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Abstract

Prescribing a network of curves to be interpolated by a surface model is a standard
approach in geometric design. Wheren curves meet, even when they afford a com-
mon normal direction, they need to satisfy an algebraic condition, called the vertex
enclosure constraint, to allow for an interpolating piecewise polynomialC1 surface.
Here we prove the existence of an additional, more subtle constraint that governs the
admissibility of curve networks forG2 interpolation. Additionally, analogous to the
first-order case but using the Monge representation of surfaces, we give a sufficient
geometric,G2 Euler condition on the curve network. When satisfied, this condition
guarantees existence of an interpolating surface.

1. Introduction

One much-studied paradigm of geometric design is surface interpolation of a given
network ofC2 curve segments (see Figure 1). While manyC2 constructions exist that
join n patches (e.g. [Hah89, GH95, Ye97, Rei98, Pra97, YZ04, LS08,KP09]), these
constructionsgeneratethe boundary curves that emanate from the common point, i.e.
rely on full control of these curves. In many design scenarios, however, the curves are
feature curves. That is, they aregivenand may only be minimally adjusted. It is well-
known, that interpolating a network of curves by smooth patches to create aC1 surface
is not always possible when the number of curves is even, since an additional algebraic
constraint must hold for thenormal componentof the curve expansion at the common
point. This is thefirst-order vertex enclosure constraint [Pet91, DS91, HPS09]. Here
we discuss whether curve nets have to meet additionalsecond-order vertex enclosure
constraintsto allow for theirG2 interpolation by smooth surface patches. The two
papers on this subject we are aware of are [DS92] which sketches how one might solve
theG2 constraints but does not discuss whether they can be solved and [Pet92] which
analyzes the case when curves join with equal angles.

In particular, we want to determine constraints, if any, onn curve segmentsyj ,
j = 1, . . . , n joining at a vertex so thatn sufficiently smooth patchesxj surrounding
the vertex and havingyj−1 andyj as boundaries can join withC2 continuity, after
reparameterization of the surface patches by some regular smooth mapsΦj : R2 → R2.
The paper analyzes when smooth interpolating surfaces can be constructed. It neither
suggests heuristics for the generation of curve networks, nor discusses how to obtain
‘fair’ surfaces.
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Figure 1: (left) Network of curve segments. This paper focuses on (right) local network interpolation (see
also Definition 1): curvesyj , j ∈ Zn, meeting at a pointp are given and pairwise interpolating patchesx

j

are sought. The arrow-labels1 and2 indicate the domain parameters associated with the boundary curves of
the patches, e.g.∂1xj+1(ν, 0) = ∂2x

j(0, ν).

Overview. Section 2 defines the problem and introduces the notation andthe con-
straints fork = 2 resulting from expanding (7) at(0, 0). Section 3 shows that solvabil-
ity of theG2 vertex constraints implies the existence of a solution to the local network
interpolation. Section 4 classifies theG2 constraints at the vertex and analyzes their
solvability for a fixed curve network. Theorem 2 establishesthe existence of second-
order vertex enclosure constraints and therefore of a minimal set of constraints on the
curve net. The section ends with a conjecture on the properties of a matrix that holds
the key to the complete characterization of second-order vertex enclosure constraints.
Section 5 provides a sufficient geometric condition for the existence of aG2 patch net-
work interpolating a curve network. This is the analogue of theG1 Euler Condition of
[HPS09, HPS10b], but forG2 networks.

2. Smooth Network Interpolation

As illustrated in Figure 1, we considern curvesyj : R → R3 that start at a point
p ∈ R3, and we aim at filling-in between the curves using patchesxj : R2 → R3,
j ∈ Zn. In the following we assume that the angleγj , betweenyj andyj+1, lies
strictly in (0, π) 1 We note that the angleγj corresponds to patchxj+1 and assume for
notational simplicity that thecurves are arclength-parameterized. In particular, each
tangent vectortj := y

j
1(0) is a unit vector. Differential geometry provides us with two

fundamental properties that the curve network{yj} must satisfy to be part of a regular
C2 surface. There must exist a vectorn, the normal atp, andII(·, ·), the second
fundamental form acting on the tangent plane components of its two arguments, such
that with the abbreviationyj

2 := ∂2
2y

j ,

tj · n = 0, and II(tj , tj) = y
j
2 · n, j ∈ Zn. (1)

1 As shown forG1 continuity [HPS10b], quite different constraints are needed forG2 interpolation by
smooth surface patches when the angle isπ or 0.
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The existence of a second fundamental form implies theG1 Euler condition that there
exist constantsκ1, κ2 ∈ R and anglesφj measured from some fixed direction in the
tangent plane such that

κj := y
j
2 · n = κ1 cos

2 φj + κ2 sin
2 φj . (2)

Just like two linearly independenttj define a unique normaln up to sign, three pair-
wise linearly independenttj and corresponding normal curvatures can be used to
uniquely define a second fundamental formII(, ). When the tangents form an X,
i.e. when there are just two pair-wise linearly independentdirections among the tan-
gentstj , then there is a one-parameter family of second fundamentalforms (cf. (13))
consistent with the curve network.

Definition 1 (Smooth Network Interpolation) Let

yj : R → R3, ν 7→ yj(ν), j ∈ Zn = {1, . . . , n} (3)

be a sequence ofn regular,C2k continuous curves inR3 that meet at a common point
p in a plane with oriented normaln and at anglesγj less thanπ (cf. Figure 1):

yj(0) = p, tj := (yj)′(0) ⊥ n, 0 < γj := ∠(tj , tj+1) < π. (4)

AGk surface network interpolationof {yj} is a sequence of patches

xj : R2 → R3, (s, t) 7→ xj(s, t), j ∈ Zn, (5)

that are regular andC2k at p, that interpolate the curve network according to

xj(ν, 0) = yj−1(ν), xj(0, ν) = yj(ν), (6)

(with superscript modulon) and that connect pairwise so thatGk constraints (see e.g.
[PBP02] or [Pet02]) hold forΦj

at (u, 0) ∂k1
1 ∂k2

2 xj+1 = ∂k1
1 ∂k2

2 (xj ◦Φj), for 0 ≤ ki ≤ k. (7)

where{Φj}j∈Zn
are suitable, sayC2k regular maps. Smooth Network Interpolation

restricted to the neighborhood ofp is calledlocal network interpolation.

Since the reparameterization appears only on one side, the formulation may appear
asymmetric; but withΦj regular, we can invert the relationship – so this formulation
is as general and powerful as reparameterizing bothxj+1 andxj . The increased2kth
order smoothness at vertices is natural for spline constructions and, intentionally, rules
out Gregory’s rational constructions [Gre74, MW91, Her96].Finally, we note that by
[HLW99] and regularity, (7) is equivalent to∂i

2x
j+1(u, 0) = ∂i

2(x
j ◦ Φj)(u, 0) for

0 ≤ i ≤ k.
In the following we will focus on smooth network interpolation whenk = 2. We

will assume that the givencurve network is admissible: that is, every curve of the net-
work is at leastC4 and regular, and the network satisfies (1). We want to characterize
when a curvature continuous surface exists that consists ofregularC4 surface patches
and interpolates the admissible network.
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Notation and constraints. Since our focus is on curvature continuity atp = xj(0, 0),
we abbreviate thekth derivative ofyj evaluated at0 asyj

k and write

x
j
k1k2

:= (∂k1
1 ∂k2

2 xj)(0, 0), τ jk1k2
:= (∂k1

1 ∂k2
2 τ j)(0, 0), etc.. (8)

Wedrop superscriptswhenever the context makes them unambiguous, e.g. we write

xk1k2
:= x

j
k1k2

, x−
k1k2

:= x
j−1
k1k2

, . . . , (9)

yk := y
j
k = x0k, y

−
k := y

j−1
k = xk0, y

+
k := y

j+1
k = x+

0k. (10)

That isxk1k2
is a vector inR3 andnot a vector of vectors[. . . ,xj

k1k2
, . . .].

We alsotag the equations arising from(7) for a specific choice of(k1, k2) andj as
(k1, k2)

j . Again, to minimize ink, we leave out the superscript when possible. By (6),
Φj has the expansion

Φj(u, v) :=

[

(σj
01 + σj

11u+ . . .)v +(σj
02 + σj

12u+ . . .) v
2

2 + . . .

u+ (τ j01 + τ j11u+ . . .)v +(τ j02 + τ j12u+ . . .) v
2

2 + . . .

]

. (11)

We call theG1 and theG2 constraints labelled(i, l)j for i+l ≤ 4, i.e. the constraints on
the 4-jet of derivatives up to total degree 4 atp, theG2 vertex constraints. Smoothness
constraints on the 4-jet suffice to locally characterize theG2 construction and studying
them suffices to determine whether aC2 surface can be constructed: When satisfied
in conjunction with the interpolation constraints, they enable a local network interpo-
lation and this allows for aG2 surface network interpolation of{yj} (see Lemma 1).
Substituting the curves according to (6), we obtain from (7)at(0, 0), via the chain rule,
theG1 constraints

y+
1 = y−

1 σ01 + y1τ01 (0,1)

x+
11 = y−

1 σ11 + x11σ01 + y2τ01 + y1τ11 (1,1)

x+
21 = 2x11σ11 + y−

1 σ21 + x12σ01 + y3τ01 + 2y2τ11 + y1τ21 (2,1)

x+
31 = 3x12σ11 + 3x11σ21 + 3y−

1 σ31 + x13σ01 + y4τ01 + 3y3τ11

+ 3y2τ21 + y1τ31 (3,1)

and theG2 constraints

y+
2 = y−

2 σ
2
01 + 2σ01x11τ01 + y−

1 σ02 + y2τ
2
01 + y1τ02 (0,2)

x+
12 = 2σ11y

−
2 σ01 + 2σ11x11τ01 + y−

1 σ12 + x21σ
2
01 + 2σ01x12τ01

+ x11σ02 + y3τ
2
01 + y2τ02 + 2τ11x11σ01 + 2τ11y2τ01 + y1τ12 (1,2)

x+
22 = 2τ21y2τ01 + 4τ11y3τ01 + 4σ11x11τ11 + 2τ21x11σ01 + 4σ11x12τ01

+ 2σ21x11τ01 + 2σ01x13τ01 + 2σ21y
−
2 σ01 + 4σ11x21σ01 + 2y2τ12

+ 4τ11x12σ01 + 2x11σ12 + y−
1 σ22 + x12σ02 + y3τ02 + y1τ22

+ 2y−
2 σ

2
11 + x22σ

2
01 + y4τ

2
01 + 2y2τ

2
11. (2,2)
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We start with equations(i, l)j for i+l ≤ 2 and check that they are compatible with,
and generically implied by (1). Recall thatx is the patch interpolating the curvesy−

andy with tangentst− andt respectively andx+ its consecutive patch interpolatingy,
andy+ with tangentt+. First, we derive a second fundamental formII atp compatible
with at least three curves.

