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Complexity invariance of real interpretations

Guillaume Bonfante1, Florian Deloup2

1- Université de Nancy - LORIA, Nancy, France,
2- Université Paul Sabatier, Toulouse - IMT, France

Abstract. In the field of implicit computational complexity, we are con-
sidering in this paper the fruitful branch of interpretation methods. In
this area, the synthesis problem is solved by Tarski’s decision procedure,
and consequently interpretations are usually chosen over the reals rather
than over the integers. Doing so, one cannot use anymore the (good)
properties of the natural (well-) ordering of N employed to bound the
complexity of programs. We show that, actually, polynomials over the
reals benefit from some properties that allow their safe use for complex-
ity. We illustrate this by two characterizations, one of PTIME and one
of PSPACE.

To prove the termination of a rewrite system, it is natural to interpret terms
into a well-founded ordering. For instance, Lankford describes interpretations as
monotone Σ-algebras with domain of interpretation being the natural numbers
with their usual ordering (c.f. [16, 15]).

However, in the late seventies, Dershowitz showed in a seminal paper [8] that
the well-foundedness of the domain of interpretation is not necessary whenever
the interpretations are chosen to be monotonic and to have the sub-term prop-
erty. Thus, the domain of the Σ-algebra mentioned above can be the set of real
numbers.

One of the main interesting points about choosing of real numbers rather
than natural numbers is that we get (at least from a theoretical point of view)
a procedure to verify the validity of an interpretation of a program by Tarski’s
decomposition procedure [25] and an algorithm to compute interpretations up
to some fixed degree. Following Roy et al. [3], the complexity of these algorithms
is exponential with respect to the size of the program.

A second good point is that the use of reals (as opposed to integers) enlarges
the set of rewriting systems that are compatible with an interpretation, as shown
recently by Lucas [17].

In the last years, the study of termination methods has been one of the major
tools in implicit computational complexity. For instance, Moser et al. have char-
acterized Ptime by means of pop

∗ in [2], and context dependent interpretations
in [22] after their introduction by Hofbauer [12]. One of our two characteriza-
tions, Theorem 8, use dependency pairs (c.f. [1]). In this vein, we mention here
the work of Hirokawa and Moser [10], and, in the same spirit, Lucas and Peña
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in [19] made some investigation on the tools of rewriting to tackle the complexity
of a first order functional programs.

But, the main concern of the present paper is to show that the structure
of polynomials over the reals has an important role from the point of view of
complexity. Our thesis is that, in the field of complexity, due to Stengle’s Posi-
tivstellensatz [24], polynomials over the reals can safely replace polynomials over
the integers. It is illustrated by two theorems, Theorem 6 and Theorem 8. We
show that one may recover both derivational complexity (up to a polynomial)
and size bounds (also, up to a polynomial) on terms as applications of Posi-
tivstellensatz. Moreover, this can be done in a constructive way. Our thesis But,
let us draw briefly the roadmap of the key technical features of this work.

Given a strict interpretation for a term rewriting system, it follows imme-
diately that for all rewriting steps s → t, we have Ls M > Lt M. If one takes the
interpretation on natural numbers (as they were introduced by Lankford [16]),
this can be used to give a bound on the derivation height. Thus, Hofbauer and
Lautemann have shown in [11] that the derivation height is bounded by a double
exponential. However, their argument uses deeply the fact that the interpretation
of a term is itself a bound on the derivation height:

dh(t) ≤ Lt M. (1)

Suppose t0 → t1 → · · · → tn, since Lt0 M > Lt1 M > · · · > Ltn M, on natural numbers,
this means that n ≤ Lt0 M. Such a proof does not hold with real numbers. The
inequalities Lti M > Lti+1 M are due to a) for all rewrite rule ℓ → r, the inequality
Lℓ M > Lr M implies that

Lℓ M ≥ Lr M + 1 (2)

and b) that for all xi > yi:

Lf M(x1, . . . , xi, . . . , xn) − Lf M(x1, . . . , yi, . . . , xn) ≥ xi − yi. (3)

The two inequalities 2, 3 do not hold in general for real interpretations. To
recover the good properties holding with natural numbers, people have enforced
the inequalities on terms. For instance [17, 21] suppose the existence of some real
δ > 0 such that for any rule ℓ → r : Lℓ M ≥ Lr M + δ. We prove that even without
the existence of such a δ, the derivation height of a term t is bounded by LtM up
to a polynomial.

