Skip to main content

Postselection Finite Quantum Automata

  • Conference paper
Book cover Unconventional Computation (UC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6079))

Included in the following conference series:

  • 713 Accesses

Abstract

Postselection for quantum computing devices was introduced by S.Aaronson[2] as an excitingly efficient tool to solve long standing problems of computational complexity related to classical computing devices only. This was a surprising usage of notions of quantum computation. We introduce Aaronson’s type postselection in quantum finite automata.

There are several nonequivalent definitions of quantum finite automata. Nearly all of them recognize only regular languages but not all regular languages. We prove that PALINDROMES can be recognized by MM-quantum finite automata with postselection. At first we prove by a direct construction that the complement of this language can be recognized this way. This result distinguishes quantum automata from probabilistic automata because probabilistic finite automata with non-isolated cut-point 0 can recognize only regular languages but PALINDROMES is not a regular language.

The research was supported by Grant No. 09.1570 from the Latvian Council of Science and by Project 2009/0216/1DP/1.1.2.1.2/09/IPIA/VIA/004 from the European Social Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: Lower bounds for local search by quantum arguments. SIAM Journal on Computing 35(4), 805–824 (2004) (See also quant-ph/0307149)

    MathSciNet  Google Scholar 

  2. Aaronson, S.: Quantum Computing, Postselection, and Probabilistic Polynomial-Time. Proceedings of the Royal Society A 461(2063), 3473–3482 (2005) (See also quant-ph/0412187)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ablayev, F.M.: On Comparing Probabilistic and Deterministic Automata Complexity of Languages. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS, vol. 379, pp. 599–605. Springer, Heidelberg (1989)

    Google Scholar 

  4. Ablayev, F.M., Freivalds, R.: Why Sometimes Probabilistic Algorithms Can Be More Effective. In: Gruska, J., Rovan, B., Wiedermann, J. (eds.) MFCS 1986. LNCS, vol. 233, pp. 1–14. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  5. Aharonov, D., Regev, O.: Lattice problems in NP cap coNP. Journal of the ACM 52(5), 749–765 (2005)

    Article  MathSciNet  Google Scholar 

  6. Ambainis, A., Beaudry, M., Golovkins, M., Ķikusts, A., Mercer, M., Therien, D.: Algebraic Results on Quantum Automata. Theory of Computing Systems 39(1), 165–188 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ambainis, A., Bonner, R., Freivalds, R., Ķikusts, A.: Probabilities to accept languages by quantum finite automata. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 174–183. Springer, Heidelberg (1999) (See also quant-ph/9904066)

    Chapter  Google Scholar 

  8. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: Proc. FOCS 1998, pp. 332–341 (1998) (See also quant-ph/9802062)

    Google Scholar 

  9. Ambainis, A., Ķikusts, A.: Exact results for accepting probabilities of quantum automata. Theoretical Computer Science 295(1-3), 3–25 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ambainis, A., Ķikusts, A., Valdats, M.: On the class of languages recognizable by 1-way quantum finite automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 75–86. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Quantum dense coding and quantum finite automata. Journal of ACM 49, 496–511 (2002); Earlier version: STOC 1999 and quant-ph/9804043

    Article  MathSciNet  Google Scholar 

  12. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P.W., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Physical Reviews A52, 3457–3467 (1995)

    Article  Google Scholar 

  13. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal on Computing 26, 1411–1473 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM Journal on Computing 31(5), 1456–1478 (2002) (See also quant-ph/9903014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bukharaev, R.G.: Probabilistic automata. Journal of Mathematical Sciences 13(3), 359–386 (1980)

    Article  MATH  Google Scholar 

  16. Freivalds, R. (Freivald, R.V.): Recognition of languages with high probability on different classes of automata. Dolady Akademii Nauk SSSR 239(1), 60–62 (1978) (Russian)

    Google Scholar 

  17. Freivalds, R.: Projections of Languages Recognizable by Probabilistic and Alternating Finite Multitape Automata. Information Processing Letters 13(4/5), 195–198 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Freivalds, R.: Complexity of Probabilistic Versus Deterministic Automata. In: Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 565–613. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  19. Freivalds, R.: Non-Constructive Methods for Finite Probabilistic Automata. International Journal of Foundations of Computer Science 19(3), 565–580 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable codes via a quantum argument. Journal of Computer and System Sciences 69(3), 395–420 (2004) (See also quant-ph/0208062)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proc. FOCS 1997, pp. 66–75 (1997)

    Google Scholar 

  22. Macarie, I.I.: Space-Efficient Deterministic Simulation of Probabilistic Automata. SIAM Journal on Computing 27(2), 448–465 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Moore, C., Crutchfield, J.: Quantum automata and quantum grammars. Theoretical Computer Science 237, 275–306 (2000) (Also quant-ph/9707031)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scegulnaja-Dubrovska, O., Lāce, L., Freivalds, R. (2010). Postselection Finite Quantum Automata. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds) Unconventional Computation. UC 2010. Lecture Notes in Computer Science, vol 6079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13523-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13523-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13522-4

  • Online ISBN: 978-3-642-13523-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics