
On Matrices, Automata, and Double Counting

Nicolas Beldiceanu1, Mats Carlsson2, Pierre Flener3, and Justin Pearson3

1 Mines de Nantes, LINA UMR CNRS 6241, FR-44307 Nantes, France
Nicolas.Beldiceanu@emn.fr

2 SICS, P.O. Box 1263, SE-164 29 Kista, Sweden
Mats.Carlsson@sics.se

3 Uppsala University, Department of Information Technology, Box 337, SE-751 05 Sweden
Pierre.Flener@it.uu.se, Justin.Pearson@it.uu.se

Abstract Matrix models are ubiquitous for constraint problems. Many such prob-
lems have a matrix of variablesM, with the same constraint defined by a finite-
state automaton A on each row ofM and a global cardinality constraint gcc on
each column ofM. We give two methods for deriving, by double counting, ne-
cessary conditions on the cardinality variables of the gcc constraints from the
automaton A. The first method yields linear necessary conditions and simple
arithmetic constraints. The second method introduces the cardinality automaton,
which abstracts the overall behaviour of all the row automata and can be encoded
by a set of linear constraints. We evaluate the impact of our methods on a large
set of nurse rostering problem instances.

1 Introduction

Several authors have shown that matrix models are ubiquitous for constraint problems.
Despite this fact, only a few constraints that consider a matrix and some of its con-
straints as a whole have been considered: the allperm [8] and lex2 [7] constraints
were introduced for breaking symmetries in a matrix, while the colored matrix con-
straint [13] was introduced for handling a conjunction of gcc constraints on the rows and
columns of a matrix. We focus on another recurring pattern, especially in the context of
personnel rostering, which can be described in the following way.

Given three positive integers R, K, and V , we have an R×K matrixM of decision
variables that take their values within the finite set of values {0, 1, . . . , V − 1}, as well
as a V ×K matrixM# of cardinality variables that take their values within the finite set
of values {0, 1, . . . , R}. Each row r (with 0 ≤ r < R) ofM is subject to a constraint
defined by a finite-state automatonA [2,12]. For simplicity, we assume that each row is
subject to the same constraint. Each column k (with 0 ≤ k < K) ofM is subject to a
gcc constraint that restricts the number of occurrences of the values according to column
k ofM#: let #v

k denote the number of occurrences of value v (with 0 ≤ v < V) in
column k of M, that is, the cardinality variable in row v and column k of M#. We
call this pattern the matrix-of-automata-and-gcc pattern. In the context of personnel
rostering, a possible interpretation of this pattern is:

– R, K, and V respectively correspond to the number of persons, days, and types of
work (e.g., morning shift, afternoon shift, night shift, or day off) we consider.

mailto:Nicolas.Beldiceanu@emn.fr
mailto:Mats.Carlsson@sics.se
mailto:Pierre.Flener@it.uu.se
mailto:Justin.Pearson@it.uu.se

s2s1s0
d← 0c← 0, d← 0

c← c− d + 1, d← 1 d← 0 c← c− d + 1, d← 1

t1 : 1 t3 : 0

t2 : 1t0 : 0 t4 : 0

c← c− d + 1, d← 1

Figure 1. Automaton associated with the global contiguity constraint, with initial state
s0, final states s0, s1, s2, and transitions t0, t1, t2, t3, t4 labelled by values 0 or 1.
The missing transition for value 1 from state s2 is assumed to go to a dead state. The
automaton has been annotated with counters [2]: the final value of counter c is the
number of stretches of value 0, whereas d is an auxiliary counter.

– Each row r ofM corresponds to the work of person r over K consecutive days.
– Each column k ofM corresponds to the work by the R persons on day k.
– The automaton A on the rows of M encodes the rules of a valid schedule for a

person; it can be the product of several automata defining different rules.
– The gcc constraint on column k represents the demand of services for day k. In

this context, the cardinality associated with a given service can either be fixed or be
specified to belong to a given range.

A typical problem with this kind of pattern is the lack of interaction between the row
and column constraints. This is especially problematic when, on the one hand, the row
constraint is a sliding constraint expressing a distribution rule on the work, and, on the
other hand, the demand profile (expressed with the gcc constraints) varies drastically
from one day to the next (e.g., during weekends and holidays in the context of personnel
rostering). This issue is usually addressed by experienced constraint programmers by
manually adding necessary conditions (implied constraints) that are most of the time
based on some simple counting conditions depending on some specificity of the row
constraints. Let us first introduce a toy example to illustrate this phenomenon.

Example 1. Take a 3×7 matrixM of 0/1 variables (i.e., R = 3, K = 7, V = 2), where
on each row we have a global contiguity constraint (all the occurrences of value 1
are contiguous) for which Figure 1 depicts a corresponding automaton (the reader can
ignore the assignments to counters c and d at this moment). In addition,M# defines
the following gcc constraints on the columns ofM:

– Columns 0, 2, 4, and 6 ofM must each contain two 0s and a single 1.
– Columns 1, 3, and 5 ofM must each contain two 1s and a single 0.

A simple double counting argument proves that there is no solution to this problem.
Indeed, consider the sequence of numbers of occurrences of 1s on the seven columns
of M, that is 1, 2, 1, 2, 1, 2, 1. Each time there is an increase of the number of 1s
between two adjacent columns, a new group of consecutive 1s starts on at least one row
of the matrix. From this observation we can deduce that we have at least four groups of
consecutive ones, namely one group starts at the first column (since implicitly before the
first column we have zero occurrences of value 1) and three groups start at the columns

2

containing two 1s. But since we have a global contiguity constraint on each row of the
matrix and since the matrix only has three rows, there is a contradiction.

The contributions of this paper include:

– Methods for deriving necessary conditions on the cardinality variables of the gcc
constraints from string properties that hold for an automatonA (Sections 2.1 to 2.3).

– A method for annotating an automaton A with counter variables extracting string
properties from A (Section 2.4).

– Another method for deriving necessary conditions on the cardinality variables,
called the cardinality automaton, which simulates the overall behaviour of all the
row automata (Section 3).

– An evaluation of the impact of our methods in terms of runtime and search effort
on a large set of nurse rostering problem instances (Section 4).

Since our methods essentially generate linear constraints as necessary conditions, they
may also be relevant in the context of linear programming.

2 Deriving Necessary Conditions from String Properties

We develop a first method for deriving necessary conditions for the matrix-of-automata-
and-gcc pattern. The key idea is to approximate the set of solutions to the row constraint
by string properties such as:

– Bounds on the number of letters, words, prefixes, or suffixes (see Section 2.1).
– Bounds on the number of stretches of a given value (see Section 2.2).
– Bounds on the lengths of stretches of a given value (see Section 2.3).

We first develop a set of formulae expressed in terms of simple arithmetic constraints
for such string properties. Each formula gives a necessary condition for the matrix-
of-automata-and-gcc pattern provided that the set of solutions of the row constraint
satisfies a given string property. We then show how to extract automatically such string
properties from an automaton (see Section 2.4) and outline a heuristic for selecting rel-
evant string properties (see Section 2.5). String properties can also be seen as a commu-
nication channel for enhancing the propagation between row and column constraints.

In Sections 2.1 and 2.2, the derived constraints use the well-known combinatorial
technique of double counting (see for example [9]). Here we use the two-dimensional
structure of the matrix, counting along the rows and the columns. Some feature is con-
sidered, such as the number of appearances of a word or stretch, and the occurrences
of that feature are counted for the rows and columns separately. When the counting
is exact, these two values will coincide. In order to derive useful constraints that will
propagate, we derive lower and upper bounds on the given feature occurring when coun-
ted columnwise. These are then combined into inequalities saying that the sum of these
column-based lower bounds is at most the sum of given row-based upper bounds, or
that the sum of these column-based upper bounds is at least the sum of given row-based
lower bounds.

3

2.1 Constraining the Number of Occurrences of Words, Prefixes, and Suffixes
A word is a fixed sequence of values, seen as letters. Suppose we have the following
bounds for each row on how many times a given word occurs (possibly in overlapping
fashion) on that row, all numbering starting from zero:

– LW r(w) is the minimum number of times that the word w occurs on row r.
– UW r(w) is the maximum number of times that the word w occurs on row r.

Note that letters are just singleton words. It is not unusual that the LW r(w) (or UW r(w))
are equal for all rows r for a given word w. From this information, we now infer by
double counting two necessary conditions for each such word.

Necessary Conditions. Let |w| denote the length of word w, and let wj denote the jth

letter of word w. The following bounds

lwk(w) = max

|w|−1∑
j=0

#
wj

k+j

− (|w| − 1) ·R, 0

 (1)

uwk(w) =
|w|−1
min
j=0

#
wj

k+j (2)

correspond respectively to the minimum and maximum number of occurrences of word
w that start at column k ∈ [0,K − |w|]. These bounds can be obtained as follows:

– Since the cardinality variables only count the number of times a value occurs in
each column and does not constrain where it occurs, the lower bound (1) is the
worst-case intersection of all column value occurrences.

– A word cannot occur more often than its minimally occurring letter, hence bound (2).

Note that if some cardinality variable is not fixed, then the expressions above should be
interpreted as arithmetic constraints. We get the following necessary conditions:

K−|w|∑
k=0

lwk(w) ≤
R−1∑
r=0

UW r(w) (3a)
K−|w|∑
k=0

uwk(w) ≥
R−1∑
r=0

LW r(w) (3b)

Note that (3b) trivially holds when all LW r(w) are zero.

Generalisation: Replacing Each Letter by a Set of Letters. In the previous para-
graph, all letters of the word w were fixed. We now consider that each letter of a word
can be replaced by a finite non-empty set of possible letters. For this purpose, let wj

now denote the jth set of letters of word w. Hence the bounds lwk(w) and uwk(w) are
now defined by aggregation as follows:

lwk(w) = max

|w|−1∑
j=0

∑
c∈wj

#c
k+j

− (|w| − 1) ·R, 0

 (4)

uwk(w) =
|w|−1
min
j=0

∑
c∈wj

#c
k+j

 (5)

4

We get the same necessary conditions as before. Note that (4) and (5) specialise respect-
ively to (1) and (2) when all wj are singleton sets.

Extension: Constraining Prefixes and Suffixes. We now consider constraints on a
word occurring as a prefix (the first letter of the word is at the first position of the row)
or suffix (the last letter of the word is at the last position of the row). Suppose we have
the following bounds:

– LWPr(w) is the minimum number of times (0 or 1) word w is a prefix of row r.
– UWPr(w) is the maximum number of times (0 or 1) word w is a prefix of row r.
– LWS r(w) is the minimum number of times (0 or 1) word w is a suffix of row r.
– UWS r(w) is the maximum number of times (0 or 1) word w is a suffix of row r.

From these bounds, we get the following necessary conditions:

lw0(w) ≤
R−1∑
r=0

UWPr(w) (6a) uw0(w) ≥
R−1∑
r=0

LWPr(w) (6b)

lwK−|w|(w) ≤
R−1∑
r=0

UWS r(w) (7a) uwK−|w|(w) ≥
R−1∑
r=0

LWS r(w) (7b)

Note that (6b) trivially holds when all LWPr(w) are zero, and that (7b) trivially holds
when all LWS r(w) are zero. Note that these necessary conditions also hold when each
letter of a constrained prefix or suffix is replaced by a set of letters.

2.2 Constraining the Number of Occurrences of Stretches

Given a row r of fixed variables and a value v, a stretch of value v is a maximum
sequence of values on row r that only consists of value v. Suppose now that we have
bounds for each row on how many times a stretch of a given value v can occur on that
row:

– LS r(v) is the minimum number of stretches of value v on row r.
– US r(v) is the maximum number of stretches of value v on row r.

It is not unusual that the LS r(v) (or US r(v)) are equal for all rows r for a given value v.

Necessary Conditions. The following bounds (under the convention that #v
−1 = 0 for

each value v)

ls+k (v) = max(0,#v
k −#v

k−1) (8)

us+k (v) = #v
k −max(0,#v

k−1 +#v
k −R) (9)

correspond respectively to the minimum and maximum number of stretches of value v
that start at column k. Again, if some cardinality variable is not fixed, then the expres-
sions above should be interpreted as arithmetic constraints. The intuitions behind these
formulae are as follows:

5

– If the number of occurrences of value v on column k (i.e., #v
k) is strictly greater

than the number of occurrences of value v on column k − 1 (i.e., #v
k−1), then this

means that at least #v
k −#v

k−1 new stretches of value v can start at column k.
– If the total of the number of occurrences of value v on column k (i.e., #v

k) and
the number of occurrences of value v on column k − 1 (i.e., #v

k−1) is strictly
greater than the number of rows R, then the quantity #v

k−1+#v
k−R represents the

minimum number of stretches of value v that cover both column k− 1 and column
k. From this minimum intersection we get the maximum number of new stretches
that can start at column k.

By aggregating these bounds for all the columns of the matrix, we get the following
necessary conditions through double counting:

K−1∑
k=0

ls+k (v) ≤
R−1∑
r=0

US r(v) (10a)
K−1∑
k=0

us+k (v) ≥
R−1∑
r=0

LS r(v) (10b)

Similarly, the following bounds (under the convention that #v
K = 0 for each value v)

ls−k (v) = max(0,#v
k −#v

k+1) (11)

us−k (v) = #v
k −max(0,#v

k+1 +#v
k −R) (12)

correspond respectively to the minimum and maximum number of stretches of value v
that end at column k. We get similar necessary conditions:

K−1∑
k=0

ls−k (v) ≤
R−1∑
r=0

US r(v) (13a)
K−1∑
k=0

us−k (v) ≥
R−1∑
r=0

LS r(v) (13b)

Note that (10b) and (13b) trivially hold when all LS r(v) are zero.

Generalisation: Replacing the Value by a Set of Values. In the previous paragraph,
the value v of a stretch was fixed. We now consider that a stretch may consist of a finite
non-empty set, denoted by v̂, of possible letters that are all considered equivalent. Let
#v̂

k denote the quantity
∑

v∈v̂(#
v
k), that is the total number of occurrences of the values

of v̂ in column k. The bounds (8), (9), (11), (12) are generalised as follows:

ls+k (v̂) = max(0,#v̂
k −#v̂

k−1) (14)

us+k (v̂) = #v̂
k −max(0,#v̂

k−1 +#v̂
k −R) (15)

ls−k (v̂) = max(0,#v̂
k −#v̂

k+1) (16)

us−k (v̂) = #v̂
k −max(0,#v̂

k+1 +#v̂
k −R) (17)

and we get the following necessary conditions:

K−1∑
k=0

ls+k (v̂) ≤
∑
v∈v̂

R−1∑
r=0

US r(v) (18a)
K−1∑
k=0

us+k (v̂) ≥
∑
v∈v̂

R−1∑
r=0

LS r(v) (18b)

6

K−1∑
k=0

ls−k (v̂) ≤
∑
v∈v̂

R−1∑
r=0

US r(v) (19a)
K−1∑
k=0

us−k (v̂) ≥
∑
v∈v̂

R−1∑
r=0

LS r(v) (19b)

Note that (18a), (18b), (19a), and (19b) specialise respectively to (10a), (10b), (13a),
and (13b) when v̂ = {v}.

2.3 Constraining the Minimum and Maximum Length of a Stretch

Suppose now that we have lower and upper bounds on the length of a stretch of a given
value v for each row:

– LLS (v) is the minimum length of a stretch of value v in every row.
– ULS (v) is the maximum length of a stretch of value v in every row.

Necessary Conditions.

∀k ∈ [0,K − 1] : #v
k ≥

k∑
j=max(0,k−LLS(v)+1)

ls+j (v) (20)

∀k ∈ [0,K − 1] : #v
k ≥

min(K−1,k+LLS(v)−1)∑
j=k

ls−j (v) (21)

The intuition behind (20) resp. (21) is that the stretches starting resp. ending at the
considered columns j must overlap column k.

∀k ∈ [0,K − 1−ULS (v)] :

ls+k (v) +

ULS(v)∑
j=LLS(v)

#v
k+j − (ULS (v)− LLS (v) + 1) ·R ≤ 0

(22)

∀k ∈ [ULS (v),K − 1] :

ls−k (v) +

ULS(v)∑
j=LLS(v)

#v
k−j − (ULS (v)− LLS (v) + 1) ·R ≤ 0

(23)

The intuition behind (22) is as follows. Consider a stretch beginning at column k. Then
there must be an element distinct from v in column j ∈ [k + LLS (v), k + ULS (v)]
of the same row. So at least one of the terms in the summation of (22) will get a zero
contribution from the given row. The reasoning in (23) is similar but considers stretches
ending at column k.

7

2.4 Extracting Occurrence, Word, and Stretch Constraints from an Automaton,
or How to Annotate an Automaton with String Properties

Toward automatically inferring the constant bounds LW r(w), LWPr(w), LWS r(w),
LS r(w), etc, of the previous sub-sections, we now describe how a given automaton A
can be automatically annotated with counter variables constrained to reflect properties
of the strings that the automaton recognises. This is especially useful if A is a product
automaton for several constraints. For this purpose, we use the automaton constraint
introduced in [2], which (unlike the regular constraint [12]) allows us to associate coun-
ters to a transition. Each string property requires (i) a counter variable whose final value
reflects the value of that string property, (ii) possibly some auxiliary counter variables,
(iii) initial values of the counter variables, and (iv) update formulae in the automaton
transitions for the counter variables. We now give the details for some string properties.

In this context, n denotes an integer or decision variable, b denotes a 0/1 integer or
decision variable, v̂ denotes a set of letters, v̂+ denotes a nonempty sequence of letters
in v̂, and si denotes the ith letter of word s. We describe the annotation for the following
string properties for any given string:

– wordocc(v̂+, n): Word v̂+ occurs n times.
– wordprefix (v̂+, b): b = 1 iff word v̂+ is a prefix of the string.
– wordsuffix (v̂+, b): b = 1 iff word v̂+ is a suffix of the string.
– stretchocc(v̂, n): Stretches of letters in set v̂ occur n times.
– stretchminlen(v̂, n): If letters in set v̂ occur, then n is the length of the shortest

such stretch, otherwise n = +∞.
– stretchmaxlen(v̂, n): If letters in set v̂ occur, then n is the length of the longest

such stretch, otherwise n = 0.

For a given annotation, Table 1 shows which counters it introduces, as well as their
initial and final values, while Table 2 shows the formulae for counter updates to be used
in the transitions. Figure 1 shows an automaton annotated for stretchocc({0}, n).

An automaton can be annotated with multiple string properties—annotations do not
interfere with one another—and can be simplified in order to remove multiple occur-
rences of identical counters that come from different string properties.

It is worth noting that propagation is possible from the decision variables to the
counter variables, and vice-versa.

2.5 Heuristics for Selecting Relevant String Properties for an Automaton

In our experiments (see Section 4), we chose to look for the following string properties:

– For each letter, lower and upper bounds on the number of its occurrences.
– For each letter, lower and upper bounds on the number or length of its stretches.
– Each word of length at most 3 that cannot occur at all.
– Each word of length at most 3 that cannot occur as a prefix or suffix.

These properties are derived, one at a time, as follows. We annotate the automaton as
described in the previous section by the candidate string property. Then we compute by

8

Annotation Number of counters Initial values Final values
wordocc(v̂+, n) ` [0, ..., 0] [, ..., n]

wordprefix (v̂+, b) `+ 1 [1, 0, ..., 0] [, ..., b]

wordsuffix (v̂+, b) ` [0, ..., 0] [, ..., b]

stretchocc(v̂, n) 2 [0, 0] [n,]

stretchminlen(v̂, n) 3 [+∞,+∞, 0] [n, ,]

stretchmaxlen(v̂, n) 2 [0, 0] [n,]

Table 1. For each annotation in the first column, the second column gives the number of
new counters, the third column gives their initial values, and the fourth column shows
the string property variable among the final counter values. In the first three rows, ` is
the word length.

labelling the feasible values of the counter variable reflecting the given property, giving
up if the computation does not finish within 5 CPU seconds. Among the collected word,
prefix, suffix, and stretch properties, some properties are subsumed by others and are
thus filtered away. Other properties could certainly have been derived, e.g., not only
forbidden words, but also bounds on the number of occurrences of words. Our choice
was based on (a) which properties we are able to derive necessary conditions for, and
(b) empirical observations of what actually pays off in our benchmarks.

3 The Cardinality Automaton of an Automaton

The previous section introduced different complementary ways of generating necessary
conditions (expressed in terms of arithmetic constraints) from a given automaton for the
row constraints of the matrixM when its columns are subject to gcc constraints. This
section presents an orthogonal systematic approach, again based on double counting,
that can handle a larger class of column constraints completely mechanically.

Consider an R × K matrix M, where on each row we have the same constraint,
represented by an automaton A of p states s0, . . . , sp−1, and on each column we have
a gcc or linear (in)equality constraint where all the coefficients are the same. We will
first construct an automaton that simulates the parallel running of the R copies of A
and consumes entire columns ofM. Since this new automaton has pR states, we then
abstract it by just counting the automata that are in each state of A. As even this ab-
stracted automaton has a size exponential in p, we then use a linear-size encoding with
linear constraints that allows us to consider also the column constraints onM.

3.1 Necessary Row Constraints

The vector automaton AR consumes vectors of size R. Its states are sequences of R
states of A, where entry ` is the state of the automaton of row `. There is a transition
from state 〈si0 , . . . , siR−1

〉 to state 〈sj0 , . . . , sjR−1
〉 if and only if for each ` there is a

transition in A from si` to sj` . A state 〈si0 , . . . , siR−1
〉 is initial (resp. final) if each of

the si` is the initial (resp. a final) state of A.

9

Annotation Counter values New counter values Condition

wordocc(v̂+, n) [c1, ..., c`]

[1, ...] u ∈ v̂+1
[..., ci−1, ...] 1 < i < ` ∧ u ∈ v̂+i
[..., c` + c`−1] u ∈ v̂+`

[..., 0, ...] 0 < i < ` ∧ u 6∈ v̂+i
[..., c`] u 6∈ v̂+`

wordprefix (v̂+, b) [c0, c1, ..., c`]

[0, ..., ci−1, ...] 0 < i < ` ∧ u ∈ v̂+i
[0, ...,max(c`, c`−1)] u ∈ v̂+`

[0, ..., 0, ...] 0 < i < ` ∧ u 6∈ v̂+i
[0, ..., c`] u 6∈ v̂+`

wordsuffix (v̂+, b) [c1, ..., c`]

[1, ...] u ∈ v̂+1
[..., ci−1, ...] 1 < i < ` ∧ u ∈ v̂+i
[..., c`−1] u ∈ v̂+`
[..., 0, ...] 0 < i < ` ∧ u 6∈ v̂+i
[..., c`] u 6∈ v̂+`

stretchocc(v̂, n) [c, d]
[c− d+ 1, 1] u ∈ v̂

[c, 0] u 6∈ v̂

stretchminlen(v̂, n) [c, d, e]
[min(d, e+ 1), d, e+ 1] u ∈ v̂

[c, c, 0] u 6∈ v̂

stretchmaxlen(v̂, n) [c, d]
[max(c, d+ 1), d+ 1] u ∈ v̂

[c, 0] u 6∈ v̂

Table 2. Given an annotation and a transition of the automaton reading letter u, the table
gives the counter update formulae to be used in this transition. For each annotation in
the first column, the second column shows the counter names, and the third column
shows the update formulae. The fourth column shows the condition under which each
formula is used. In the first three multirows, ` is the word length.

The cardinality (vector) automaton #
(
AR

)
is an abstraction of the vector auto-

maton AR that also consumes vectors of size R. Its states are sequences of p numbers,
whose sum is R, where entry i is the number of automata A in state si. There is a
transition from state 〈ci0 , . . . , cip−1

〉 to state 〈cj0 , . . . , cjp−1
〉 if and only if there exists

a multiset of R transitions in A such that for each ` there are ci` of these R transitions
going out from s`, and for each m there are cjm of these R transitions arriving into sm.
A state 〈ci0 , . . . , cip−1

〉 is initial (resp. final) if ci` = 0 whenever s` is not the initial
(resp. a final) state of A.

The number of states of #
(
AR

)
is the number of ordered partitions of p, and

thus exponential in p. However, it is possible to have a compact encoding via con-
straints. Toward this, we use K +1 sequences of p decision variables Sk

i in the domain
{0, 1, . . . , R} to encode the states of an arbitrary path of length K (the number of
columns) in #

(
AR

)
. For k ∈ {1, . . . ,K}, the sequence 〈Sk

0 , S
k
1 , . . . , S

k
p−1〉 has as

possible values the states of #
(
AR

)
after it has consumed column k− 1; the sequence

〈S0
0 , S

0
1 , . . . , S

0
p−1〉 is fixed to 〈R, 0, . . . , 0〉 when, without loss of generality, s0 is the

initial state of A. We get the following constraints:

∀k ∈ {0, . . . ,K} : Sk
0 + Sk

1 + · · ·+ Sk
p−1 = R (24)

10

∀i ∈ {0, . . . , p− 1} : SK
i = 0← si is not a final state of A (25)

Assume that A has a set T = {(a0, `0, b0), (a1, `1, b1), . . . , (aq−1, `q−1, bq−1)} of q
transitions, where transition (ai, `i, bi) goes from state ai ∈ {s0, s1, . . . , sp−1} to state
bi ∈ {s0, s1, . . . , sp−1} upon reading letter `i ∈ {0, 1, . . . , V − 1}. We use K se-
quences of q decision variables T k

i in the domain {0, 1, . . . , R} to encode the transitions
of an arbitrary path of length K in #

(
AR

)
. For k ∈ {0, . . . ,K − 1}, the sequence

〈T k
(a0,`0,b0)

, T k
(a1,`1,b1)

, . . . , T k
(aq−1,`q−1,bq−1)

〉 gives the numbers of automata A with
transition (a0, `0, b0), (a1, `1, b1), . . . , (aq−1, `q−1, bq−1) upon reading the character of
their row in column k. We get the following constraint for column k:

T k
(a0,`0,b0)

+ T k
(a1,`1,b1)

+ · · ·+ T k
(aq−1,`q−1,bq−1)

= R (26)