To save some space, we have omitted some proofs. The reader will find them
in the extended version of the paper, see [5].

1 Preliminaries

We suppose that the reader has familiarity with first order rewriting. We briefly
recall some of the main notions of the theory, essentially to fix the notations.
Dershowitz and Jouannaud’s survey [9] is a good entry point.

Let X denote a (countable) set of variables. Given a signature Σ, the set
of terms over Σ and X id denoted by T (Σ,X ) and the set of ground terms as
T (Σ). The size |t| of a term t is defined as the number of symbols in t.



Given a signature Σ, a rule is an oriented equation ℓ → r with ℓ, r ∈ T (Σ,X )
such that variables occurring in r also occur in ℓ. A Term Rewrite System (TRS)
is a finite set of such rules. A TRS induces a rewriting relation denoted by →.
The relation

+

→ is the transitive closure of → and
∗
→ is the reflexive and transitive

closure of →. Finally, we say that a term t is a normal form if there is no term

u such that t → u. Given two terms t and u, t
!
→ u denotes the fact that t

∗
→ u

and u is a normal form. We write t0 →n tn the fact that t0 → t1 · · · → tn. One
defines the derivation height for a term t as the maximal length of a derivation:
dh(t) = max{n ∈ N | ∃v : t →n v}.

A context is a term C with a particular variable ♦. If t is a term, C[t] denotes
the term C where the variable ♦ has been replaced by t. A substitution is a
mapping from variables to terms. A substitution σ can be extended canonically
to terms and we note tσ the application of the substitution σ to the term t.

1.1 Syntax of programs

Definition 1. A program is a 5-tuple f = 〈X , C,F , main, E〉 with:

– C is a (finite) signature of constructor symbols and F a (finite) signature of
function symbols. main ∈ F is the ”main” function symbol

– E is a finite set of rules of the shape f(p1, · · · , pn) → r where f ∈ F and
pi ∈ T (C,X ).

Moreover, we suppose programs to be confluent. This is achieved by the following
syntactic restriction due to Huet [14] (see also [23]): (i) Each rule f(p1, . . . , pn) →
t is left-linear, that is a variable appears only once in f(p1, · · · , pn), and (ii) there
are no two left hand-sides which are overlapping.

The program 〈X , C,F , f, E〉 computes the partial function JfK : T (C)n →
T (C) defined as follows. For every u1, · · · , un ∈ T (C), JfK(u1, · · · , un) = v iff

f(u1, · · · , un)
∗
→ v and v ∈ T (C). Otherwise, it is undefined.

Example 1. The following program computes the membership in a list. The con-
structors of lists are cons,nil. Elements in the list are the tally natural numbers
build from 0 and s.

not(tt) → ff or(tt, y) → tt 0 = 0 → tt
not(ff) → tt or(x, tt) → tt 0 = s(y) → ff

or(ff ,ff) → ff s(x) = 0 → ff
s(x) = s(y) → x = y

in(x,nil) → ff

in(x, cons(a, l)) → or(x = a, in(x, l))

Definition 2 (Call-tree). Suppose we are given a program 〈X , C,F , E〉. Let  
be the relation

(f, t1, . . . , tn) (g, u1, . . . , um) ⇔ f(t1, . . . , tn) → C[g(v1, . . . , vm)]
∗
→ C[g(u1, . . . , um)]



where f and g are defined symbols, t1, . . . , tn, u1, . . . , um are ground constructor
terms and v1, . . . , vm are arbitrary (ground) terms. Given a term f(t1, . . . , tn),
the relation  defines a tree whose root is (f, t1, . . . , tn) and η′ is a daughter of
η iff η  η′.

1.2 Interpretations of programs

Given a signature Σ, a Σ-algebra on the domain R+ is a mapping L− M which
associates to every n-ary symbol f ∈ Σ an n-ary function Lf M : R+n

→ R+.
Such a Σ-algebra can be extended to terms by:

– Lx M = 1R+ , that is the identity on R+, for x ∈ X ,
– Lf(t1, . . . , tm) M = comp(Lf M, Lt1 M, . . . , Ltm M) where comp is the composition

of functions.

