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Abstract

Prescribing a network of curves to be interpolated by a sarfaodel is a standard
approach in geometric design. Wherecurves meet, even when they afford a com-
mon normal direction, they need to satisfy an algebraic itimmg called the vertex
enclosure constraint, to allow for an interpolating pieiseypolynomialC* surface.
Here we prove the existence of an additional, more subtlstcaint that governs the
admissibility of curve networks fo6? interpolation. Additionally, analogous to the
first-order case but using the Monge representation of cesfawe give a sufficient
geometric,G? Euler condition on the curve network. When satisfied, thisdion
guarantees existence of an interpolating surface.

1. Introduction

One much-studied paradigm of geometric design is surfaeepalation of a given
network ofC? curve segments (see Figure 1). While ma&ryconstructions exist that
join n patches (e.g. [Hah89, GH95, Ye97, Rei98, Pra97, YZ04, LEE®9]), these
constructiongyeneratehe boundary curves that emanate from the common point, i.e.
rely on full control of these curves. In many design scerstimwever, the curves are
feature curves. That is, they agevenand may only be minimally adjusted. It is well-
known, that interpolating a network of curves by smooth pasco create &' surface
is not always possible when the number of curves is evene sin@dditional algebraic
constraint must hold for theormal componentf the curve expansion at the common
point. This is thefirst-order vertex enclosure constraint [Pet91, DS91, HPS09]. Here
we discuss whether curve nets have to meet additiesmednd-order vertex enclosure
constraintsto allow for their G2 interpolation by smooth surface patches. The two
papers on this subject we are aware of are [DS92] which s&etisbw one might solve
the G? constraints but does not discuss whether they can be saheefPat92] which
analyzes the case when curves join with equal angles.

In particular, we want to determine constraints, if any,yonurve segmentg?,

j =1,...,njoining at a vertex so that: sufficiently smooth patches; surrounding
the vertex and having’~! andy’ as boundaries can join witt® continuity, after
reparameterization of the surface patches by some regntaoth mapsp’ : R? — R2.
The paper analyzes when smooth interpolating surfaceseanrstructed. It neither
suggests heuristics for the generation of curve networksdiscusses how to obtain
‘fair’ surfaces.
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Figure 1: (eft) Network of curve segments. This paper focusesr@h{) local network interpolation (see
also Definition 1): curveg’, j € Z,,, meeting at a poinp are given and pairwise interpolating patches
are sought. The arrow-labelsands indicate the domain parameters associated with the boundarg<of
the patches, e.@h x7 11 (v, 0) = 92x7 (0, v).

Overview. Section 2 defines the problem and introduces the notationtteaon-
straints fork = 2 resulting from expanding (7) 40, 0). Section 3 shows that solvabil-
ity of the G? vertex constraints implies the existence of a solution ¢éddical network
interpolation. Section 4 classifies tli# constraints at the vertex and analyzes their
solvability for a fixed curve network. Theorem 2 establistiesexistence of second-
order vertex enclosure constraints and therefore of a nainget of constraints on the
curve net. The section ends with a conjecture on the praseofia matrix that holds
the key to the complete characterization of second-ordgexenclosure constraints.
Section 5 provides a sufficient geometric condition for tkistence of a3 patch net-
work interpolating a curve network. This is the analoguenef@' Euler Condition of
[HPS09, HPS10b], but faf? networks.

2. Smooth Network Interpolation

As illustrated in Figure 1, we considercurvesy’ : R — R3 that start at a point
p € R3, and we aim at filling-in between the curves using patckies R? — R3,
j € Z,. In the following we assume that the anglé, betweeny’ andy/*!, lies
strictly in (0, 7) 1 We note that the anglg/ corresponds to patck/ *! and assume for
notational simplicity that theurves are arclength-parameterizeth particular, each
tangent vectot’ := y7(0) is a unit vector. Differential geometry provides us with two
fundamental properties that the curve netwfyk } must satisfy to be part of a regular
C? surface. There must exist a vectay the normal atp, and I(,-), the second
fundamental form acting on the tangent plane components tivd arguments, such
that with the abbreviatiog? := 935y”,

t/.n=0, and II(t/,t')=y}-n, jezZ,. (1)

1 As shown forG'* continuity [HPS10b], quite different constraints are reskéor G2 interpolation by
smooth surface patches when the anglte @& 0.



The existence of a second fundamental form impliesthduler condition that there
exist constants, x; € R and angles)’ measured from some fixed direction in the
tangent plane such that

K= y% ‘N = Ky cos> @) + kg sin? ¢ (2)

Just like two linearly independent define a unique normal up to sign, three pair-
wise linearly independent’ and corresponding normal curvatures can be used to
uniquely define a second fundamental fofti(,). When the tangents form an X,
i.e. when there are just two pair-wise linearly independbractions among the tan-
gentst’, then there is a one-parameter family of second fundaméontals (cf. (13))
consistent with the curve network.

Definition 1 (Smooth Network Interpolation) Let
vy R= Ry = yi(v), jez,={1,...,n} (3)

be a sequence of regular, C?* continuous curves i3 that meet at a common point
p in a plane with oriented normat and at angles)’ less thanr (cf. Figure 1):

y/(0) =p,t/ = (y7)'(0) Ln, 0<v/:=2(t,t/*) <. 4)
A G* surface network interpolatioof {y7} is a sequence of patches
x7  R% = R, (5,1) = X7 (s,1), jEZ,, (5)
that are regular andC?* at p, that interpolate the curve network according to
X! (1,0) =y} (v), x2(0,v) =y (v), (6)

(with superscript modula) and that connect pairwise so th&¥ constraints (see e.g.
[PBPO02] or [Pet02]) hold for®’

at (u,0) M okaxitt = ghok(x7 o ®7),  for0 < k; <k 7)

where{®7},c7, are suitable, say’?* regular maps. Smooth Network Interpolation
restricted to the neighborhood gfis calledlocal network interpolation

Since the reparameterization appears only on one sidegimeifation may appear
asymmetric; but with®7 regular, we can invert the relationship — so this formufatio
is as general and powerful as reparameterizing éth andx’. The increasedkth
order smoothness at vertices is natural for spline constngand, intentionally, rules
out Gregory'’s rational constructions [Gre74, MW91, Herdahally, we note that by
[HLW99] and regularity, (7) is equivalent taix’*!(u,0) = 9(x/ o ®7)(u,0) for
0<i<k.

In the following we will focus on smooth network interpolati whenk = 2. We
will assume that the givecurve network is admissible that is, every curve of the net-
work is at leastC* and regular, and the network satisfies (1). We want to chexiaet
when a curvature continuous surface exists that consisegafarC* surface patches
and interpolates the admissible network.



Notation and constraints Since our focus is on curvature continuityat= x7 (0, 0),
we abbreviate théth derivative ofy’ evaluated ad asy;, and write

x] ., o= (011052x7)(0,0), 7, = (07 0577)(0,0), etc. (8)
We drop superscriptsvhenever the context makes them unambiguous, e.g. we write

R I g |
Xkiko ‘= Xk1k27 Xklkz T Rkikg (9)

, ’ k2 »
Yi =Y = X0k Yy = Yh L =Xk0, Y =YL = X0 (10)

That isxy, 1, is a vector inR® andnota vector of vectors . . ,xilkz, oo

We alsotag the equations arising froif7) for a specific choice dfk;, k2) andj as
(k1, k2)7. Again, to minimize ink, we leave out the superscript whessilole. By (6),
®J has the expansion

(Jél + a{lu +..)v -|—(0'62 + J{_éu +...)

&' (u,v) =
(u,v) ut (19, FThu+ ) (e F Thu L)

Lo

3 7. (11
St (1)
We call theGi! and theG? constraints labelled, 1)7 for i+ < 4, i.e. the constraints on
the 4-jet of derivatives up to total degree 4patheG? vertex constraints Smoothness
constraints on the 4-jet suffice to locally characterize@8eonstruction and studying
them suffices to determine whether’d surface can be constructed: When satisfied
in conjunction with the interpolation constraints, theyable a local network interpo-
lation and this allows for &? surface network interpolation dfy’} (see Lemma 1).
Substituting the curves according to (6), we obtain fromef{), 0), via the chain rule,
the G* constraints

Yi =y 001+ yi7o1 0,2)
X1 = y1 011 + X11001 + Y2To1 + Y1711 (1,2)
X3 = 2X11011 + Y1 021 + X12001 + Y3701 + 2yaTi1 + Y1721 (2,1)

X4, = 3x12011 + 3X11091 + 3y 031 + X13001 + YaTo1 + 3y37T11
+3y2721 + ¥Y1731 (3,1)

and theG? constraints

Y3 = Y5001 + 2001X11701 + Y1 002 + Y271 + Y1702 0,2)
X1y = 2011y5 001 + 2011X11701 + Y1 012 + X0100; + 2001X12T01

+ X11002 + }’3731 + ¥Y2To2 + 27T11X11001 + 27T11Y2701 + Y1712 (1,2)
X4y = 2T91y2701 + 47113701 + 4011X11711 + 2T21X11001 + 4011X12701

+ 2091X11701 + 2001X13T01 + 202145 001 + 4011X21001 + 2ya2Ti2

+4711X12001 + 2X11012 + Y 022 + X12002 + ¥3T02 + Y1722

+2y;5 071 + X2200, + yaToy + 2y27iy. (2,2)



We start with equation§, /)7 for i+ < 2 and check that they are compatible with,
and generically implied by (1). Recall thatis the patch interpolating the curves
andy with tangentg ™~ andt respectively anat™ its consecutive patch interpolatiyg
andy ™ with tangent*. First, we derive a second fundamental faffratp compatible
with at least three curves.

Lemma 1 (/I derivation) Equation(1) defines/ I unlessn = 4 and the tangents form
an X. If the tangents form an X then one additional valligt!, t?) := wy; defines/I.

Proof If the tangents do not form an X then there are three curvds pairwise inde-

pendent tangents and these defiiauniquely (see e.g. [HPS10b, Lemma 1]). Other-

wise I is underconstrained and it suffices to spedifyt!, t?) := w;; sincet! and

t2 are linearly independent. (]
Conversely,/I defines the second-order derivatives so that constréintg for

i + 1 < 2 can be enforced.

Lemma 2 ({1 and equations(i, ()7 for i + 1 < 2) Given a normaln and a second
fundamental fornT I satisfying(1), the constraintgi, /)’ for i + [ < 2 always have a
solution.

Proof Assumption (1)left, and regularity imply that constraints of tyf& 1) hold for
some choice ofy; andrg;. In particulart™ = o1t~ + 79, t. For the remaining equa-
tions, we first focus on the normal coordinate. We can enftireanormal component
of (1,1),

H'Xfl =1n-X11001 + N Y2701, (1,1,)

by settingn - x;1 := I1(t™,t) and substituting™ = o¢1t~ + 701 t:
II(t,t7) = T1(t™,t)o01 + II(t,t)7T0;. (12)
For an X configuration, we see that
wy; =xY -n=x2 -n=-x},-n=—-x5 -n. (13)

To verify that the normal components of equati¢éfns2)’ hold, we take the dot product
with the normah and apply (1)right,
y;'_ - n =@ II(t+,t+) —0.1) II(O’Olt_ + 101t, 000t + Tmt) (14)
= O'gl.[.[(t_7 t_) + 27()10()1[[(t_,t) + Tglfj(t’t)

2 2
=001y N+ 2701001X11 - D+ Ty1y2 - 0.

The constants?, ando), can be chosen to enforce the tangential coordinates. Simi-
larly, the tangential coordinates of equatidfis1)’ can be enforced by choosing,
ando, . Il

We assume in the following thaf, ando?, for 0 < i,k < 1 have been fixed.



3. Constraints on boundary curves arising fromG? continuity and their suffi-
ciency

First we show that, if we can find a solution satisfying thé vertex constraints
then there exists a solution to the local network interpotatLater, we analyze under
what conditions th&? vertex constraints are solvable.

Given a network of curves and a solution to tH&vertex constraints, we construct
a local network interpolation as follows.

Theorem 1 (Sufficiency ofG? vertex constraints) If, for some choice of 4-jet of’
and ®/, the G? vertex constraints hold then there exists a local netwotérigolation

{xF}.
Proof We drop the superscrigt. Assume that thé&? vertex constraints are satisfied
by

u' v’

. u’ vl
x;j,0j €I, o(u,v):= Z Uijﬁﬁ’ T(u,v) == u+ Z TU?F (15)
ijed ijeJ

wherel :={(1,1),(2,1),(3,1),(1,2),(2,2)}, J:=1U{(0,1),(0,2)}.
We define a base surface

%(s.1) ==y () = y() = yo+ 3 %y (16)
ijel v
and functions
0
fl-‘r(t) = %(X(U(ua U)? T(“? U)) - i+(u7 'U))(tv 0),
62

f2+(t) = W(i(a(ua U)a T(ua U)) - )_(+(ua U))(tv 0)
By definition ofx and local network interpolation it can be shown that

dFf d*f.
GEO=00<k<3  TRM)=00<k<2, a7)

We now define the surface patches of @itevertex constraint network as

x(5,1) 1= R(5,) + 1 (s)¢ + fQ(s)%. (18)

By constructionx interpolates botlty ~ andy and by definition of(f;", f;"}, the con-
ditions for G? continuity along the common boundayyt) hold,

X} (u,0) = %(X(a(u,v),7'(u,11))(u,0),
x} (u,0) = %(x(a(u,v)ﬁ(u,v))(u, 0).



Specifically,f; andf; do not contribute to the partial derivatives of these equstiso
that the partials ok can be replaced with those =f (]
Above, by (18), the last two equations of the proof are edentzao the defining equa-
tions off; andf,. Alsox(u,v) was chosen to make the proof as simple as possible.
In generalx can be defined as

st
x(s,t) = y (s)+y(t)—yo+ Z Xijy o+
Lo g
2 52 33
fi(s)t + f2(s)§ +gi1(t)s + gg(t)i + m(s, t>¥

wherem is unrestrictedfﬁ%(o) =0,i=1,2,k=0,1,2, and{f;", f;", g1, g> } must
satisfy constraints generated from ¢ edge constraints (7). Finally, the reparame-

terization,®, can have higher-order terms.

Now we focus on solvability of th&'* constraints,s = 0,1,2. The solvability of

(k1,ko)? for k1 + ke = 2 follows f_rom Lemma 2. Our main goal is therefore to

find the localG* constraintg k1, k)’ of Section 2 for3 < k; 4+ ko < 4 in terms of

the higher-order derivatives),, x},, x3,, x]5, xJ, and for the reparameterizations’

Zerivztive57g1k2, oy, fori,k > 1. We first consider the equatiois,, k)’ when
1+ ko = 4.

Lemma 3 The equation$k1,4k2)j, wherek, + ko = 4 and1 < kq, ko can always be
solved in terms ok}, x} 5, x3,.

Proof We have more vector-valued variables;, x;3, x22, than constraints: (3,1),
(2,2). Equation (3,1) expresses, in terms ofx;3 so that we can focus on solving
(2,2) in terms ofx;3 andxs,. Equation (2,2) can be arranged as

Xérz = 0(2)1X22 + 2101001%13 + f(¥, X11, X12,X21), (2,2)

where f(y, x11,X12,X12) IS the collection of terms on the boundary or appearing in
lower-order equations. Clearly, we can solve- 1 of these equations fats,. In
general, this is all we can hope for since, for equal angfeshe analysis in [Pet92]
shows that the constraint matrix for solving (2,2) in termgust x5 is rank-deficient
by 1.

If the tangents do not form an X configuration, i.e. not all ecutive pairs of
angles add tar, then at least oneJ;, # 0. Let 7}, # 0. Then, for any choice ot’,,
we can solve (2,2), fax,, ... x5, x15.

If the tangents form an X then the valence mustibe- 4 andry; = 0 and we
solve the tangential component fef,, . . . x3,, x1,, 012 (We may needr;, to choose
wyy # 0 for Lemma 6). []

Our analysis therefore focusses on the casé& of k; = 3 derivatives. If the
corresponding constraints are solvable then no secoref-eedtex enclosure constraint
exists and a construction is always possible. However, ithatsn is not that simple
as the next lemma shows.



Lemma 4 The equationgk,, k2)’, wherek; + ko = 3 and1 < ki, k2, can be solved
in terms ofx}, andx, if and only if the followingn x n system of equations has a
solution:

sin 7y, k=j—1
2sin(y k=]
Mh = r, M]’k :: .SIH('Y + 7)5 ] (19)
siny~, k=j5+1
0, else,
j 1
r :=*(27'01011 + 2711001 + 002)X11 (20)

go1

1 _ _
+70 ((701)%y3 + 2T01T11Y2 + 2001011y + To2¥2 + T12y1 + 012y7)
01

+o01(2073X0; + T1Y5 +2TYs +Tay: +onyl )

In (20), we used the default notation on the right hand sidé shppresses the super-
scriptj. We cannot omit the superscript oh
Proof We eliminatex,; by substituting (2,2)* into (1,2) to obtain

Xy = X1500,001 + 2001X12701 + 9(¥, X11), (21)
whereg(y, x11) collects the terms depending gnandx;;. We divide both sides by
—0p1 = sf;l“j_ (allowable since by assumption on the opening angjles # 0) to

J
X2

obtain forh/ := — ——12 _
sinJ—1

siny’h? ™! 4+ 2sin(y/ 7! +4)h? +siny? ThIT = —g(y,xq1) =1/, (22)
o01

This is Equation (19). Il

Although, generically, we can freely choose ﬁg!kz andailk2 for ky + ke > 1,
rank deficiency of the matri¥I could lead to an additional constraint on the boundary
curves when we considertégher-order saddle point=or a higher-order saddle point,
n-y; = 0for k = 1,2 and this can forca - x{; = 0 so that

2
n-r’= @n-y3+0017&n~y§.
g01
If £ € R™ is a left null-vector ofM, i.e. /M = 0, then we obtain theecond-order
vertex enclosure constraint

oI 1 .

0=£m) = > 7, (~5— + 00, ) -y, (23)
j 01

We therefore focus on the existence of left null-vectors lagwice the rank df1. The

next lemma partly characterizesnk(M) and thereby shows in what cases a second-

order vertex enclosure constraganexist and where no second-order vertex enclosure

constraint exists becaudd is of full rank.



Lemma 5 (rank of M) The rank ofM is at leastn — 2. The matrixM is of full rank,
i.e.rank(M) = n, if either all angles are equal and ¢ {3,4,6}; or if all angles are
less thanr/3.