Lemma 1 (II derivation) Equation(1) definesII unlessn = 4 and the tangents form
an X. If the tangents form an X then one additional valueII(t1, t2) := w11 definesII.

Proof If the tangents do not form an X then there are three curves with pairwise inde-
pendent tangents and these defineII uniquely (see e.g. [HPS10b, Lemma 1]). Other-
wiseII is underconstrained and it suffices to specifyII(t1, t2) := w11 sincet1 and
t2 are linearly independent. |||

Conversely,II defines the second-order derivatives so that constraints(i, l)j for
i+ l ≤ 2 can be enforced.

Lemma 2 (II and equations(i, l)j for i+ l ≤ 2) Given a normaln and a second
fundamental formII satisfying(1), the constraints(i, l)j for i + l ≤ 2 always have a
solution.

Proof Assumption (1),left, and regularity imply that constraints of type(0, 1)j hold for
some choice ofσ01 andτ01. In particulart+ = σ01t

−+ τ01t. For the remaining equa-
tions, we first focus on the normal coordinate. We can enforcethe normal component
of (1, 1)j ,

n · x+
11 = n · x11σ01 + n · y2τ01, (1,1n)

by settingn · x11 := II(t−, t) and substitutingt+ = σ01t
− + τ01t:

II(t, t+) = II(t−, t)σ01 + II(t, t)τ01. (12)

For an X configuration, we see that

w11 = x0
11 · n = x2

11 · n = −x1
11 · n = −x3

11 · n. (13)

To verify that the normal components of equations(0, 2)j hold, we take the dot product
with the normaln and apply (1),right,

y+
2 · n =(1) II(t+, t+) =(0,1) II(σ01t

− + τ01t, σ01t
− + τ01t) (14)

= σ2
01II(t

−, t−) + 2τ01σ01II(t
−, t) + τ201II(t

,t)

= σ2
01y

−
2 · n+ 2τ01σ01x11 · n+ τ201y2 · n.

The constantsτ j02 andσj
02 can be chosen to enforce the tangential coordinates. Simi-

larly, the tangential coordinates of equations(1, 1)j can be enforced by choosingτ j11
andσj

11. |||

We assume in the following thatτ jik andσj
ik for 0 ≤ i, k ≤ 1 have been fixed.
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3. Constraints on boundary curves arising fromG
2 continuity and their suffi-

ciency

First we show that, if we can find a solution satisfying theG2 vertex constraints
then there exists a solution to the local network interpolation. Later, we analyze under
what conditions theG2 vertex constraints are solvable.

Given a network of curves and a solution to theG2 vertex constraints, we construct
a local network interpolation as follows.

Theorem 1 (Sufficiency ofG2 vertex constraints) If, for some choice of 4-jet ofxj

andΦj , theG2 vertex constraints hold then there exists a local network interpolation
{xk}.

Proof We drop the superscriptk. Assume that theG2 vertex constraints are satisfied
by

xij ,ij ∈ I, σ(u, v) :=
∑

ij∈J

σij

ui

i!

vj

j!
, τ(u, v) := u+

∑

ij∈J

τij
ui

i!

vj

j!
(15)

whereI := {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2)}, J := I ∪ {(0, 1), (0, 2)}.
We define a base surface

x̄(s, t) := y−(s) + y(t)− y0 +
∑

ij∈I

xij

si

i!

tj

j!
(16)

and functions

f+1 (t) :=
∂

∂v
(x̄(σ(u, v), τ(u, v))− x̄+(u, v))(t, 0),

f+2 (t) :=
∂2

∂v2
(x̄(σ(u, v), τ(u, v))− x̄+(u, v))(t, 0).

By definition ofx̄ and local network interpolation it can be shown that

dkf1
dtk

(t) = 0, 0 ≤ k ≤ 3,
dkf2
dtk

(t) = 0, 0 ≤ k ≤ 2. (17)

We now define the surface patches of theG2 vertex constraint network as

x(s, t) := x̄(s, t) + f1(s)t+ f2(s)
t2

2
. (18)

By constructionx interpolates bothy− andy and by definition of{f+1 , f+2 }, the con-
ditions forG2 continuity along the common boundaryy(t) hold,

x+
v (u, 0) =

∂

∂v
(x(σ(u, v), τ(u, v))(u, 0),

x+
vv(u, 0) =

∂2

∂v2
(x(σ(u, v), τ(u, v))(u, 0).
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Specifically,f1 andf2 do not contribute to the partial derivatives of these equations so
that the partials ofx can be replaced with those ofx̄. |||
Above, by (18), the last two equations of the proof are equivalent to the defining equa-
tions of f1 andf2. Also x(u, v) was chosen to make the proof as simple as possible.
In general,x can be defined as

x(s, t) = y−(s) + y(t)− y0 +
∑

ij∈I

xij

si

i!

tj

j!
+

f1(s)t+ f2(s)
t2

2
+ g1(t)s+ g2(t)

s2

2
+m(s, t)

s3t3

36

wherem is unrestricted,d
kgi

dtk
(0) = 0, i = 1, 2, k = 0, 1, 2, and{f+1 , f+2 ,g1,g2 } must

satisfy constraints generated from theG2 edge constraints (7). Finally, the reparame-
terization,Φ, can have higher-order terms.