Given a term t with n variables, Lt M is a function R+n
→ R+.

Definition 3. Given a program 〈X , C,F , f, E〉, let us consider a (C ∪F)-algebra
L− M on R+. It is said to:

1. be strictly monotonic if for any symbol f , the function Lf M is a strictly mono-
tonic function, that is if xi > x′

i, then

Lf M(x1, . . . , xn) > Lf M(x1, . . . , x
′
i, . . . , xn),

2. be weakly monotonic if for any symbol f , the function Lf M is a weakly mono-
tonic function, that is if xi ≥ x′

i, then

Lf M(x1, . . . , xn) ≥ Lf M(x1, . . . , x
′
i, . . . , xn),

3. have the strict sub-term property if for any symbol f , the function Lf M verifies
Lf M(x1, . . . , xn) > xi with i ∈ {1, . . . , n},

4. to be strictly compatible (with the rewriting relation) if for all rules ℓ → r,
Lℓ M > Lr M,

5. to be a sup-approximation if for all constructor terms t1, . . . , tn, we have the
inequality Lf(t1, . . . , tn) M ≥ LJfK(t1, . . . , tn) M.

Definition 4. Given a program 〈X , C,F , f, E〉, a (C ∪ F)-algebra on R+ is
said to be a strict interpretation whenever it verifies (1), (3), (4). It is a sup-
interpretation whenever it verifies (2) and (5).

Sup-interpretation have been introduced by Marion and Pechoux in [20]. We
gave here a slight variant of their definition. In [20], the last inequality refers
to the size of normal forms. We preferred to have a more uniform definition.
Clearly, a strict interpretation is a sup-interpretation.When we want to speak
arbitrarily of one of those concepts, we use the generic word ”interpretation”.
We also use this terminology to speak about the function Lf M given a symbol f .

Finally, by default, we restrict the interpretations of symbols to be Max-
Poly functions, that is functions obtained by finite compositions of the constant
functions, maximum, addition and multiplication.



Definition 5. The interpretation of a symbol f is said to be additive if it has
the shape

∑

i xi + c with c > 0. A program with an interpretation is said to be
additive when its constructors are additive.

Example 2. The program given in Example 1 has both an additive strict inter-
pretation (left side, black) and an additive sup-interpretation (right side, blue):

Ltt M = Lff M = L0 M = Lnil M = 1 Ltt M = Lff M = L0 M = Lnil M = 1
Ls M(x) = x + 1 Ls M(x) = x + 1

Lcons M(x, y) = x + y + 3 Lcons M(x, y) = x + y + 1
Lnot M(x) = x + 1 Lnot M(x) = 1

Lor M(x, y) = L= M(x, y) = x + y + 1 Lor M(x, y) = L = M(x, y) = 1
Lin M(x, y) = (x + 1)(y + 1) Lin M(x, y) = 1

Example 3. The Quantified Boolean Formula (QBF) problem is well known to
be Pspace complete. It consists in determining the validity of a boolean formula
with quantifiers over propositional variables. Without loss of generality, we re-
strict formulae to ¬,∨,∃. Variables are represented by tally numbers. The QBF
problem is solved extending the preceding program with:

verify(Var(x), t) → in(x, t)

verify(Not(ϕ), t) → not(verify(ϕ, t))

verify(Or(ϕ1, ϕ2), t) → or(verify(ϕ1, t), verify(ϕ2, t))

verify(Exists(n, ϕ), t) → or(verify(ϕ, cons(n, t)), verify(ϕ, t))

qbf(ϕ) → verify(ϕ, ε)

It has a sup-interpretation but not a strict interpretation:

LNot M(x) = LVar M(x) = x + 1
LOr M(x, y) = LExists M(x, y) = x + y + 1
Lverify M(x, y) = Lqbf M(x) = 1

Actually, as Theorem 6 will prove it, unless Ptime = Pspace, there is no
program computing QBF with an additive strict interpretation.

