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Abstract. Real-Time (RT) systems exhibit specific characteristics that make them
particularly sensitive to architectural decissions. Design patterns help integrating
the desired timing behaviour with the rest of the elements of the application ar-
chitecture. This paper reports a pattern story that shows how a component-based
design has been implemented using periodic concurrent tasks with RT require-
ments. This work has been done in the context of the development of robotic
applications using a Model-Driven Software Development (MDSD) approach.
In this context the model-to-code transformations are designed taking into ac-
count both the system requirements and the patterns that satisfy them. MDSD
provides the conceptual technology for implementing a pattern-guided transition
from component-based models to object-oriented implementations. The results
of applying the described story of patterns are shown by an application that ini-
tializes, configures and schedules the execution of platform-specific components.

1 Introduction

There is a well established tradition of applying Component Based Software Devel-
opment (CBSD) [16] principles in the robotics community, which has resulted in the
appearance of several toolkits and frameworks for developing robotic applications [13].
The main drawback of such frameworks is that, despite being Component-Based (CB)
in their conception, designers must develop, integrate and connect these components
using Object-Oriented (OO) technology. The problem comes from the fact that CB de-
signs require more (or rather different) abstractions and tool support than OO technol-
ogy can offer. For instance, the lack of explicit “required” interfaces makes compilers
impossible to assure that the components are correctly composed (linked). Also, com-
ponent interaction protocols are not explicitly defined when using an OO language.
Moreover, most of these frameworks impose the overall internal behavior of their com-
ponents and therefore they lack of formal abstractions to specify it. In this way, robotic
framework components have so many platform-specific details that it is almost impossi-
ble to reuse the aforementioned components among frameworks [11]. Besides, robotic
systems are reactive systems with RT requirements and most of these frameworks do
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not provide mechanisms for managing such requirements. The Model-Driven Software
Development approach can provide the theoretical and practical support to overcome
the above drawbacks.

Model-Driven Software Development (MDSD) paradigm [15] is starting to catch
the attention of the robotics community [5] mainly due to the very promising results it
has already achieved in other application domains (e.g., automotive, avionics, or con-
sumer electronics, among many others) in terms of improved levels of reuse, higher
software quality, and shorter product time-to-market [12]. MDSD enables designers
to focus on domain concepts, relegating implementation details to a secondary level.
In MDSD, models are the primary artifacts leading the whole software development
process. In this context, the authors have defined the 3-View Component Meta-Model
(V3CMM) [9] as a platform-independent modeling language for component-based ap-
plication design. V3CMM is aimed at allowing developers to model high-level reusable
components, including both their structural and behavioural facets, and to automati-
cally translate these high-level designs into lower level models. These low-level models
should be also carefully designed so that, on the one hand, reflect the high-level design
and, on the other hand, comply with the specific requirements of each application and
execution platform. One way to design this low-level code is to use design patterns.
This paper describes how these transformations have been addressed for designing the
task structure of the final application.

In this vein, this paper reports a part of a longer pattern story, which describes the
patterns that have been selected to allocate activities to execution tasks, as well as a
simple tool (called ATA) for distributing component behaviour to tasks. A further step
would be the definition of a pattern sequence, which comprises and abstracts the afore-
mentioned pattern story, so that developers can use it in other applications as long as
they share similar requirements [7]. With several pattern stories and pattern sequences
it would be possible to define a true pattern language for a given domain, which gives
a concrete and thoughtful guidance for developing or refactoring a specific type of sys-
tem.

The remainder of this paper is organized as follows. Section 2 provides a general
overview of the overall approach of the paper. Section 3 briefly describes the ATA tool
and the architectural decisions involved in its design process. Section 4 gives more de-
tail about the architecture of the generated application and presents the design patterns
required to understand the part of the pattern story related in this paper. Section 5 details
the role of the COMMAND PROCESSOR pattern to allocate activities to tasks. Section 6
relates this work with other proposals found in the literature. And finally Section 7
discusses future work and concludes the paper.