Proof Since allsiny’/ > 0, we can solve (22) foj = 1,...,n — 2. Therefore the
rank-deficiency is at most 2. Discrete Fourier analysis @t9R] showsM to be of full
rank if all angles are equal and¢ {3,4,6}. If all angles are less than/3 then the
matrix is strictly diagonally dominant and therefore irtitae. [|

We will see below that, fon = 4 and equal anglegank(M) = 2; and forn = 5,
when three angles are/2, thenrank(M) = 3. Discrete Fourier analysis in [Pet92]
showed for all angles equal theink(M) = n—1if n € {3,6} andrank(M) = n—2
whenn = 4. For unequal angles, the analysis is more complex.

As for the first-order vertex enclosure constraint, we cams$oexclusively on the
normal component of the constraints since, in the tangameplwe can always choose
711 andoy; to solve (1,1) for an arbitrary choice &f . Then we can use the tangent
component of;; and the free choice afy; to solve the tangent component of (22)
and (22) (while (22y is solved in terms ok},, j = 2,...,n — 1). Focussing on the
normal component, we note that the right hand side simplifies

- 1
I'l'I'j :70 (27’010’11 +27’110’01 —|—O'02)II'X11 —|—2O’010'1_1H'X1_1 (24)
01

1
+07((7'01)2n - y3 + (2701711 + To2)n - y2)
01

—|—0’01TO_111 . y?? + 2(0’11 + 0'017'1_1)11 . yQ_.

Lemma6 If n = 3 or n = 4, no second-order vertex enclosure constraint exists for
any choice ofy’.

Proof Forn = 3, sin(y~ + v) = —siny™ andM simplifies to

—2siny? sin 3 sin ~*
M= | siny? —2siny®  siny! |. (25)
sin 2 sin 3 —2sin~y!

Since0 < sin+’ < 1, multiples of/ := [1, 1, 1] are the only null-vectors G¥1; that is,
rank(M) = 2. We have a solution iff

rl+r?+r¥=0. (26)
If we chooser, = o/, = 0 for k + [ > 1 then we have a solution since

3
r! +r? 413 —Z ﬂ—k oy

Z j sin(y~ +7) +siny*t
—siny Y



That is, we can choose}, freely and enforce al(1,2)? by choice ofxj, andx},.
Thenxj, is uniquely determined b§2, 1)7=1 and all constraints fok; + k2 = 3 hold.

If n =4, the determinant aM is

2sin(y% + 1) sin * 0 sin ~*
2 o (ad g A2 sl

B sin y 2sin(yt + %) sin y 0

D= 0 sin 3 2sin(y? +~2) sin 2 (27)
sin 3 0 sin v* 2sin(y?® + 1)
=(4 sin(y* + ) sin(y* +4?) + siny’ siny® — siny? sin 74)2 (28)
1_,.2_ .3 4 1 2 .3 _ .4\2
= (?)Sin,y it e it sin bt et et ) (29)
2 2
= 9sin®(v* + %) sin* (7" + 7). (30)

The last equation holds becasgy’ = 27. ThatisD = 0ifand only ify! ++2 = 7
and therefore® +~* = 7; ory? +~° = 7 and therefore* + 4! = 7. ThatisD = 0
if and only if at least one pair of tangents,t? or t2,t*, is parallel.

If v' +~2 = 7 and~? + +3 = 7, i.e. the tangents form an X theim+’ = s,
j=1,2,3,4, for some scalab < s < 1. The matrix

O ®»

(31

»w O w O

O wnw Ow

»w O w O
VAl

is of rank 2 and has left null-vectof$, —c¢, —1, ¢| and[—c¢, —1, ¢, 1] for anyc, for
examplec := 2 cosy*. Without loss of generality, we chooge:= [1, 0, —1, 0] and
ly =0, —1, 0, 1]. Sinceoy; = 1 andrg; = 0and, by (1,1) 4, n-x;; = —n-x;

n-rl = (2711 + 002 — 2077)n X171 + To2n Y2 + 2(011 + T )R- Y, - (32)

Choosing, for exampley;; # 0 in (13), we can enforca - r/ = 0 by choice ofog,
and the constraints can be satisfied.

If v1 +~2 = 7 buty? + 43 # 7 thens; := siny? = siny! ands, := siny® =
sin~* and hence

2 sin(y4 —Il—’yl) siny* 0 ) sin ~?
M= bmoy sir? vt =2 s,i;l(nyY +9%) sir? A (33)
sin * 0 sin * 0
For thisM, rank(M) = 3. Sincesin(y* + ') = cosy*siny! + cosy! sin 74,
/M =0 for¢:=[l, —2cosy*, —1, —2cosv']. (34)
By (13) onen - x’, can be chosen freely and we can set
m-r=n-r' —2cosy'n-r’ —n-r®—2cosyn-r* =0 (35)

10



by judicious choice of,. Il

Our main result, however, proves that a second-order vernelosure constraint
exists for a higher valence and some choice.oforn = 5, we compute

det M = 18 [ [ sin(y? +~7*1)

suggesting an Ansatz with angles+ v2 = .

Theorem 2 (second-order vertex enclosure constraintjor n = 5 a second-order
vertex enclosure constraint exists. That is, there exigﬁemyj so thatM has a left
null vector?, /M = 0; and /r = 0 constrains the curveg’.

Proof We choose)’ so thaty! + 42 = = and ally} so thatn - y} = 0. A left null
vector of M is

0= [s3,255(cas3/s2 + C3) — 84, —85, 52, —Sa], 8; :=sin?, ¢; :=cosy?. (36)

Sincen - y% = 0, due to the uniqueness of the solution to the system, (1) and
equationg1,1)7 imply n - xJ, = 0. Then

- e . o ,
0=/r= ZTgl( le + Oéflﬁﬁ'l)n . yé, Sj—1,j ‘= Slﬂ(’)’J_1 + 'Yj)
i 01
=S N (g s 60y, ((23))
; —Sij_l

has to hold (by assumption on the angles;> OAfor all j). Specifically, let us assume
thatp is a second-order saddle point, so thag) = 0, and choose := % [3,3,2,2,2].
Then

[ 7SJ7 ]:[11§7373]a[ vcjv ]:[OO%%%L (37)
[ooisimtge--] =[404 4 £, andl=[£0F 1 1]

The second-order vertex enclosure constraint simplifies to
0=1[1,0,1,0,0][...,n-y%,..Jf  =n-y} +n-yd. (38)

That is, for the two terms corresponding to the curves withosing tangentsy - y3 =
—n - y3 has to hold. il

The assumption that is smooth up to third order at is important in the proof.
For example, th&'? surface

{(w,y,O) x>0,

($7 y’ 'T;S) xz < 07

11



can be partitioned into &2 patch network that interpolates the five curves

yi(t) := (t,0,0), y2(t) := (0,£,0), y(t) := (—t,0,t%),
yi(t) = (—t, —t,t3), y°(t) := (¢, —t,0).

Heren-x;; = 0,n-yl = 0andn - (y} +y3) = 6 # 0 seemingly contradicting
Theorem 2. Howevex® is notC? across the-axis.

We note that the case = 5 yields a doubly rank-deficient matrixI when~y =
7(2,2,2,1,1].
4[ )y &y Ly

4. Higher valences

Theorem 2 established the existence of a second-ordex\ertdosure constraint.
An explicit proof for valences > 6 requires exhibiting the null-vectdrand hence
a full understanding of the rank &I in its general form. We have not been able to
establish the rank in generality. But we hazard a conjecture

Conjecture 1 If, for somej both

|2sin(7? +~771)| < siny? 4 siny? ! and (39)
|2sin(y? + 47| < siny? Tt 4 sinyd 72
then there exists a choice of the remaining angles for whEls rank-deficient.

The conjecture draws on Lemma 5 which proves full rank wihéris diagonally
dominant. Equation (39) rules out dominance. The conjecitates that when neither
the row nor the column of an index is diagonally dominant tadditional angles can
be found so that the determinantef is zero.

We conclude with a few examples supporting the conjectune.fdllowing choices
of n anglesy’, yield a matrixM with zero determinant:

Examples supporting Conjecture 1.

no|[..,9,..]=
6 | T2,3,1,3,h,3 — ], h:= Satart® ~ 1.636886845
7 %[27272717111a3]7
7 | 2[3,2,1,2,2,h,2 — h], h:= Satany3 ~ 0.1139327031
x . 6 48313 ~
8 | 2[22,1,1,1,1,hd—h], hi=—Satan— 2555 ~ 0.8337394914
12 | Z[4,1,...,1,h, 11— h],  h =~ 2.237657840

It is well-known that if the number of curves is even thgenericallyG' local
network interpolation has no solution [HPS09, Pet91, DS9lhat is, in the cases
where the curve network admits a solution, small pertudpatiof the curves deny a
solution; and if a network denies a solution there is typycab small perturbation to
the curves that allows a solution. We conjecture that inGRecase, the situation is
more in our favor.
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Conjecture 2 If an admissible curve network does not havéalocal network inter-
polation then there exists a small perturbation to a differedmissible curve network
that has aG? local network interpolation.

5. Euler Conditions implying existence of a2 surface

Analogous, to the! case [HPS10b, Theorem 2], we now exhibit Euler Con-
ditions that, if they hold, guarantee a solution to the lawgtivork interpolation. That
is we will exhibit a sufficient condition based only on georigeterms, the tangents,
second and a third fundamental form. Since we assurié Buler condition (2) and
since we are interested in the expansioin a small neighborhood at the common
vertexp, we use special local coordinates.