Now we focus on solvability of theGs constraints,s = 0, 1, 2. The solvability of
(k1, k2)

j for k1 + k2 = 2 follows from Lemma 2. Our main goal is therefore to
find the localGs constraints(k1, k2)j of Section 2 for3 ≤ k1 + k2 ≤ 4 in terms of
the higher-order derivatives,xj

21, xj
12, xj

31, xj
13, xj

22 and for the reparameterizations’
derivativesτ jk1k2

, σj
k1k2

for i, k > 1. We first consider the equations(k1, k2)j when
k1 + k2 = 4.

Lemma 3 The equations(k1, k2)j , wherek1 + k2 = 4 and1 ≤ k1, k2 can always be
solved in terms ofxj

31, xj
13, xj

22.

Proof We have more vector-valued variables,x31, x13, x22, than constraints: (3,1),
(2,2). Equation (3,1) expressesx+

31 in terms ofx13 so that we can focus on solving
(2,2) in terms ofx13 andx22. Equation (2,2) can be arranged as

x+
22 = σ2

01x22 + 2τ01σ01x13 + f(y,x11,x12,x21), (2,2)

wheref(y,x11,x12,x12) is the collection of terms on the boundary or appearing in
lower-order equations. Clearly, we can solven − 1 of these equations forx+

22. In
general, this is all we can hope for since, for equal anglesγj , the analysis in [Pet92]
shows that the constraint matrix for solving (2,2) in terms of just x22 is rank-deficient
by 1.

If the tangents do not form an X configuration, i.e. not all consecutive pairs of
angles add toπ, then at least oneτ j01 6= 0. Let τ101 6= 0. Then, for any choice ofx1

22,
we can solve (2,2), forx2

22, . . .x
n
22,x

1
13.

If the tangents form an X then the valence must ben = 4 andτ01 = 0 and we
solve the tangential component forx2

22, . . .x
4
22,x

1
11, σ12 (we may needσ12 to choose

w11 6= 0 for Lemma 6). |||

Our analysis therefore focusses on the case ofk1 + k2 = 3 derivatives. If the
corresponding constraints are solvable then no second-order vertex enclosure constraint
exists and a construction is always possible. However, the situation is not that simple
as the next lemma shows.
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Lemma 4 The equations(k1, k2)j , wherek1 + k2 = 3 and1 ≤ k1, k2, can be solved
in terms ofxj

12 andx
j
21 if and only if the followingn × n system of equations has a

solution:

Mh = r, Mjk :=



















sin γ, k = j − 1

2 sin(γ− + γ), k = j

sin γ−, k = j + 1

0, else,

(19)

rj :=
1

σ01
(2τ01σ11 + 2τ11σ01 + σ02)x11 (20)

+
1

σ01
((τ01)

2y3 + 2τ01τ11y2 + 2σ01σ11y
−
2 + τ02y2 + τ12y1 + σ12y

−
1 )

+σ01(2σ
−
11x

−
11 + τ−01y

−
3 + 2τ−11y

−
2 + τ−21y

−
1 + σ−

21y
j−2
1 ).

In (20), we used the default notation on the right hand side that suppresses the super-
scriptj. We cannot omit the superscript onrj .

Proof We eliminatex21 by substituting (2,1)j−1 into (1,2)j to obtain

x+
12 = x−

12σ
−
01σ

2
01 + 2σ01x12τ01 + g(y,x11), (21)

whereg(y,x11) collects the terms depending ony andx11. We divide both sides by
−σ01 := sin γ

sin γ− (allowable since by assumption on the opening anglessin γ 6= 0) to

obtain forhj := −
x
j
12

sin γj−1

sin γjhj−1 + 2 sin(γj−1 + γj)hj + sin γj−1hj+1 =
1

σ01
g(y,x11) =: rj . (22)

This is Equation (19). |||

Although, generically, we can freely choose allτ jk1k2
andσj

k1k2
for k1 + k2 > 1,

rank deficiency of the matrixM could lead to an additional constraint on the boundary
curves when we consider ahigher-order saddle point. For a higher-order saddle point,
n · yj

k = 0 for k = 1, 2 and this can forcen · xj
11 = 0 so that

n · rj =
(τ01)

2

σ01
n · y3 + σ01τ

−
01n · y−

3 .

If ℓ ∈ Rn is a left null-vector ofM, i.e. ℓM = 0, then we obtain thesecond-order
vertex enclosure constraint

0 = ℓ(rn) =
∑

j

τ j01(
τ j01ℓ

j

σj
01

+ σj+1
01 ℓj+1)n · yj

3. (23)

We therefore focus on the existence of left null-vectors andhence the rank ofM. The
next lemma partly characterizesrank(M) and thereby shows in what cases a second-
order vertex enclosure constraintcanexist and where no second-order vertex enclosure
constraint exists becauseM is of full rank.
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Lemma 5 (rank of M) The rank ofM is at leastn− 2. The matrixM is of full rank,
i.e.rank(M) = n, if either all angles are equal andn 6∈ {3, 4, 6}; or if all angles are
less thanπ/3.

Proof Since allsin γj > 0, we can solve (22) forj = 1, . . . , n − 2. Therefore the
rank-deficiency is at most 2. Discrete Fourier analysis in [Pet92] showsM to be of full
rank if all angles are equal andn 6∈ {3, 4, 6}. If all angles are less thanπ/3 then the
matrix is strictly diagonally dominant and therefore invertible. |||

We will see below that, forn = 4 and equal angles,rank(M) = 2; and forn = 5,
when three angles areπ/2, thenrank(M) = 3. Discrete Fourier analysis in [Pet92]
showed for all angles equal thatrank(M) = n−1 if n ∈ {3, 6} andrank(M) = n−2
whenn = 4. For unequal angles, the analysis is more complex.

As for the first-order vertex enclosure constraint, we can focus exclusively on the
normal component of the constraints since, in the tangent plane, we can always choose
τ11 andσ11 to solve (1,1) for an arbitrary choice ofxj

11. Then we can use the tangent
component ofx11 and the free choice ofσ02 to solve the tangent component of (22)1

and (22)n (while (22)j is solved in terms ofxj
12, j = 2, . . . , n − 1). Focussing on the

normal component, we note that the right hand side simplifiesto

n · rj =
1

σ01
(2τ01σ11 + 2τ11σ01 + σ02)n · x11 + 2σ01σ

−
11n · x−

11 (24)

+
1

σ01
((τ01)

2n · y3 + (2τ01τ11 + τ02)n · y2)

+σ01τ
−
01n · y−

3 + 2(σ11 + σ01τ
−
11)n · y−

2 .

Lemma 6 If n = 3 or n = 4, no second-order vertex enclosure constraint exists for
any choice ofγj .

Proof Forn = 3, sin(γ− + γ) = − sin γ+ andM simplifies to

M =





−2 sin γ2 sin γ3 sin γ1

sin γ2 −2 sin γ3 sin γ1

sin γ2 sin γ3 −2 sin γ1



 . (25)

Since0 < sin γj ≤ 1, multiples ofℓ := [1, 1, 1] are the only null-vectors ofM; that is,
rank(M) = 2. We have a solution iff

r1 + r2 + r3 = 0. (26)

If we chooseτ jkl = σj
kl = 0 for k + l > 1 then we have a solution since

r1 + r2 + r3 =
3

∑

j=1

τ j01(
τ j01
σj
01

+ σj+1
01 )yj

3

=
3

∑

j=1

τ j01
sin(γ− + γ) + sin γ+

− sin γ
y
j
3 = 0.
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That is, we can choosex1
12 freely and enforce all(1, 2)j by choice ofx2

12 andx3
12.

Thenxj
21 is uniquely determined by(2, 1)j−1 and all constraints fork1 + k2 = 3 hold.

If n = 4, the determinant ofM is

D =

∣

∣

∣

∣

∣

∣

∣

∣

2 sin(γ4 + γ1) sin γ4 0 sin γ1

sin γ2 2 sin(γ1 + γ2) sin γ1 0
0 sin γ3 2 sin(γ2 + γ3) sin γ2

sin γ3 0 sin γ4 2 sin(γ3 + γ4)

∣

∣

∣

∣

∣

∣

∣

∣

(27)

=
(

4 sin(γ4 + γ1) sin(γ1 + γ2) + sin γ1 sin γ3 − sin γ2 sin γ4
)2

(28)

=

(

3 sin
γ1 − γ2 − γ3 + γ4

2
sin

γ1 + γ2 − γ3 − γ4

2

)2

(29)

= 9 sin2(γ2 + γ3) sin2(γ1 + γ2). (30)

The last equation holds because
∑

γj = 2π. That isD = 0 if and only if γ1 + γ2 = π
and thereforeγ3 + γ4 = π; or γ2 + γ3 = π and thereforeγ4 + γ1 = π. That isD = 0
if and only if at least one pair of tangents,t1,t3 or t2,t4, is parallel.

If γ1 + γ2 = π andγ2 + γ3 = π, i.e. the tangents form an X thensin γj = s,
j = 1, 2, 3, 4, for some scalar0 < s ≤ 1. The matrix

M =









0 s 0 s
s 0 s 0
0 s 0 s
s 0 s 0









(31)

is of rank 2 and has left null-vectors[1, −c, −1, c] and[−c, −1, c, 1] for anyc, for
examplec := 2 cos γ4. Without loss of generality, we chooseℓ1 := [1, 0, −1, 0] and
ℓ2 := [0, −1, 0, 1]. Sinceσ01 = 1 andτ01 = 0 and, by (1,1)j−1, n · x−

11 = −n · x11

n · rj := (2τ11 + σ02 − 2σ−
11)n · x11 + τ02n · y2 + 2(σ11 + τ−11)n · y−

2 . (32)

Choosing, for example,w11 6= 0 in (13), we can enforcen · rj = 0 by choice ofσ02

and the constraints can be satisfied.
If γ1 + γ2 = π but γ2 + γ3 6= π thens1 := sin γ2 = sin γ1 ands4 := sin γ3 =

sin γ4 and hence

M =









2 sin(γ4 + γ1) sin γ4 0 sin γ1

sin γ1 0 sin γ1 0
0 sin γ4 −2 sin(γ1 + γ4) sin γ1

sin γ4 0 sin γ4 0









. (33)

For thisM, rank(M) = 3. Sincesin(γ4 + γ1) = cos γ4 sin γ1 + cos γ1 sin γ4,

ℓM = 0 for ℓ := [1, −2 cos γ4, −1, −2 cos γ1]. (34)

By (13) onen · xj
11 can be chosen freely and we can set

ℓn · r = n · r1 − 2 cos γ4n · r2 − n · r3 − 2 cos γ1n · r4 = 0 (35)

10



by judicious choice ofσj
02. |||

Our main result, however, proves that a second-order vertexenclosure constraint
exists for a higher valence and some choice ofγ. Forn = 5, we compute

detM = 18
∏

sin(γj + γj+1)

suggesting an Ansatz with anglesγ1 + γ2 = π.

Theorem 2 (second-order vertex enclosure constraint)For n = 5 a second-order
vertex enclosure constraint exists. That is, there exist anglesγj so thatM has a left
null vectorℓ, ℓM = 0; and ℓr = 0 constrains the curvesyj .

Proof We chooseγj so thatγ1 + γ2 = π and allyj
2 so thatn · yj

2 = 0. A left null
vector ofM is

ℓ := [s3, 2s5(c2s3/s2 + c3)− s4,−s5, s2,−s2], sj := sin γj , cj := cos γj . (36)

Sincen · yj
2 = 0, due to the uniqueness of the solution to theG1 system, (1) and

equations(1, 1)j imply n · xj
11 = 0. Then

0 = ℓr =
∑

j

τ j01(
τ j01ℓ

j

σj
01

+ σj+1
01 ℓj+1)n · yj

3, sj−1,j := sin(γj−1 + γj)

=
∑

j

sj−1,j

−sjsj−1
(sj−1,jℓ

j + sj+1ℓ
j+1)n · yj

3, ((23)5)

has to hold (by assumption on the angles,sj > 0 for all j). Specifically, let us assume
thatp is a second-order saddle point, so thatn·yj

2 = 0, and chooseγ := π
6 [3, 3, 2, 2, 2].

Then

[. . . , sj , . . .] = [ 1 1
√

3
2

√
3

2

√
3

2 ], [. . . , cj , . . .] = [ 0 0 1
2

1
2

1
2 ], (37)

[. . . , sj−1,j , . . .] = [ 1
2 0 1

2

√
3

2

√
3

2 ], andℓ = [
√

3
2 0

√
3

2 1 −1 ].

The second-order vertex enclosure constraint simplifies to

0 = [1, 0, 1, 0, 0][. . . ,n · yj
3, . . .]

t = n · y1
3 + n · y3

3. (38)

That is, for the two terms corresponding to the curves with opposing tangents,n ·y1
3 =

−n · y3
3 has to hold. |||

The assumption thatx is smooth up to third order atp is important in the proof.
For example, theC2 surface

{

(x, y, 0) x ≥ 0,

(x, y, x3) x < 0,

11



can be partitioned into aG2 patch network that interpolates the five curves

y1(t) := (t, 0, 0), y2(t) := (0, t, 0), y3(t) := (−t, 0, t3),

y4(t) := (−t,−t, t3), y5(t) := (t,−t, 0).

Heren · x11 = 0, n · y1
2 = 0 andn · (y1

3 + y3
3) = 6 6= 0 seemingly contradicting

Theorem 2. Howeverx5 is notC3 across they-axis.

We note that the casen = 5 yields a doubly rank-deficient matrixM whenγ =
π
4 [2, 2, 2, 1, 1].

4. Higher valences

Theorem 2 established the existence of a second-order vertex enclosure constraint.
An explicit proof for valencesn ≥ 6 requires exhibiting the null-vectorℓ and hence
a full understanding of the rank ofM in its general form. We have not been able to
establish the rank in generality. But we hazard a conjecture.

Conjecture 1 If, for somej both

|2 sin(γj + γj−1)| < sin γj + sin γj−1 and (39)

|2 sin(γj + γj−1)| < sin γj+1 + sin γj−2

then there exists a choice of the remaining angles for whichM is rank-deficient.

The conjecture draws on Lemma 5 which proves full rank whenM is diagonally
dominant. Equation (39) rules out dominance. The conjecture states that when neither
the row nor the column of an index is diagonally dominant thenadditional angles can
be found so that the determinant ofM is zero.

We conclude with a few examples supporting the conjecture. The following choices
of n anglesγj , yield a matrixM with zero determinant:

Examples supporting Conjecture 1.
n [. . . , γj , . . .] =

6 π
6 [2, 3, 1, 3, h, 3− h], h := 6

π
atan2

√
3

3 ≈ 1.636886845
7 π

6 [2, 2, 2, 1, 1, 1, 3],

7 π
6 [3, 2, 1, 2, 2, h, 2− h], h := 6

π
atan

√
3

29 ≈ 0.1139327031

8 π
6 [2, 2, 1, 1, 1, 1, h, 4− h], h := − 6

π
atan 483

√
3

−147−672
√
6
≈ 0.8337394914

12 π
12 [4, 1, . . . , 1, h, 11− h], h ≈ 2.237657840

It is well-known that if the number of curves is even thengenericallyG1 local
network interpolation has no solution [HPS09, Pet91, DS91]. That is, in the cases
where the curve network admits a solution, small perturbations of the curves deny a
solution; and if a network denies a solution there is typically no small perturbation to
the curves that allows a solution. We conjecture that in theG2 case, the situation is
more in our favor.
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Conjecture 2 If an admissible curve network does not have aG2 local network inter-
polation then there exists a small perturbation to a different admissible curve network
that has aG2 local network interpolation.

5. Euler Conditions implying existence of aG2 surface

Analogous, to theG1 case [HPS10b, Theorem 2], we now exhibitG2 Euler Con-
ditions that, if they hold, guarantee a solution to the localnetwork interpolation. That
is we will exhibit a sufficient condition based only on geometric terms, the tangents,
second and a third fundamental form. Since we assume aG1 Euler condition (2) and
since we are interested in the expansion ofhi in a small neighborhood at the common
vertexp, we use special local coordinates.

Definition 2 (height function, directional derivative) Letxi be a regular patch of a
G1 interpolation of a network of curvesyj . We choose coordinates so that

xi(0, 0) := p = 0, zi := xi · n, (xi, yi) := (xi · ti,xi · bi), bi := n× ti. (40)

Then, locally, by regularity and smoothness in a neighborhood of the origin0, there
exists a functionhi : R2 → R, called theheight functionof the Monge representation
of xi, such that

zi(u, v) = hi(xi(u, v), yi(u, v)). (41)

Due to the increased smoothness of theG2 interpolation patches in Definition 1 atp,
we assumehi is C4. The derivative ofh with respect to a vector fieldd : R2 → R2 is
abbreviated as

h[d(x,y)](x, y) := lim
s→0

h((x, y) + sd(x, y))− h(x, y)

s
. (42)

Recursively, we defineh[d1,d2] := (h[d1])[d2].

We recall that, since theyj meeting atp = yj(0) are unit-speed curves,

y
j
1 = tj , y

j
2 = κj

gb
j + κj

nn, (43)

whereκg andκn are thegeodesicandnormal curvatures of the curve. Denoting the
projection of any curvey(t) of the curve network into the tangent plane asx(t),

x′(0) = t, x′′(0) = κgb, andh[xk](0) = 0 (44)

since all first order derivatives of the height function vanish by the choice of coordi-
nates.

Interpolation constraints. If h is the local height function of a local network interpo-
lation then additionally for every curvey(t) of the curve network

y(t) = [x(t), z(t)] = [x(t), h(x(t))]. (45)
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That is, the restriction of the graph of the height function to x(t) matches the curve.
Equivalently,

h(x(t)) = z(t). (46)

Since we are interested in local network interpolation, we focus on the derivatives of
total degree at most 2+2, the 4-jet at(0, 0). By differentiating (46) and applying the
product and chain rules, we obtain the4n interpolation constraints onh (recall that we
drop superscripts indicating the curve):

h[x′(t)](x(t)) = z′(t), (47)

h[x′(t),x′(t)](x(t)) + h[x′′(t)](x(t)) = z′′(t), (48)

h[x′(t),x′(t),x′(t)] + 3h[x′(t),x′′(t)] + h[x(3)(t)] = z′′′(t), (49)

h[x′(t),x′(t),x′(t),x′(t)] + 6h[x′(t),x′(t),x′′(t)]

+3h[x′′(t),x′′(t)] + 4h[x′(t),x(3)(t)] + h[x(4)(t)] = z(4)(t). (50)

If we evaluate these constraints att = 0 and substitute according to (43) and (44), e.g.
all single differentiation termsh[v](0) = 0 vanish, then we obtain

h[t](0) = z′(0) = 0, (470)

h[t,t](0) = z′′(0) = κn, (480)

h[t,t,t](0) + 3κgh[t,b](0) = z′′′(0) = y3(0) · n, (490)

h[t,t,t,t](0) + 6κgh[t,t,b](0)

+3κ2
gh[b,b](0) + 4h[t,x3](0) = z(4)(0) = y4(0) · n. (500)

G2 constraints. As a special case of [HLW99], two height functions,h andh+, meet
with Gk continuity along the curvey(t) if and only if there exists a set of vector fields
{di(t)}

k
i=1 nowhere parallel tox′(t) and forℓ = 0, . . . , k,

h[d1(t),...,dℓ(t)](x(t)) = h+
[d1(t),...,dℓ(t)]

(x(t)). (51)

For k = 2, nearp, we may choosedi(t) = b. To cover the 4-jet, we consider the
derivatives ofh, h[b] andh[b,b] up to fourth order, total, in the direction oft. That is,
at t = 0, using (43) and (44), we obtain

h : h[t,t] = h+
[t,t] (52)

h[t,t,t] + 3κgh[t,b] = h+
[t,t,t] + 3κgh

+
[t,b] (53)

h[t,t,t,t] + 6κgh[t,t,b] + 4h[t,x3] = h+
[t,t,t,t] + 6κgh

+
[t,t,b] + 4h+

[t,x3](54)

h[b] : h[t,b] = h+
[t,b] (55)

h[t,t,b] + κgh[b,b] = h+
[t,t,b] + κgh

+
[b,b] (56)

h[t,t,t,b] + 3κgh[t,b,b] = h+
[t,t,t,b] + 3κgh

+
[t,b,b] (57)

h[b,b] : h[t,b,b] = h+
[t,b,b] (58)

h[t,t,b,b] + κgh[b,b,b] = h+
[t,t,b,b] + κgh

+
[b,b,b] (59)
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First, we derive the constraint central to theG1 vertex constraint in terms of the
height function.

Lemma 7 ([HPS09]) For height functionsh and h+ of adjacent surfaces of theG1

patch network,

h[t−,t]sin γ + h+
[t,t+]sin γ

+ = κn

sin(γ + γ+)

sin γ sin γ+
. (60)

Sinceh[t−,t] is the normal component of the corner twist vector for the surface patch
x, (60) equals [HPS10b, Constraint (17)].

Proof By adjacency,h andh+ interpolate the curve pairs(y−,y) and (y,y+)
respectively. Sincet− = cos γt− sin γb, t+ = cos γ+t+ sin γ+b andsin γ 6= 0 for
π > γ > 0,

b =
−t− + cos γt

sin γ
=

t+ − cos γ+t

sin γ+
. (61)

Then in (55), we can replace differentiation in the direction ofb with differentiation in
a linear combination of curve tangents:

cos γ

sin γ
h[t,t] −

1

sin γ
h[t,t−] = −

cos γ+

sin γ+
h+
[t,t] +

1

sin γ+
h+
[t,t+]. (62)

The claim follows since, by (1),h+
[t,t] = h[t,t] = κ. |||

We observe that, by Lemma 1, the entries of second fundamental form of the sur-
facex at the vertexp and with principle directionst andb areh[t,t], h[t,b], h[b,b].

Next, we postulate that in addition to (1) there is a trilinear form III(v1,v2,v3)
that satisfies (490) for all curvesyi(t). The existence of this formIII implies solvabil-
ity of the equations(k1, k2) with k1 + k2 = 3 that were the focus of attention due to
Lemma 4. The next theorem confirms that the existence of such atrilinear form implies
the existence of aG2 surface network.

Theorem 3 (G2 Euler condition) Let theG1 Euler condition hold, i.e. there exists a
symmetric bilinear form,II, such thatII(ti, ti) = yi

2 ·n = κi
n for all i. If there exists

a symmetric trilinear form,III, such that for alli

III(ti, ti, ti) = yi
3 · n− 3κi

gII(t
i,bi) (63)

then the curve network{yi(t)} has aG2 patch network.

Proof We define the pieceshi of a height function for each patchxi up to third
order by

hi(0, 0) := 0, hi
[v1]

(0, 0) := 0, hi
[v1,v2]

(0, 0) := II(v1,v2),

hi
[v1,v2,v3]

(0, 0) := III(v1,v2,v3).
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By theG1 Euler condition and (63), the interpolation constraints (48) and (49) hold
and the smoothness constraints (52), (53), (55), (56) and (58) hold. Therefore, we need
only focus on the derivatives of total degree 4, which, dropping the superscript and
evaluating at(0, 0) simplify to the3n constraints

h[t,t,t,t] = h+
[t,t,t,t], (541)

h[t,t,t,b] = h+
[t,t,t,b], (571)

h[t,t,b,b] = h+
[t,t,b,b]. (591)

To show that this system always has a solution, we use that by regularity,

b = αt+ βt+, β 6= 0, (α := αi, β = βi). (64)

We can seth[t,t,t,t] andh+
[t,t,t,t] to enforce the interpolation constraints (50) and (541).

The remaining2n constraints,

αh[t,t,t,t] + βh[t,t,t,t+] = αh+
[t,t,t,t] + βh+

[t,t,t,t+], (572)

α2h[t,t,t,t] + 2αβh[t,t,t,t+] + β2h[t,t,t+,t+] =

α2h+
[t,t,t,t] + 2αβh+

[t,t,t,t+] + β2h+
[t,t,t+,t+], (592)

simplify due to (541) and sinceβ 6= 0 to

h[t,t,t,t+] = h+
[t,t,t,t+], (573)

h[t,t,t+,t+] = h+
[t,t,t+,t+]. (593)

Since alsot+ = τt+ σt− andσ 6= 0 by regularity, we can expand the 4-linear forms
to

τh[t,t,t,t] + σh[t−,t,t,t] = h+
[t,t,t,t+], (574)

τ2h[t,t,t,t] + 2τσh[t−,t,t,t] + σ2h[t−,t−,t,t] = h+
[t,t,t+,t+]. (594)

Evidently, the equations of type (574) can be enforced by settingh+
[t,t,t,t+] and we can

proceed analogous to Lemma 3. If one, sayτ1 is not zero then we can solve all but one
of the equations of type (594) for h[t−,t−,t,t] and the remaining one forh1

[tn,t1,t1,t1]. If
all τ = 0 then we have the X configuration and the valence is4 andσ = 1. The system
is underconstrained and can be solved by fixing, sayh1

[tn,tn,t1,t1] and solving for the
other three expressions of typeh[t−,t−,t,t].

This solution to theG2 constraints on the Monge form provides a solution to the
component of the fullG2 vertex constraints in the normal direction atp. By the argu-
ment preceding (24), this solution can be completed, in the two tangential directions,
to a solution of the fullG2 vertex constraints. Therefore Theorem 1 can be invoked to
provide a local construction of the surface. |||
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6. Conclusion

We established the existence of a second-order vertex enclosure constraint that gov-
erns what admissible curve networks allow forG2 interpolation by smooth patches.
While the first-order vertex enclosure constraint strongly restricts all even-patch con-
figurations, the second-order vertex enclosure constraintis a more subtle constraint.
Most input curve meshes that satisfy the first-order vertex enclosure constraint can be
expected to also satisfy the second-order vertex enclosureconstraint and only a minor-
ity will not.

We fully analyzed the practically important cases of valence 3,4 and 5 and charac-
terized the second-order vertex enclosure constraint for valence 5. All other cases still
lack a complete characterization of the null-space ofM. Lemma 5 establishes bounds
on the angle distribution that guarantee that a curve network has a local network in-
terpolation. Conversely, we showed that a solution to theG2 vertex constraints allows
constructing aG2 local network interpolation.

We used the Monge representation and directional derivatives of the local height
function to show that a geometric rather than an algebraicG2 Euler condition, in terms
of second and third order multi-linear forms, suffices to guarantee the existence of a
G2 local network interpolation. This notation allows in principle to investigate higher,
kth-order interpolation and smoothness constraints. But, although patterns emerge in
constraints analogous to (470) through (500) and (52) through (59), it is not clear that
for k > 2, Euler conditions in terms of the second to thek + 1st order multi-linear
forms suffice to ensure solvability of constraints involving the2k jets of the surfaces
meeting at the central point.
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