Skip to main content

ACO Based Energy-Balance Routing Algorithm for WSNs

  • Conference paper
Book cover Advances in Swarm Intelligence (ICSI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6145))

Included in the following conference series:

Abstract

Ant Colony Optimization (ACO) is a heuristic bionic evolutive algorithm. In ACO algorithm, every ant has simple function, works with simple principle, which suits the characteristic of Wireless Sensor Networks (WSNs) and the request of its routing design. An ACO based Energy-Balance Routing Algorithm(ABEBR) was presented to balance the energy consumption in WSNs. Furthermore, a new pheromone update operator was designed to integrate energy consumption and hops into routing choice. This paper compares ABEBR with some classic routing algorithms (LEACH, DD and Flooding). Simulation results show that the presented algorithm can avoid energy working out too early on the less hops path, obviously balance the energy consumption and prolong the lifetime of WSNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, Z., Crowcroft, J.: Quality of Service Routing for Supporting Multimedia Applications. IEEE Journal on Selected Areas in Communications 14(7), 1228–1234 (1996)

    Article  Google Scholar 

  2. Duan, H.B.: Ant Colony Algorithm: Theory and Applications, pp. 24–26 (2005)

    Google Scholar 

  3. Zhang, Y., Kuhn, L., Fromherz, M.: Improvements on Ant Routing for Sensor Networks. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 154–165. Springer, Heidelberg (2004)

    Google Scholar 

  4. Singh, G., Das, S., Gosavi, S., Pujar, S.: Ant Colony Algorithms for Steiner Trees: An Application to Routing in Sensor Networks. In: Recent Developments in Biologically Inspired Computing, pp. 181–206. Idea Group Publishing (2004)

    Google Scholar 

  5. Alonso, J., Dunkels, A., Voigt, T.: Bounds on the energy consumption of routings in wireless sensor nodes. In: WiOpt 2004: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, Cambridge, UK (2004)

    Google Scholar 

  6. Al-Karaki, J.N., Kamal, A.E.: Routing Techniques in Wireless Sensor Networks: A Survey. In: Wireless Communications, pp. 6–28. IEEE, Los Alamitos (2004)

    Google Scholar 

  7. Madiraju, S., Mallanda, C.: EBRP: Energy Band based Routing Protocol for Wireless Sensor Networks. In: Intelligent Sensors, Sensor Networks and Information Processing Conference (2004)

    Google Scholar 

  8. Min, R., Bhardwaj, M., Cho, S.-H., Shih, E., Sinha, A., Wang, A., Chandrakasan, A.: Low-Power Wireless Sensor Networks. In: The 14th International Conference on VLSI Design, p. 205 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, X., Hong, B. (2010). ACO Based Energy-Balance Routing Algorithm for WSNs. In: Tan, Y., Shi, Y., Tan, K.C. (eds) Advances in Swarm Intelligence. ICSI 2010. Lecture Notes in Computer Science, vol 6145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13495-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13495-1_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13494-4

  • Online ISBN: 978-3-642-13495-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics