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Abstract. Numberjack is a modelling package written in Python for embedding

constraint programming and combinatorial optimisation into larger applications.

It has been designed to seamlessly and efficiently support a number of underlying

combinatorial solvers. This paper illustrates many of the features of Numberjack

through the use of several combinatorial optimisation problems.

1 Introduction

We present Numberjack3, a Python-based constraint programming system. Number-

jack brings the power of combinatorial optimisation to Python programmers by sup-

porting the specification of complex problem models and specifying how these should

be solved. Numberjack provides a common API for constraint programming, mixed-

integer programming and satisfiability solvers. Currently supported are: the CP solvers

Mistral and Gecode; a native Python CP solver; the MIP solver SCIP; and the satisfi-

ability solver MiniSat4. Users of Numberjack can write their problems once and then

specify which solver should be used. Users can incorporate combinatorial optimisation

capabilities into any Python application they build, with all the benefits that it brings.

2 Modelling in Numberjack

Numberjack is provided as a Python module. To use Numberjack one must import all

Numberjack’s classes, using the command: from Numberjack import *. Simi-

larly, one needs to import the modules corresponding to the solvers that will be invoked

in the program, for instance: import Mistral or import Gecode. The Number-

jack module essentially provides a class Model whereas the solver modules provide a

class Solver, which are built from a Model. The structure of a typical Numberjack

program is presented in Figure 1. Notice that it is possible to use several types of solver

to solve the same model by explicitly invoking the modules. To solve a model, the

various methods implemented in the back-end solvers can be invoked through Python.

⋆ Supported by Science Foundation Ireland Grant Number 05/IN/I886.
3 Available under LGPL from http://numberjack.ucc.ie
4 Mistral: http://4c.ucc.ie/˜ehebrard/Software.html; Gecode: http://

gecode.org; SCIP: http://scip.zib.de/; MiniSat: http://minisat.se;



from Numberjack import * # Import all Numberjack classes

import Gecode # Import the Gecode solver interface

import Mistral # Import the Mistral solver interface

model = Model() # Declare a new model

... # Define the constraints and objectives

gsolver = Gecode.Solver(model) # Declare a Gecode solver

msolver = Mistral.Solver(model) # Declare a Mistral solver

gsolver.solve() # Solve the model with Gecode

msolver.solve() # Solve the model with Mistral

Fig. 1. The structure of a typical Numberjack program.

Almost every statement in Numberjack is an expression. Variables are expressions,

and constraints are expressions on a set of sub-expressions. Variable objects are created

by specifying its domain by passing a lower and an upper bound, or a set of values. One

can also use floating point values for the bounds, however the result will depend on

the back-end solver. MIP solvers will, by default, treat variables declared with floating

point values as continuous and integer otherwise. A model is a set of expressions.

It is possible to define classes of objects to help write concise models. For instance,

the objects VarArray and Matrix are syntactic sugars for one-dimensional and two-

dimensional arrays of Numberjack expressions, respectively. The Matrix object al-

lows us to reference the rows, the columns, and a flattened version of the matrix using

.row, .col and .flat, respectively. The overloaded bracket ([]) operator tied to

the Python object method getitem. The operator takes one argument representing

the index of the object to be returned. For VarArray and Matrix objects this argu-

ment can either be a Numberjack expression or an integer. The bracket operator of the

Matrix object returns the VarArray object representing the row at the given index.

When the index argument is itself a Numberjack expression, the result is interpreted as

an Element constraint. Objective functions are also expressions.

2.1 Some Example Models

Costas Array. A Costas array5 is an arrangement of N points on a N×N checkerboard,

such that each column or row contains only one point, and that all of the N(N −

1)/2 vectors defined by these points are distinct. We model this problem in Figure 2

as follows: for each row, we introduce a variable whose value represents the column at

which a point is placed in this row. To ensure that no two points share the same column,

we post an AllDiff constraint on the rows (Line 4). To each value y ∈ [1..N − 2],
we can map a set of vectors whose vertical displacements are equal, i.e., the vectors

defined by the points (row[i], i) and (row[i + y], i + y). To ensure that these vectors

are distinct, we use another AllDiff constraint.

Golomb Ruler. In the Golomb ruler problem the goal is to minimise the position of the

last mark on a ruler such that the distance between each pair of marks is different. The

Numberjack model is shown in Figure 3.

5 http://mathworld.wolfram.com/CostasArray.html



N = 10

row = [Variable(1,N) for i in range(N)]

model = Model()

model += AllDiff(row)

for y in range(N-2):

model += AllDiff([row[i] - row[i+y+1] for i in range(N-y-1)])

solver = Mistral.Solver(model)

solver.solve()

Fig. 2. A Numberjack model for a 10 × 10 instance of the Costas array problem.

M = [Variable(1,rulerSize) for i in range(N)]

model = Model()

model += AllDiff([M[i]-M[j] for i in range(1,N) for j in range(i)])

model += Minimise(marks[nbMarks-1]) # The objective function

Fig. 3. A Numberjack model for the Golomb ruler problem.

Magic Square. In this problem one wants every number between 1 and N2 to be placed

in an N ×N matrix such that every row, column and diagonal sum to the same number.

A model for that problem making use of the Matrix class is presented in Figure 4.

N = 10

sum_val = N*(N*N+1)/2

square = Matrix(N,N,1,N*N)

model = Model(

# The values in each cell must be distinct

AllDiff(square.flat),

# Each row and column must add to sum_val

[Sum(row) == sum_val for row in square.row],

[Sum(col) == sum_val for col in square.col],

# Each diagonal must add to sum_val

Sum([square[a][a] for a in range(N)]) == sum_val,

Sum([square[a][N-a-1] for a in range(N)]) == sum_val )

Fig. 4. A Numberjack model for the Magic Square problem.

Quasigroups. A quasigroup is m×m multiplication defined by a matrix which from a

Latin square, i.e. every element occurs once in every row and column. The result of the

product a ∗ b corresponds to the element at row a and column b of the matrix. Figure 5

presents a model for the problem in which for all a, b we have: ((b ∗ a) ∗ b) ∗ b = a.

2.2 Extending Numberjack

Numberjack provides a facility to add custom constraints. Consider the following opti-

cal network monitoring problem taken from [1]. An optical network consists of nodes



N = 8

x = Matrix(N,N,N)

model = Model(

# The rows and columns form a Latin square

[AllDiff(row) for row in x.row],

[AllDiff(col) for col in x.col],

# Enforce the QG5 Property

[x[ x[ x[b][a] ][ b ] ][b] == a for a in range(N) for b in range(N)] )

Fig. 5. A Numberjack model for the Quasigroup Existence problem.

and fibre channels. When a node fails in the network, all lightpaths passing through that

node are affected. Monitors attached to the nodes present in the affected lightpaths trig-

ger alarms. Hence, a single fault will generate multiple alarms. By placing monitors in

the right way, we can minimize the number of alarms generated for a fault while keep-

ing the fault-detection coverage maximum. In the problem we model below, we add the

additional constraint that for any node failure that might occur, it triggers a unique set

of alarms. This problem requires that each combination of monitor alarms is unique for

each node fault. This requires that every pair of vectors of variables differ on at least one

element. This can be specified in Numberjack by introducing a HammingDistance

constraint. The Numberjack model for this problem is presented as Figure 6.

class HammingDistance(Expression):

def __init__(self, row1, row2):

Expression.__init__(self, "HammingDistance")

self.set_children(row1+row2)

self.rows = [row1, row2]

def decompose(self):

return [Sum([(var1 != var2) for var1, var2 in zip(self.rows[0],self.rows[1])])]

Nodes = 6 # We consider a graph with 6 nodes

Monitors = 10 # Faults on the nodes trigger 10 monitors

alarm_matrix = [ # Each vector specifies the monitors triggered by each node

[1, 2, 3, 10], [ 7 ],

[ 6, 7, ], [ 5, 6, 7, ],

[ 2, 3, 4, 8, 10], [ 3, 4, 8, 9, 10] ]

monitors_on = VarArray(Monitors) # The decision variables

being_monitored = Matrix(Nodes, Monitors)

model = Model() # Specify the model...

model.add( Minimise(Sum(monitors_on)) )

model.add( [ monitor == ( Sum(col) >= 1 ) for col, monitor in

zip(being_monitored.col, monitors_on) ])

model.add( [ Sum(row) > 0 for row in being_monitored] )

model.add([HammingDistance(x1,x2) > 0 for x1, x2 in pair_of(being_monitored)])

for monitored_row, possible_monitor_row in zip(being_monitored, alarm_matrix):

model.add([monitored_row[idx - 1] == 0 for idx in

[x for x in range(Monitors) if x not in possible_monitor_row]])

Fig. 6. A Numberjack model for the optical network monitoring problem [1].



3 Experiments

Experiments ran on an Intel Xeon 2.66GHz machine with 12GB of ram on Fedora 9.

Experiment 1: Overhead due to Numberjack. We first assess the overhead of using a

solver within Numberjack. We ran three back-end solvers, Mistral, MiniSat and SCIP

on three arythmetic puzzles (Magic Square, Costas Array and Golomb Ruler). For each

run, we used a profiler to separate the time spent executing Python code from the time

spent executing code from the back-end solver. We report the results in Table 1. For

every problem we report results averaged across 7 instances6 of various size and 10

randomized runs each. The time spent executing the Python code is very modest, and

of course independent of the hardness of the instance.

Table 1. Solver Time vs Python Time (Arithmetic puzzles).

Instance
Mistral Time (s) MiniSat Time (s) SCIP Time (s)

Solver Python Solver Python Solver Python

Magic-Square (3 to 9) 0.0205 0.0101 59.7130 0.0116 35.85 0.0107

Costas-Array (6 to 12) 0.0105 0.0098 0.0666 0.0095 78.2492 0.0134

Golomb-Ruler (3 to 9) 0.5272 0.0056 56.0008 0.0055 118.1979 0.0076

Experiment: Comparison of Back-end Solvers. It is well known in the fields of Con-

straint Programming and Mixed Integer Programming that the areas have different

strengths and weaknesses. For example, the CP and SAT solvers were much more effi-

cient than the MIP solver for the arythmetic puzzles used in the first set of experiments

(See Table 1). However, of course, the situation can be completely reversed on prob-

lems more suited to mathematical programming. We ran Numberjack on the Warehouse

allocation problem (P34 of the CSPLib). This problem is easily solved using the Mixed

Integer Solver SCIP as back end (1.86 seconds and 4.8 nodes in average over the 5

instances on the CSPLib) whilst Mistral ran over a time limit of one hour, staying well

over the optimal allocation and exploring several million nodes.

4 Conclusion

Numberjack is a Python-based constraint programming system. It brings the power of

combinatorial optimisation to Python programmers by supporting the specification of

complex models and specifying how these should be solved. We presented the features

of Numberjack through the use of several combinatorial problems.
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