Definition 2 (height function, directional derivative) Letx’ be a regular patch of a
G' interpolation of a network of curveg’. We choose coordinates so that

x'(0,0):=p=0, z':=x'-n, (z'9"):=(x"-t',x"-b’), b’ :=nxt". (40)

Then, locally, by regularity and smoothness in a neighbothof the origin0, there
exists a functiort’ : R? — R, called theheight functionof the Monge representation
of x%, such that

2H(u,v) = A (2" (u,v), y' (u,v)). (41)

Due to the increased smoothness of ¢freinterpolation patches in Definition 1 af,
we assume’ is C*. The derivative of. with respect to a vector field : R? — R? is
abbreviated as

s—0 S

Recursively, we defineq, q,) := (ha,])[d,]-
We recall that, since thg/ meeting ap = y’(0) are unit-speed curves,
vi=t/,  yi=rbl+rim, (43)

wherer, andx,, are thegeodesicandnormal curvatures of the curve. Denoting the
projection of any curve (¢) of the curve network into the tangent planexés),

2 (0)=t, %"(0)=rgb, andhp,;(0)=0 (44)

since all first order derivatives of the height function \&mby the choice of coordi-
nates.

Interpolation constraints. If A is the local height function of a local network interpo-
lation then additionally for every curwe(t) of the curve network

y(t) = [x(t), 2(8)] = [&(£), h(x(t))]. (45)



That is, the restriction of the graph of the height functionz{t) matches the curve.
Equivalently,

h(x(t)) = z(t). (46)
Since we are interested in local network interpolation, &g on the derivatives of
total degree at most 2+2, the 4-jet(at0). By differentiating (46) and applying the
product and chain rules, we obtain the interpolation constraints ol (recall that we
drop superscripts indicating the curve):

Piw ey (2(2)) = 2'(t), (47)

R (2. (8] (R(2)) + B ) (2(1)) = 27 (2), (48)

hiwt (1), (), (0] T 3h0 (0,0 ()] F e ) = 2 (8), (49)
Pt () (1) 0 (£) 0 (8] 7+ 6P (1) 0 (1) 7 (1)

+3hpr (0,00 (0] + g (120 (0] F hpen o) = 2 (D). (50)

If we evaluate these constraintstat 0 and substitute according to (43) and (44), e.g.
all single differentiation terma,(0) = 0 vanish, then we obtain

hm (0) = 2(0) =0, (470)

6.41(0) = 2 (0) =Ky (48)

hig,¢.,4(0) + 3'€g t,6](0) = 2"(0) =y3(0) - n, (4%)
Rt 66,41 (0) + 64Nt ¢,1) (0)

+3K2hb,b) (0) + 4hje 1 (0) = 214 (0) =yi(0)-n.  (50)

G2 constraints. As a special case of [HLW99], two height functiohsandh™, meet
with G* continuity along the curvg(¢) if and only if there exists a set of vector fields
{d;(t)}%_, nowhere parallel te’(¢) and for{ = 0, ..., k,

hia, (0),....a. ()] (% %(t)) = h[til(t)y,,,,dg(t)] (=(t))- (51)

For k = 2, nearp, we may choosel;(t) = b. To cover the 4-jet, we consider the
derivatives of, iy, andhy, 1,) up to fourth order, total, in the direction of That is,
att = 0, using (43) and (44), we obtain

h: hisy =it g (52)
hig,e4) + 3Kghie b = h[t o) T 3ﬁgh[+t b] (53)

Bt eea) + Ohghieen) +hieny = hii g+ Onghtt o)+ 4kt (54)

hip) : hit ) = Dy by (55)
hiteb) 1 Kglip,b) h[t tb] T “ghftr) b (56)

hiet.e.b) 1 3g it b.b] = hip e on) T 359N b 1) (57)

IS it b,b] = hii b (58)
hit,e,b,6] + Kglb,b,b] h[t tbb T ”gh[b b,b] (59)
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First, we derive the constraint central to tGé vertex constraint in terms of the
height function.

Lemma 7 ([HPS09]) For height functionsh and h* of adjacent surfaces of th@!
patch network,

sin(y +97)

RS (60)
sin vy sin vy

hie- gsiny + h[ﬂ;tﬂsin'ﬁ =k

Sinceh,- ) is the normal component of the corner twist vector for théamer patch
x, (60) equals [HPS10b, Constraint (17)].

Proof By adjacencys and h™ interpolate the curve pairfgy~,y) and (y,y™)
respectively. Sincé™ = cosyt — sinb, t+ = cosy*t + siny b andsiny # 0 for
T >v>0,

—t~ +cosyt  tT —cosyTt

b= - —. (61)
sin 7y sin vy

Then in (55), we can replace differentiation in the directid b with differentiation in
a linear combination of curve tangents:

cosy 1 cosyT 1

[t,t] — h[t,t—] = [t,t] h[ngt+]~ (62)

sin -~y sin 7y siny+t siny*
The claim follows since, by (1)i; = hye.q) = &. Il

We observe that, by Lemma 1, the entries of second fundafferta of the sur-
facex at the vertexp and with principle directions andb arehy; ¢}, h,b]s ib,b)-

Next, we postulate that in addition to (1) there is a trilinfsam [11(v,va, vs)
that satisfies (49 for all curvesy'(t). The existence of this formiZ I implies solvabil-
ity of the equationgk;, ko) with k; + ko = 3 that were the focus of attention due to
Lemma 4. The next theorem confirms that the existence of strdlmaar form implies

the existence of &2 surface network.

Theorem 3 (G2 Euler condition) Let theG! Euler condition hold, i.e. there exists a
symmetric bilinear form/ I, such that/ I (t*, t*) = y% - n = &, for all 4. If there exists
a symmetric trilinear form/ 11, such that for alk

ITI(E ¢, t") = y§ -n — 3k, TI(t,b’) (63)
then the curve networky®(¢)} has aG? patch network.

Proof We define the piecek’ of a height function for each patceti up to third
order by
h'(0,0) := 0, h{,,1(0,0) :=0, hi,, ,1(0,0) = II(vi,vs),

hi 1(0,0) := I11I(v1,v2,v3).

[V17V27V3
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By the G Euler condition and (63), the interpolation constraint8)(dnd (49) hold
and the smoothness constraints (52), (53), (55), (56) aich@d. Therefore, we need
only focus on the derivatives of total degree 4, which, diogphe superscript and
evaluating at0, 0) simplify to the3n constraints

h[t,t,t,t] = h[Jtc,t,t,t]7 (541)
h[t,t,t,b] = h‘[Jir;,tJ;,b]’ (571)
hig t,b,0] = hf:,t,b,b]' (5%)

To show that this system always has a solution, we use thadufarity,

b=oat+ptT, B#0, (a:=a' B=pY. (64)
We can seby ¢ ¢ ) andh?,; £.4] to enforce the interpolation constraints (50) and, §54

The remainin@n constraints,

ahig e e T B = g+ B o e (BT2)
PR g ee) + 208N g .64 + B R g et 6] =
Pl g oo T 208h ey B ey (5%)
simplify due to (54) and sinces # 0 to

h[t,t,t,t+] = h[:7t7t7t+]7 (573)
h[t,t}t‘*',t‘*'] = h[t,t,ﬁ,ﬁ]- (593)

Since alsa™ = 7t + ot~ ando # 0 by regularity, we can expand the 4-linear forms
to

Th[t,t,t,t] + O-h[t*,t,t,t] = h[t,t,t,t*]’ (574)
T2h[t,t,t,t] +270h- p4) + U2h[t—,t—,t,t] = h[+t,t7t+,t+]' (59)

Evidently, the equations of type (§7can be enforced by settirﬂgt_tt_ﬁ] and we can
proceed analogous to Lemma 3. If one, sajs not zero then we can solve all but one
of the equations of type (39for iy - + ¢ and the remaining one f(bzr[lt,,%lytl_’tl]. If
all - = 0 then we have the X configuration and the valenceasdos = 1. The system
is underconstrained and can be solved by fixing,ls@,y’tn’tl’tl] and solving for the
other three expressions of typg - ¢ ¢ 4

This solution to the&? constraints on the Monge form provides a solution to the
component of the fullG? vertex constraints in the normal directionmatBy the argu-
ment preceding (24), this solution can be completed, inwetangential directions,
to a solution of the fullG? vertex constraints. Therefore Theorem 1 can be invoked to
provide a local construction of the surface. (]
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6. Conclusion

We established the existence of a second-order vertexameloonstraint that gov-
erns what admissible curve networks allow f@f interpolation by smooth patches.
While the first-order vertex enclosure constraint stronghstricts all even-patch con-
figurations, the second-order vertex enclosure constigiatmore subtle constraint.
Most input curve meshes that satisfy the first-order vertetasure constraint can be
expected to also satisfy the second-order vertex enclasungraint and only a minor-
ity will not.

We fully analyzed the practically important cases of vate8¢} and 5 and charac-
terized the second-order vertex enclosure constraintdfienee 5. All other cases still
lack a complete characterization of the null-spac&bfLemma 5 establishes bounds
on the angle distribution that guarantee that a curve nétiwas a local network in-
terpolation. Conversely, we showed that a solution ta(ffevertex constraints allows
constructing aG? local network interpolation.

We used the Monge representation and directional derasidf the local height
function to show that a geometric rather than an algelrdi€uler condition, in terms
of second and third order multi-linear forms, suffices torgatee the existence of a
G? local network interpolation. This notation allows in priple to investigate higher,
kth-order interpolation and smoothness constraints. Bilitpagh patterns emerge in
constraints analogous to (§through (5@) and (52) through (59), it is not clear that
for x > 2, Euler conditions in terms of the second to the- 1st order multi-linear
forms suffice to ensure solvability of constraints involyitne 2k jets of the surfaces
meeting at the central point.
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