2 General Overview of the Approach

V3CMM comprises three complementary views, namely: (1) a structural view, (2) a
coordination view for describing the event-driven behavior of each component (based
on UML statecharts), and (3) an algorithmic view for describing the algorithm exe-
cuted by each component depending on its current state (based on a simplified version
of UML activity diagrams). V3CMM enables describing the architecture (structure and
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behaviour) of CB applications, but provides no guidelines for developing implementa-
tions. Therefore, it is necessary to provide designers of RT applications with tools that
allow them to generate the program code from these high level abstractions (like stat-
echarts), following a MDSD approach that transform them into executable programs
compliant with the application requirements.

As stated above, one of the most important and challenging issues is how to dis-
tribute the components code into tasks. When deriving the task view of a system from
the V3CMM coordination view, a straightforward approach is to directly assign a task
per orthogonal region. However, the resulting task set could comprise an excesive num-
ber of tasks, perhaps difficult to be scheduled according to their timing requirements.
Another solution is to consider that every component is executed in a separate task or in
the task assigned to its container component. However, this way of allocating tasks is too
rigid and hence useless in a RT based designing context. Therefore, it is needed to adopt
a more flexible solution that: (1) allows designing statecharts from a task-independent
perspective, and (2) to guide the task derivation from statecharts without imposing a
direct relationship between tasks and components (or orthogonal regions). In order to
provide this functionality a Graphical User Interface (GUI) application entitled ATA
(Activities-to-Tasks Allocator) has been developed.

Fig. 1 shows an ideal scenario where it is possible to ’arbitrarily’ assign the activities
associated to the states of the statechart of a V3CMM model to a set of tasks. In a
given system, this allocation would not be arbitrary done but instead driven by the RT
requirements of each activity, the selected scheduling algorithms, different heuristics,
execution platform constraints, etc. But since these requirements, algorithms, heuristics
and constraints could greatly differ from system to system, a great flexibility is then
required for allocating activities to tasks. In this context, our purpose is to give support
for the development of CB applications with RT requirements in which:

1. V3CMM is the chosen language for modeling the CB software architecture.
2. Code should be automatically generated from V3CMM models through the de-

velopment of model-to-code transformations. These transformations generate code
with the following structure:
(a) Platform-independent code comprising two parts: (i) the infrastructure needed

for implementing V3CMM concepts (i.e., ports, components, statechart defini-
tions, communication rules and policies, etc.), and (ii) the application-specific
but still platform-independent issues (i.e., specific algorithms and statecharts).

(b) A platform-dependent framework that provides the run-time support and the
’hotspots’ required to integrate the above platform-independent code. The struc-
ture and characteristics of this framework depend on both the application-
specific requirements and the platform constraints. The framework can be de-
signed using different design patterns applied in the correct sequence.

Fig. 2 shows an scheme of the overall development process (from requirements
to V3CMM models and then to code) and the already described platform-independent
and platform-dependent generated code. The generated code does not include views
for monitoring the state of the components either mechanisms for changing the initial
allocation of activities to tasks.
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The system is defined by a set of components. Every component has a statechart with orthogonal regions.
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Fig. 1. Ideal scenario for assigning activities to tasks.

3 Overview of the ATA Application

As stated above, the ATA application provides, on the one hand, a view of the inner
state of the components and a user interface for controlling them, and on the other
hand, some mechanisms for assigning activities to tasks and for specifying some of the
timing and scheduling properties of these tasks. In this work, ATA also includes a view
of a simulator of a Cartesian robot and some facilities for controlling it. This robot was
a part of the results of a research project under the European Union’s Fifth Framework
Programme (Growth, G3RD-CT-00794) [9]. The purpose of the robot was the cleaning
of of a ship’s vertical surfaces. It includes a secondary positioning system (XYZ-like
table) with three lineal joints, a cleaning tool, and several sensors for detecting move-
ment limits. Fig. 3 shows the different parts of the ATA application. The main criteria
that have been followed when designing it are the following:

– Statecharts should show their state in a user interface independent view.
– The user interface should provide access to the joint control commands. The user

interface should show the state of the simulator depending on the selected actual-
ization period.

– The simulator should show the behavior of the real device. This includes joint en-
abling and referencing, and commands for position and speed settings.

– The simulator should show its state in a user interface independent view.
– It should be possible to set from the user interface both activity periods and the

correspondences between activities and tasks.
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Fig. 2. Global view of the development process.

As shown in Fig. 3, ATA includes a separate simulator view for the above mentioned
XYZ table (bottom right part). The bottom-left part enables users to set the execution
activity periods, an estimated execution time, and the allocation of activities to tasks.
The central section of the tool shows, for each task, its execution period, its execution
cycle, and its current activity list. The upper-right part shows the current state of each re-
gion of the statechart. It is also offered a user interface for controlling the XYZ table by
absolute bi-dimensional positions (upper left part), or discrete commands (movement,
stopping and speed setting).

Fig. 4 shows the statechart describing the behaviour of a single joint of the Carte-
sian robot. The statechart comprises four orthogonal regions (from left to right): limits
of range, axis referencing, movement enabling, and movement control. As mentioned
above, the screenshot of the ATA application shows the views of the statecharts corre-
sponding to the two components that control each joint of the robot, since the behaviour
of both joints is described using the same statechart.

ATA enables users to allocate activities to tasks in an arbitrary way and afterwards
to modify this allocation at execution time. Configuration, initialization, starting and
stopping of components can be done as many times as required while ATA is in execu-
tion. This feature provides us with great flexibility to test different allocation scenarios
withouth having to regenerate the code.

With respect to the V3CMM model, ATA instantiates the components and their cor-
responding ports. It also extracts the activities associated to the components and creates
a set with them. The user is then able (selecting the option ’Choose Concurrency Pol-
icy’) to assign these activities to the existing tasks by considering a desired concurrency
policy (a unique task for all the activities, one activity per task, or a particular corre-
spondence). A global perspective of the different parts involved in the developed work
that summarizes the above discussion was already shown in Fig. 2. The first step of this
development process is the V3CMM component model definition. This model is man-
ually derived from a requirement specification document and is platform independent.
The following transformations are involved in the generation of the application code:

1. A transformation that translates the V3CMM concepts (port, component, state, ac-
tivity) into OO concepts (class, interface, method). This is a particular interpreta-
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Fig. 3. Screenshot of ATA. The simulator view of the Cartesian robot is shown in the
bottom-right side.

tion of the V3CMM concepts suitable to be reused in several applications (since it
answers questions such as how to manage state transitions in statecharts, how to im-
plement the communication through the ports, or how to tackle with asynchronous
or synchronous communications). This transformation generates all the application
elements that are independent of the platform (see the upper right part of Fig. 2).

2. A transformation that generates a platform-dependent execution framework with
hotspots, in which it is possible to integrate the code obtained from the previous
transformation. This framework is also conceived to be reused in different applica-
tions, since it implements the task model, associates the activity code to the tasks,
fixes the task execution policy, etc. (see bottom-right side of Fig. 2).

ATA is in charge of merging the code generated in both transformations. This inte-
gration is made in a semi-automated way and taking into account user parameters and
the configuration of the final application (such as number of tasks, scheduling policies,
mechanisms for distributing the components, etc.).
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Fig. 4. Statechart modelling the behaviour of a joint of the Cartesian robot.

4 Global Architecture of the Generated Applications

The purpose of this section is to detail the global architecture of any application gen-
erated from a V3CMM model. This global architecture reflects the platform-dependent
and independent division of the generated code mentioned above. These transforma-
tions involve around twenty design patterns. The application of these patterns have
been documented in the form of a pattern story with the aim of extracting the expe-
rience. For space reasons, this article only describes the application of a reduced subset
of all the patterns involved in the transformations, specifically those strongly related
to the allocation of activities to tasks. Table 1 lists an excerpt of the requirements for
the transformation design, where requirements R1 to R7 are related to activity and task
implementation. The rest of the requierements are simply mentioned in the last two
rows.

Fig. 5 shows a simplified version of the class diagram of the generated code. Some
of the most important patterns that comprise the pattern story are highlighted in the fig-
ure by the classes that fulfill the roles defined by such patterns. There are other patterns,
such as OBSERVER, COPIED VALUE, DATA TRANSFER OBJECT and PROXY, which
are not shown in the figure since the roles defined by such patterns cannot be clearly
identified in the figure. Taking into account the naming convention shown in Fig. 2,
each element appearing in the class diagram belongs to one of the following sets:

V3CMM concepts. This set integrates the classes and interfaces named V3Component,
State Activity, Hieralchical State, V3Input Port, V3Output Port,
V3Data, State, V3Port and Leaf State. The last three classes, related by the
COMPOSITE pattern, enables the representation of the statechart structure and its
hierarchy. V3Component, V3Port, and V3Data provides the implementation ac-
cording to the V3CMM concepts ’component’, ’port’, and ’data’ (internal to the
component), respectively. There are several well known alternatives for modeling
objects with a state-dependent behaviour [6]. In this work, we have adopted the
METHOD FOR STATE pattern, which implements the state-dependent behaviour in
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Table 1. Summary of the requirements for the transformation development.

internal subprograms of the object and by means of inner data structures. Finally,
State Activity represents the interface of the activities associated to the states.

Application-specific code. This set integrates all the subclasses of V3Input Port,
V3Output Port, Leaf Activity, Hierarchical Activity, V3Data, and
V3Component. Two specializations of Leaf Activity are included in order to
achieve two objectives (see Fig. 5): (1) A Particular Leaf Activity is an ac-
tivity associated with the leaf states (i.e., those states that do not contain any other
state) of the statechart, and (2) A Particular Port Handler is an activity as-
sociated to an orthogonal region that is added to the original statechart during
the transformation in order to manage the component ports. The specialization
of Hieralchical Activity entitled St Machine Handler manages the tran-
sitions between states within an orthogonal region and is also automatically gener-
ated and added to the code. V3Input Port and V3Output Port are generic types
designed to be specialized by the user with the data types sent or received between
component ports. When the class V3Data is specialized, the user adds the specific
data types of the defined component, as V3Data models internal values of the com-
ponent. The specializations of the superclass V3Component are the components
defined by the user (for instance, joint controllers, man-machine interfaces, coordi-
nators, sensors, actuators, etc.).
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Fig. 5. Simplified class diagram of the generated code.

Platform-specific code. This last set integrates the classes Activity Processor and
App Manager. The class App Manager represents the ATA application, which mer-
ges the platform-dependent aspects with the V3CMM concepts implementation, as
last section described. The class Activity Processor is the result of applying
the COMMAND PROCESSOR pattern [6]. This pattern separates service requests
from their execution by managing these requests as independent objects. In doing
so, each task is modeled as a command processor and the activities (instances of
subclasses of State Activity) as commands themselves. Tasks as command pro-
cessors provides a great flexibility to the overall design since this decission imposes
no constraints over activity subscription, number of activities, activity duration, etc.
From now on, the terms “COMMANDPROCESSOR” and “Activity Processor”
are used throughout the text. In order to avoid confusion, the first term refers to
the pattern name, while the second represents the concrete implementation of the
pattern used in this article.

From a dynamic point of view, a typical component execution scenario is shown in
the sequence diagram of Fig. 6, where broken lines represent the boundary of a compo-
nent. A V3Input Port object stores the data received from an output port. Then, a task
(i.e. an Activity Procesor) will asynchronously put this data into a V3Data object
(global to the component). Afterwards the same task or another will asynchronously
process the incoming data. As a consequence of this processing, state transitions in one
or more regions of the component may occur. Moreover, this processing includes the
execution of the activities of the set of current states, and the updating of new data in
output ports (subprogram set(data) in Fig. 6).

5 Allocation of Activities to Tasks. The Command Processor
Pattern

This section deals with the application of the COMMAND PROCESSOR pattern, since it
captures the essential decisions of the application design. As stated before, the COM-
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Fig. 6. A sequence diagram with a typical execution scenario.

MAND PROCESSOR design pattern separates service requests from their execution, and
builds on the COMMAND design pattern. Both patterns follow the idea of encapsu-
lating requests into objects, and thus clients do not invoke the component services
directly but send messages that command processors enqueue and execute. In this
work, the class App Manager plays the client role. During the application initializa-
tion phase this class allocates all the activities to a set of Activity Processor ob-
jects, that is, the tasks. Code listing 1.1 shows an excerpt of the Ada specification of the
Activity Processor, which has been implemented as a generic package. The main
characteristics of this generic package are the following:

– The priority of the task contained in the package body is assigned according to both
the timing requirements of the subscribed activities and the chosen scheduling al-
gorithm. As this data is known before the transformations generate the code, it is
possible to derive the priority of each Activity Processor. Thus, a fixed prior-
ity static scheduling algorithm can always be used if required. As this is the chosen
scheduling policy there is no Set Priority subprogram in the current implemen-
tation.

– The transformation takes into account that a task may include several activities
with different periods. The period assigned by the transformation to each task
(Activity Processor) is equal than the lowest periods of its subscribed activ-
ities. It is important to highlight that activities may execute periodically or not.
When tasks are sporadic the period attribute represents the minimum gap between
two consecutive activations of each activity. The activities are executed in the same
order as they have been subscribed to the Activity Processor (requirement R6),
and the way in which tasks are executed is given by the chosen scheduling algo-
rithm.

– The subprogram Add Activity enables subscribing activities to tasks (require-
ment R5).

This design assumes that activities are defined to have an execution time as short as
possible to simplify scheduling. For instance, when an algorithm includes a big number
of iterations or considers a continuos control action, then the activity is divided into a
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Listing 1.1. Code excerpt of the specification of the Activity Processor generic
package.

1 g e n e r i c
2 L i s t e n e r : a c c e s s I A c t i v i t y P r o c e s s o r L i s t e n e r ’ C l a s s ;
3 Name : Unb ound ed S t r i ng ;
4 W o r k e r P r i o r i t y : System . A n y P r i o r i t y ;
5 package Common . A c t i v i t y P r o c e s s o r i s
6 f u n c t i o n Get Name re turn Un bound ed S t r i ng ;
7 procedure S e t P r i o r i t y ( P r i o r i t y : System . A n y P r i o r i t y ) ;
8 f u n c t i o n G e t P r i o r i t y re turn System . A n y P r i o r i t y ;
9 procedure S t a r t ;

10 procedure Stop ;
11 procedure S e t P e r i o d ( P e r i o d : Time Span ) ;
12 f u n c t i o n G e t P e r i o d re turn Time Span ;
13 procedure A d d A c t i v i t y ( Act : a c c e s s I S t a t e A c t i v i t y ’ C l a s s ) ;
14 procedure D e l A c t i v i t y ( Act : a c c e s s I S t a t e A c t i v i t y ’ C l a s s ) ;
15 end Common . A c t i v i t y P r o c e s s o r ;

set of sub-activities with a bounded execution time (for example, an algorithm step or a
discrete control action).

With regards to the allocation of activities to tasks it is needed to emphasize some
aspects. Due to the encapsulation property of components, an activity belonging to a
particular component has no visibility of the data of other components. Consequently,
there is no problem with merging in a unique task all the component activities. When
the activities of a component are allocated to different tasks then concurrent access to
component data occurs. In order to assure data consistency, component data is struc-
tured in a set of protected objects.

6 Related Work

There is a well established tradition of applying CBSD principles in the robotics com-
munity, which has resulted in the appearance of several toolkits and frameworks for de-
veloping robotic applications. An actualized state-of-the-art with references to the most
important robotic frameworks and toolkits can be found in the RoSta project (Robot
Standards and Reference architecture) [13]. Robotic frameworks are excellent exam-
ples of the application of design patterns and are oriented to code reuse by their very
nature. However, they strongly depend on a specific platform or middleware and this
dependency makes component and design reuse across different frameworks almost
impossible [11]. Furthermore, most of these frameworks do not consider hard RT re-
quirements. Anyway, the main drawback of these frameworks is that, despite being CB
in their conception, designers develop, integrate and connect components using OO
technology. The main problem lies in the fact that CB designs require more abstrac-
tions and tool support than OO technology can offer. Thus, we think that OO languages
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Listing 1.2. Code excerpt of the specification of the Activity Processor generic
package.

1 ta sk body Worker i s
2 Next Exec : Time := Clock ;
3 I t e r a t o r : P D l l . C u r so r ;
4 Element : S t a t e A c t i v i t y A l l ;
5 begin
6 S u s p e n d U n t i l T r u e ( S t a r t L o c k ) ;
7 whi le C o n t in u e loop
8 de lay u n t i l Next Exec ;
9 Next Exec := Next Exec + P e r i o d ;

10 I t e r a t o r := A c t i v i t y L i s t . F i r s t ;
11 whi le ( P D l l . Has Element ( I t e r a t o r ) ) loop
12 Element := P D l l . Element ( I t e r a t o r ) ;
13 Element . E x e c u t e T i c k ;
14 P D l l . Next ( I t e r a t o r ) ;
15 end loop ;
16 end loop ;
17 end Worker ;

must not be used for expressing CB concepts, although OO technology can be perfectly
used for implementing them. In this respect, this work enriches the existing initiatives
by providing a CB design level that uses platform-independent CB abstractions (port,
statechart, activity, etc.) that are implemented following a set of design patterns and
using OO technology within a MDSD approach.

Besides, there are not many initiatives for applying MDSD principles to robotic soft-
ware development. In general, the existing robotic frameworks cannot be considered to
be model-driven, since they have no meta-model foundation supporting them. Among
the main examples of applying the MDSD approach to robotics is the work related to the
Sony Aibo robot presented in [4]. Another initiative, described in [10], revolves around
the use of the Java Application Building Center (jABC) for developing robot control
applications. Although jABC provides a number of early error detection mechanisms,
it only generates Java code and, thus, its applicability is rather limited. Finally, Smart-
soft [14] is one of the most interesting initiatives for applying a MDSD approach to
robotic software development. The current state of the application of MDSD to robotic
software development contrasts with what happens in other similar domains, where big
efforts are being carried out in this line. For instance, the ArtistDesign Network of Ex-
cellence on Embedded Systems Design [1] and the OpenEmbeDD [3] project address
highly relevant topics regarding real-time and embedded systems, while the automotive
industry has standardized AUTOSAR [2] for easing the development of software for
vehicles.

As Buschmann et al. [6] states, not all domains of software are yet addressed by pat-
terns. However, the following domains are considered targets to be addressed following
a pattern-language based development: service-oriented architectures, distributed RT
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and embedded systems, Web 2.0 applications, software architecture and, mobile and
pervasive systems. The research interest in the RT system domain is incipient and the
literature is still in the form of research articles. A taxonomy of distributed RT and
embedded system design patterns is described in [8], allowing the reader to understand
how patterns can fit together to form a complete application. The work presented in this
paper is therefore a contribution to the definition of pattern languages for the develop-
ment of this kind of systems with the added value of forming part of a global MDSD
initiative.

7 Conclusions and Future Research Lines

As already discussed throughout the paper, the adoption of a pattern-driven approach
greatly facilitates the design of complex RT software, such as robotics applications. The
purpose is to apply different patterns aimed to solve different problems synergistically
in a way that can be extrapolated to other systems with similar requirements. The defi-
nition of such kind of pattern languages is certainly a difficult task that can be initiated
by the availability of pattern stories. The pattern story reported in this article shows
the feasibility of combining a statechart-based design with an implementation based on
periodic concurrent tasks with RT requirements.

The greatest difficulties in reporting this story have been how to synthesize in a
few pages the motivations for choosing the patterns that have been used, and the lack
of consensus about the best way of documenting pattern sequences (although there are
some proposals, as the already mentioned in [6]). The pattern story reported in this paper
will become a pattern sequence when validated by its application in other systems and
improved by the critics of the scientific community.

In the context of pattern language research [7], the set of patterns used for design-
ing the transformation constitutes a pattern story. Pattern sequences are more general
than pattern stories. A system that shares the requirements addressed by the previous
application could be designed using a pattern sequence that abstracts away the details
of the concrete example described in this paper. If a software requirement is not met
by the sequence then the design advice offered by the sequence is at best limited. It is
important to highlight that the pattern sequence denotes only one possible system de-
sign under a given set of requirements. Different requirements would require alternative
pattern sequences.

We are currently working on extending the pattern story to (1) consider distribution
aspects, (2) on automating the allocation of state activities onto tasks according to their
time requirements and to the chosen scheduling algorithm (in the current ATA version
this allocation is done manually), and (3) on refining and improving the pattern used for
implementing hierarchical and timed statecharts.
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