Consider two state encodings 〈Sk
0 , S

k
1 , . . . , S

k
p−1〉 and 〈Sk+1

0 , Sk+1
1 , . . . , Sk+1

p−1 〉, and
consider the transition encoding 〈T k

(a0,`0,b0)
, T k

(a1,`1,b1)
, . . . , T k

(aq−1,`q−1,bq−1)
〉 between

these two state encodings (with 0 ≤ k < K). To encode paths of length K in #
(
AR

)
,

we introduce the following constraints. First, we constrain the number of automata A
at any state sj before reading column k to equal the number of firing transitions going
out from sj when reading column k:

∀j ∈ {0, . . . , p− 1} : Sk
j =

∑
(ai,`i,bi)∈T : ai=sj

T k
(ai,`i,bi)

(27)

Second, we constrain the number of automata A at state sj after reading column k to
equal the number of firing transitions coming into sj when reading column k:

∀j ∈ {0, . . . , p− 1} : Sk+1
j =

∑
(ai,`i,bi)∈T : bi=sj

T k
(ai,`i,bi)

(28)

A reformulation with linear constraints when R = 1 and there are no column constraints
is described in [6].

3.2 Necessary Column Constraints and Channelling Constraints

The necessary constraints above on the state and transition variables only handle the row
constraints, but they can also be used to handle column constraints of the considered
kinds. These necessary constraints can thus be seen as a communication channel for
enhancing the propagation between row and column constraints.

If column k has a gcc, then we constrain the number of occurrences of value v in
column k to equal the number of transitions on v when reading column k:

∀v ∈ {0, . . . , V − 1} : #v
k =

∑
(ai,`i,bi)∈T : `i=v

T k
(ai,`i,bi)

(29)

If column k constrains the sum of the column, then we constrain that sum to equal the
value-weighted number of transitions on v when reading column k:

R−1∑
r=0

M[r, k] =

V−1∑
v=0

v ·

 ∑
(ai,`i,bi)∈T : `i=v

T k
(ai,`i,bi)

 (30)

11

Furthermore, for more propagation, we can link the variables Sk
i back to the state

variables [2] of the R automata A. For this purpose, let the variables Q0
i , Q

1
i , . . . , Q

K
i

(with 0 ≤ i < R) denote the K + 1 states visited by automaton A on row i of length
K. We get the following gcc necessary constraints:

∀k ∈ {0, . . . ,K} : gcc(〈Qk
0 , Q

k
1 , . . . , Q

k
R−1〉, 〈0 : Sk

0 , 1 : Sk
1 , . . . , p−1 : Sk

p−1〉) (31)

Example 2. In the context of an R = 4 by K = 6 matrix with a global contiguity
constraint on each row and a gcc constraint on each column, we illustrate the set of
linear constraints associated with column k (where 0 ≤ k < 6) of the matrix. An
automaton A associated with the global contiguity constraint was described by Fig-
ure 1 of Example 1. It has p = 3 states s0, s1, s2 and q = 5 transitions (s0, 0, s0),
(s0, 1, s1), (s1, 1, s1), (s1, 0, s2), (s2, 0, s2) labelled by values 0 and 1. The encoding
has p · (K +1) = 21 variables Sk

i such that Sk
0 + Sk

1 + Sk
2 = 4 for every k. Since s0 is

the initial state ofA, we require that S0
0 = 4 since S0

1 = 0 = S0
2 . SinceA only has final

states, no SK
j is constrained to be zero. The encoding also has q ·K = 30 variables T k

i

such that T k
(s0,0,s0)

+T k
(s0,1,s1)

+T k
(s1,1,s1)

+T k
(s1,0,s2)

+T k
(s2,0,s2)

= 4 for every k. The
following three sets of linear necessary constraints link the variables above for every k:

Sk
0 = T k

(s0,0,s0)
+ T k

(s0,1,s1)
(transitions that exit state s0)

Sk
1 = T k

(s1,1,s1)
+ T k

(s1,0,s2)
(transitions that exit state s1)

Sk
2 = T k

(s2,0,s2)
(transitions that exit state s2)

Sk+1
0 = T k

(s0,0,s0)
(transitions that enter state s0)

Sk+1
1 = T k

(s0,1,s1)
+ T k

(s1,1,s1)
(transitions that enter state s1)

Sk+1
2 = T k

(s1,0,s2)
+ T k

(s2,0,s2)
(transitions that enter state s2)

#0
k = T k

(s0,0,s0)
+ T k

(s1,0,s2)
+ T k

(s2,0,s2)
(transitions labelled by value 0)

#1
k = T k

(s0,1,s1)
+ T k

(s1,1,s1)
(transitions labelled by value 1)

4 Evaluation and Conclusion

NSPLib [14] is a very large repository of (artificially generated) instances of the nurse
scheduling problem (NSP), which is about constructing a duty roster for nursing staff.
Let N be the number of nurses, D the number of days of the scheduling horizon, and
S the number of shifts. The objective is to construct an N ×D matrix of values in the
integer interval [1, S], with value S representing the off-duty “shift”.

In instance files, there are hard coverage constraints and soft preference constraints;
we only use the former here: they give for each day d and shift s the lower bound on the
number of nurses that must be assigned to shift s on day d, and can be modelled by a
global cardinality constraint (gcc) on the columns. We stress that the gcc constraints on
any two columns are in general not the same. There are instance files for N × 7 rosters
with N ∈ {25, 50, 75, 100}, and for N × 28 rosters with N ∈ {30, 60}.

In case files, there are hard constraints on the rows. For each shift s, there are lower
and upper bounds on the number of occurrences of s in any row (the daily assignment
of some nurse): this can be modelled by gcc constraints on the rows. There are even

12

lower and upper bounds on the cumulative number of occurrences of the working shifts
1, . . . , S − 1 in any row: this can be modelled by gcc constraints on the off-duty value
S and always gives tighter occurrence bounds on S than in the previous gcc constraints.
For each shift s, there are also lower and upper bounds on the length of any stretch of
value s in any row: this can be modelled by stretch path constraints on the rows. Fi-
nally, there are lower and upper bounds on the length of any stretch of the working shifts
1, . . . , S − 1 in any row: this can be modelled by generalised stretch path partition
constraints [3] on the rows. We stress that the constraints on any two rows are the same.
There are 8 case files for the N × 7 rosters, and another 8 case files for the N × 28
rosters. We automatically generated (see [3] for details) deterministic finite automata
(DFA) for all the row constraints of each case, but used their minimised product DFA
instead (obtained through standard DFA algorithms), thereby getting domain consist-
ency on the conjunction of all row constraints [2]. For each case, string properties were
automatically selected off-line as described in Section 2.5, and cardinality automata
were automatically constructed off-line as described in Section 3.

Under these choices, the NSPLib benchmark corresponds to the pattern studied in
this paper. To reduce the risk of reporting improvements where another search proced-
ure can achieve much of the same impact, we use a two-phase search that exploits the
fact that there is a single domain-consistent constraint on each row and column:

– Phase 1 addresses the column (coverage) constraints only: it seeks to assign enough
nurses to given shifts on given days to satisfy all but one coverage constraint. To
break row symmetries, an equivalence relation is maintained: two rows (nurses) are
in the same equivalence class while they are assigned to the same shifts and days.

– In Phase 2, one column constraint and all row constraints remain to be satisfied.
But these constraints form a Berge-acyclic CSP [1], and so the remaining decision
variables can be trivially labelled without search.

This search procedure is much more efficient than row-wise labelling under decreasing
value ordering (value S always has the highest average number of occurrences per row)
in the presence of a decreasing lexicographic ordering constraint on the rows.

The objective of our experiments is to measure the impact in runtime and backtracks
when using either or both of our methods. The experiments were run under SICStus
Prolog 4.1.1 and Mac OS X 10.6.2 on a 2.8 GHz Intel Core 2 Duo with a 4GB RAM.
All runs were allocated 1 CPU minute. For each case and nurse count N , we used the
first 10 instances for each configuration of the NSPLib coverage complexity indicators,
that is instances 1–270 for the N × 7 rosters and 1–120 for the N × 28 rosters.

Table 3 summarises the running of these 3120 instances using neither, either, and
both of our methods. Each row first indicates the number of known instances of some
satisfiability status (‘sat’ for satisfiable, and ‘unsat’ for unsatisfiable) for a given case
and nurse count N , and then the performance of each method to the first solution,
namely the number of instances decided to be of that status without timing out, as well
as the total runtime (in seconds) and the total number of backtracks on all instances
where none of the four methods timed out (it is very important to note that this means
that these totals are comparable, but also that they do not reveal any performance gains
on instances where at least one of the methods timed out). Numbers in boldface indicate
best performance in a row. It turned out that Cases 1–6, 9–10, 12–14 are very simple

13

Neither String Properties Cardinality DFA Both
Case N Status Known #Inst Time #Bktk #Inst Time #Bktk #Inst Time #Bktk #Inst Time #Bktk

7 25 sat 230 230 16.7 32099 230 42.6 13909 230 39.8 13813 230 74.8 13781
unsat 38 37 51.9 113413 38 57.1 19491 38 37.2 21133 38 57.9 12877

7 50 sat 216 213 9.5 12165 216 24.0 11055 214 32.4 11077 216 49.8 11057
unsat 43 40 55.0 79629 42 87.5 22082 43 107.5 61092 43 55.0 10863

7 75 sat 210 208 13.0 12709 209 22.1 628 210 48.8 12421 210 49.1 340
unsat 48 48 78.5 155490 48 36.3 8860 48 45.3 12455 47 42.0 8267

7 100 sat 220 217 9.0 361 219 30.7 361 217 52.2 355 219 74.1 355
unsat 26 22 26.3 8909 24 4.9 452 23 4.9 993 25 2.8 452

8 25 sat 263 263 2.2 282 263 10.3 282 263 14.4 76 263 22.6 76
unsat 7 7 36.2 121367 7 0.0 19 7 0.2 19 7 0.2 19

8 50 sat 259 259 4.5 136 259 17.3 136 259 27.8 136 259 40.8 136
unsat 11 10 28.0 49358 11 3.2 715 10 58.8 29784 11 4.0 592

8 75 sat 246 245 7.2 449 245 23.4 230 246 46.2 449 246 61.4 230
unsat 22 21 54.4 112880 22 0.1 21 22 0.4 53 22 0.4 21

8 100 sat 262 261 10.7 239 262 32.5 239 261 65.5 239 262 87.9 239
unsat 6 4 0.2 73 6 0.0 4 4 0.4 73 6 0.1 4

15 30 sat 87 84 245.3 37 86 257.3 37 86 1205.6 37 87 1219.5 37
unsat 23 9 26.8 2513 23 1.9 9 18 17.9 83 23 6.0 9

15 60 sat 87 87 361.8 131 87 380.4 131 87 2108.2 131 87 2137.1 131
unsat 13 8 32.8 1001 13 2.9 8 11 40.9 390 13 6.3 8

16 30 sat 100 100 567.5 153 100 578.6 153 100 2541.0 153 100 2557.8 153
unsat 10 4 11.0 172 10 1.4 4 6 68.5 165 10 4.9 4

16 60 sat 105 105 706.9 142 105 722.0 142 88 3329.9 142 88 3350.2 142
unsat 3 1 25.7 579 3 0.0 1 2 0.8 1 3 0.8 1

Table 3. NSPlib benchmark results

(in the absence of preference constraints), so that our methods only decrease backtracks
on one of those 2220 instances, but increase runtime. It also turned out that Case 11 is
very difficult (even in the absence of preference constraints), so that even our methods
systematically time out, because the product automaton of all row constraints is very
big; we could have overcome this obstacle by using the built-in gcc constraint and the
product automaton of the remaining row constraints, but we wanted to compare all the
cases under the same scenario. Hence we do not report any results on Cases 1–6, 9–14.

An analysis of Table 3 reveals that our methods decide more instances without tim-
ing out, and that they often drastically reduce the runtime and number of backtracks
(by up to four orders of magnitude), especially on the shared unsatisfiable instances.
However, runtimes are often increased (by up to one order of magnitude) on the shared
satisfiable instances. String properties are only rarely defeated by the cardinality DFA
on any of the three performance measures, but their combination is often the overall
winner, though rarely by a large margin. A more fine-grained evaluation is necessary
to understand when to use which string properties without increasing runtime on the
satisfiable instances. The good performance of our methods on unsatisfiable instances

14

is indicative of gains when exploring the whole search space, such as when solving an
optimisation problem or using soft (preference) constraints.

With constraint programming, NSPLib instances (without the soft preference con-
straints) were also used in [4,5], but under row constraints that are different from those
of the NSPLib case files that we used. NSP instances from a different repository were
used in [11], though with soft global constraints: one of the insights reported there was
the need for more interaction between the global constraints, and our paper shows steps
that can be taken in that direction.

Since both our methods essentially generate linear constraints, they may also be
relevant in the context of linear programming. Future work may also consider the in-
tegration of our techniques with the multicost-regular constraint [10], which allows the
direct handling of a gcc constraint in the presence of automaton constraints (as on the
rows of NSPLib instances) without explicitly computing the product automaton, which
can be very big.

References

1. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database
schemes. Journal of the ACM, 30:479–513, 1983.

2. N. Beldiceanu, M. Carlsson, and T. Petit. Deriving filtering algorithms from constraint
checkers. In CP’04, volume 3258 of LNCS, pages 107–122. Springer-Verlag, 2004.

3. N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraint catalog. Technical Report
T2005-08, Swedish Institute of Computer Science, 2005. The current working version is at
www.emn.fr/x-info/sdemasse/gccat/doc/catalog.pdf.

4. C. Bessière, E. Hebrard, B. Hnich, Z. Kızıltan, and T. Walsh. SLIDE: A useful special case
of the CARDPATH constraint. In ECAI’08, pages 475–479. IOS Press, 2008.

5. S. Brand, N. Narodytska, C.-G. Quimper, P. J. Stuckey, and T. Walsh. Encodings of the
sequence constraint. In CP’07, volume 4741 of LNCS, pages 210–224. Springer-Verlag,
2007.

6. M.-C. Côté, B. Gendron, and L.-M. Rousseau. Modeling the regular constraint with integer
programming. In CPAIOR’07, volume 4150 of LNCS, pages 29–43. Springer-Verlag, 2007.

7. P. Flener, A. M. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, J. Pearson, and T. Walsh. Breaking
row and column symmetries in matrix models. In CP’02, volume 2470 of LNCS, pages
462–476. Springer-Verlag, 2002.

8. A. M. Frisch, C. Jefferson, and I. Miguel. Constraints for breaking more row and column
symmetries. In CP’03, volume 2833 of LNCS, pages 318–332. Springer-Verlag, 2003.

9. S. Jukna. Extremal Combinatorics. Springer-Verlag, 2001.
10. J. Menana and S. Demassey. Sequencing and counting with the multicost-regular constraint.

In CPAIOR’09, volume 5547 of LNCS, pages 178–192. Springer-Verlag, 2009.
11. J.-P. Métivier, P. Boizumault, and S. Loudni. Solving nurse rostering problems using soft

global constraints. In CP’09, volume 5732 of LNCS, pages 73–87. Springer-Verlag, 2009.
12. G. Pesant. A regular language membership constraint for finite sequences of variables. In

CP’04, volume 3258 of LNCS, pages 482–495. Springer-Verlag, 2004.
13. J.-C. Régin and C. Gomes. The cardinality matrix constraint. In CP’04, volume 3258 of

LNCS, pages 572–587. Springer-Verlag, 2004.
14. M. Vanhoucke and B. Maenhout. On the characterization and generation of nurse schedul-

ing problem instances. European Journal of Operational Research, 196(2):457–467, 2009.
NSPLib is at www.projectmanagement.ugent.be/nsp.php.

15

www.emn.fr/x-info/sdemasse/gccat/doc/catalog.pdf
www.projectmanagement.ugent.be/nsp.php

	On Matrices, Automata, and Double Counting

