot’s performance. In this scenario, a robotic system operates somewhere
on the spectrum between full autonomy, where there is no human involvement, and
full tele-operation, where the human is in complete controlat all times. Scenarios
where the degree and methods of human interactions with robots within a system
can be varied dynamically in order to optimize performance are often referred to as
ones ofsliding autonomyor adjustable autonomy[3, 4]. While most mobile robot
systems tend to lie on one of the two extremes of this spectrum, effectively balancing
autonomy with limited human involvement can lead to significant improvements in
safety, efficiency and overall cost.

In some scenarios where the human is the primary operator, the autonomy system
is intended to aid by request or when it detects a dangerous situation [5, 6, 7, 8].
Similar approaches have been applied to automating repetitive tasks in surgery to
decrease surgeon fatigue [9].

In scenarios where the autonomy system is the default operator, the system must
determine whether and when to transfer control to a human [10, 11, 12]. Some have
suggested relinquishing control when there is an expectation of high benefit [13, 14]
or the degree of uncertainty is high [15].

Goodrich and Schultz have written an extensive survey article on the field of
Human-Robot Interaction exploring many additional approaches and applications
[16].

The key difference in our approach from the above-mentionedapproaches is that
our system operates with no prior performance model or pre-determined operator
transition rules. In many scenarios where prior performance information is unavail-
able, the ability to learn the capabilities of each potential candidate online allows
systems to better adapt to more diverse and challenging environments.

3 Approach

3.1 Contextual Multi-Armed Bandit Setting

The candidate selection problem involves choosing an operator for each encoun-
tered situation from a set of candidate systems, in our case the autonomy system
and the human tele-operator, whose performance we assume comes from some un-
known distribution. It is therefore intuitive to frame thisproblem as an instance of
the commonly studiedmulti-armed banditproblem [17, 18, 19].

In thek-armed bandit setting, at each time stept the world choosesk losses (or
rewards),l1

t , . . . , lk
t , and the player makes a choice of an armi ∈ {1, . . . ,k} without
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knowledge of the hidden losses. The player then observes only the lossl i
t corre-

sponding to the chosen arm. Since the loss distributions areunknown, there is an
inevitable conflict between minimizing the immediate loss and gathering informa-
tion that will be useful for long-term performance. This is often referred to as the
exploration-exploitation trade-offsince we must choose betweenexploringour un-
known loss distributions andexploitingthe arm we currently believe to be best.

We deal with a more suitable variation of thebanditsetting called thecontextual
banditssetting where at each time stept the player also observes some contextual
informationxt which can be used to determine which arm to pull [20]. We compute
these features from commonly available overhead imagery and DTED 3 elevation
data2 for the given environment as described in [2].

As is common with bandit problems, our goal is to minimize regret, the differ-
ence between the performance of the algorithm and that of theoptimal algorithm in
hindsight:

R=
T

∑
t=1

(lt − l∗t ) (1)

wherel∗t is the loss incurred in roundt by the optimal strategy.

3.2 Exploration-Exploitation Trade-off

We choose to deal with the exploration-exploitation trade-off through the use of con-
fidence bounds. With a model that is able to supply confidence bounds, the widths
of the confidence bounds reflect the uncertainty of the algorithm’s knowledge. By
choosing the candidate with the highest upper confidence bound estimate for the
specified featuresxt at each time step, the algorithm elegantly trades off between
exploration and exploitation. When uncertainty is high, choosing that candidate will
provide information that will quickly reduce uncertainty in that region of the feature
space. As we gain knowledge about each candidate, confidencebounds will shrink
and the candidates’ expected performances will begin to dominate the selection pro-
cess. This approach was well-justified for the bandits setting and is shown to have
small regret [21].

2 The Digital Terrain Elevation Data (DTED) level of an overhead elevation data set specifies its
density of coverage where a higher level specifies denser coverage.
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3.3 Formalization

We frame online candidate selection problems as follows. Ateach time stept, we
get some contextual featuresxt for our environment and try to minimize our incurred
loss by choosing from one ofk candidates for that time step3.

After each selection, the algorithm observes the noisy estimate ofl i
t for only the

chosen candidatei. We model the distribution forl i
t as a Gaussian whose mean is a

linear function of the contextual featuresxt modeled by vectorµ i :

E(l i
t |µ i

,xt) = µ ixt (2)

We assume the estimates have Gaussian noise and are therefore distributed:

l̃ i
t ∼ Normal(l i

t ,σ2) (3)

We model this distribution online using a Bayesian linear regression model as
described in [22]. Given a new data pointl̃ i

t estimating the true variablel i
t , our goal

is to compute a new estimate of the variablel1...k
t+1 , assuming we have already seen

dataD = {{x}1...n,{l̃ i}τ⊆{1...t−1}}. We can compute this by integrating overµ i :

p(l i
t+1|l̃

i
t ,xt ,D) =

∫
dµ i p(l i

t+1|µ
i
, l̃ i

t ,xt)p(µ i |l̃ i
t ,xt ,D)

We can compute the required distribution overµ i as:

p(µ i |l̃ i
t ,xt ,D) ∝ p(µ i |D)

∫
dl it p(l̃ i

t |l
i
t )p(l i

t |µ i
,xt)

In our linear-Gaussian model, this can be understood as revising the posterior
distribution fromp(µ i |D) in light of a Gaussian likelihood that takes into account
noise.

Our computation of the posterior distributionp(µ i |l̃ i
t ,xt ,D) is as follows. We first

initialize our distribution to the prior distributionp(µ i). Then, for every training
examplet, we multiply our distribution byp(l̃ i

t |µ i
,xt). Since the prior distribution

andp(l̃ i
t |µ i

,xt) are normal, the posterior distribution is also normal.

This not only allows us to efficiently perform online updatesof our model but
also provides a variance estimate for each prediction that we treat as our confidence
bound. We therefore trackk Bayesian linear regression instances in parallel, one for
each candidate, and at each time step choose the candidate with the highest upper
confidence bound prediction for that scenario.

3 In the case of choosing between a human and the autonomy system,k = 2. We discuss this
problem in the more general case as it could also be applied to anycandidate selection setting such
as choosing between multiple autonomy systems, multiple human operators or multiple overhead
data sources as shown later.
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4 Experimental Results

4.1 Adjustable Autonomy

Fig. 2 Aerial image of test site with course driven using each operating mode (left) and the esti-
mated differences in traversal time in seconds per meter for this site using the final models learned
by the online candidate selection algorithm (right). The algorithm found that human performance
tended to excel in open areas where the human was better able tointerpret sparse obstacles and
drive more aggressively and at perimeters of heavy obstacles whenthe human’s situational aware-
ness allowed him to better handle environmental complexity.

While we do not have the system infrastructure to be able to trade-off online
between tele-operation and autonomous vehicle control, wesimulated such an on-
line scenario by using a pair of logged traversals of the samelong course in west-
ern Pennsylvania by each candidate: a human tele-operator using a high-bandwidth
camera system and the autonomy system. All locations where the path of the hu-
man driver and the autonomous driver were in sufficient proximity were used as test
points for the system where the loss was measured by the period of time it took to
enter and exit a 3 meter radius window around that location. Raw overhead features
were convolved with a Gaussian kernel in order to blur the data, in effect introducing
an influence from surrounding areas into each location. Thisallowed the system to
learn a more realistic model since the rate of progress at a given location is heavily
influenced by factors from the surrounding area. Each time a candidate was chosen,
the traversal time for only the specified candidate was revealed to the algorithm.

The course and estimated relative performance of each candidate using a trained
model appear in Fig. 2. Quantitative results comparing our algorithm’s performance
to various alternatives appear in Fig. 3 and Table 1. The optimal, worst-case and
random candidate algorithms used for comparison throughout this paper are those
that always choose the best-performing, worst-performingand at random candidate
at each time step respectively.
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Fig. 3 Online operator selection performance: cumulative navigation time for our algorithm and
various alternatives (left) and the average regret of our algorithm over previous examples compared
to alternatives (right). Lower times represent better performances.

Table 1 Online Operator Selection Performance

Algorithm Cumulative Time (seconds)a Percent Improvement over Always-Human

Online Algorithm 9551.7 9.41
Optimal 7809.3 25.94

Worst-Case 12791.0 -21.31
Always-Human 10544.4 0.00

Always-Autonomy 10055.9 4.63
Random Driver 10307.4 2.95

a Note that since 3 meter regions at example locations often overlapped with each other, these
cumulative traversal times are greater than the total navigation time.

4.2 Online Overhead Data Selection

We also show how this algorithm can be applied to scenarios where the vehicle
must decide online how to best utilize the availability of various-density overhead
data for upcoming navigation. We simulated this scenario byanalyzing sets of multi-
waypoint logged runs from a field test at Fort Carson in Colorado on various courses
using DTED levels 3, 4 and 5 overhead data. The candidates foreach waypoint in
this case were the single choice of density of overhead data to be used for computing
a prior path for that path segment. The candidate selection system therefore had
the task of learning a mapping from the average of feature values (computed from
overhead imagery and DTED 3 elevation data) within the segment’s bounding box
to the average traversal speed for the vehicle over that segment of the path using
each candidate type of data. While DTED 5 data almost always resulted in the best
performance, we simulated a scenario where high-density data is available for only
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a fraction of all segments: a maximum of 20% availability forDTED 5 and 30%
availability for DTED 4.

Fig. 4 Estimated traversal time in seconds per meter (in effect, brightercolors identify for difficult
or hazardous locations) is shown for sample terrain used for overhead data selection experiments
with DTED 3 (left) and 5 (right) data. As expected, DTED 5 datashows large improvements in
navigation speed for difficult terrain (left portion of images)but does not provide nearly as much
benefit on roads and open fields (right portion of images).

Fig. 5 Overhead data selection performance: sum of average navigation speed over each path
segment for our algorithm and various alternatives (left) andthe average regret of our algorithm
over previous segments (right).

At each step we used a linear program to optimize the allocations of remaining
data availability using the predicted performance on all remaining segments from
the current learned models for each candidate. Selections at each step were based
on the initial step of this locally computed optimal allocation. To avoid having to
solve an integer programming problem, we chose the candidate with the highest
allocation at the first step.
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Table 2 Online Overhead Data Selection Performance

Algorithm Average Speed (meters / second)Percent Improvement over Random

Online Algorithm 2.45 5.60
Optimal 2.71 16.81

Worst-Case 2.04 -12.07
Random Data Source 2.32 0.00

The estimated rates of progress predicted by the trained models using DTED 3
and DTED 5 data sources appear in Fig. 4. Quantitative results for this scenario
appear in Fig. 5 and Table 2. Our algorithm shows a clear improvement over naive
or random approaches for both scenarios with quickly-converging regret properties.

5 Conclusion

We have presented an online algorithm for dealing with scenarios where the robot
must learn to trade-off between multiple operating modes. The proposed approach
relies on a bandit-based framework and uses confidence bounds to deal with exploration-
exploitation trade-offs. The algorithm was demonstrated on two scenarios relevant
to the mobile robotics domain and showed improved performance over several al-
ternatives. We hope that such techniques will increase the potential real-world ap-
plications of mobile robots by allowing them to adapt in real-time to changing envi-
ronments and better allocate available resources.
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