2 Positivstellensatz and applications

In this section, we introduce a deep mathematical result, the Positivstellensatz.
Then we give some applications to polynomial interpretations. They will be key
points of the Theorems 6 and 8 in our analysis of the role of reals in complexity
(§3).

Let n > 0. Denote by R[x1, . . . , xn] the R-algebra of polynomials with real
coefficients. Denote by (R+)n = {x = (x1, . . . , xn) ∈ Rn | x1, . . . , xn > 0} the
first quadrant. Since we need to consider only the R-algebra of polynomial func-
tions (R+)n → R, it will be convenient to identify the two spaces. In particular
throughout this section, all polynomial functions are defined on (R+)n.



Theorem 3 (Positivstellensatz, Stengle [24]). Suppose that we are given
polynomials P1, . . . , Pm ∈ R[x1, . . . , xk], the following two assertions are equiv-
alent:

1. {x1, . . . , xk : P1(x1, . . . , xk) ≥ 0 ∧ · · · ∧ Pm(x1, . . . , xk) ≥ 0} = ∅
2. ∃Q1, . . . , Qm : −1 =

∑

i≤m QiPi where each Qi is a sum of squares of poly-
nomials (and so is positive and monotonic).

Moreover, these polynomials Q1, . . . , Qm can effectively computed. We refer
the reader to the work of Lombardi, Coste and Roy [6]. As a consequence, all
the constructions given below can be actually (at least theoretically) computed.

It will be convenient to derive from the Positivstellensatz some propositions
useful for our applications.

Proposition 2. Suppose that a TRS (Σ,R) admits an interpretation L− M over
Max-Poly such that for all rules ℓ → r, we have Lℓ M > Lr M. There is a positive,
monotonic polynomial P such that for any rule ℓ → r, we have Lℓ M(x1, . . . , xk)−

Lr M(x1, . . . , xk) ≥
1

P (x1, . . . , xk)
.

The proof is direct consequence of Theorem 3 when ℓ and r are polynomials.
By a finite case analysis, one may cope with the max function. One may notice
that one cannot a priori find some constant δ > 0 such that: Lℓ M(x1, . . . , xk) ≥
Lr M(x1, . . . , xk) + δ. Indeed, suppose that Lℓ M(x1, . . . , xk) − Lr M(x1, . . . , xk) > 0.
Observe that limx→0 P (x, 1/x) = limx→0 x2 = 0. However, taking Q(x, y) =
(1 + x + y)2, one has P (x, y)Q(x, y) ≥ 1 for all x, y ≥ 0.

Proposition 2 has an important consequence. Since, in a derivation all terms
have an interpretation bounded by the interpretation of the first term, there is
a minimal decay for each rule of the derivation. Then, due to the next Theorem,
the result can be extended to contexts.

Theorem 4. Given a polynomial P ∈ R[x1, . . . , xn] such that

(i) ∀x1 ≥ 0, . . . , xn ≥ 0 : P (x1, . . . , xn) > max(x1, . . . , xn),

(ii) ∀x1 ≥ 0, . . . , xn ≥ 0 :
∂P

∂xi

(x1, . . . , xn) > 0 for all i ≤ n,

then, there exist A > 0 such that for any ∆ > 0, we have P (x1, . . . , xi +
∆, . . . , xn) > P (x1, . . . , xn) + ∆ whenever ||x|| > A.

In other words, we recovered some equivalent Equations to the Equations 2,
3 for sufficiently large terms.

Proposition 3. Suppose that a TRS (Σ,R) admits a strict interpretation L− M
over Max-Poly. For all A > 0, the set of terms {t ∈ T (Σ) | Lt M < A} is finite.

Proposition 4. Suppose that a TRS (Σ,R) admits a strict interpretation L− M
over Poly. There are a real A > 0 and a positive, monotonic polynomial P such
that for all x1, . . . , xn ≥ 0, if xi1 , . . . , xik

> A, then for all symbols f , we have

Lf M(x1, . . . , xn) ≥ xi1 + · · · + xik
+

1

P (Lf M(x1, . . . , xn))
.



This latter result gives (more or less) directly a bound on the size of terms.
It is a consequence of Theorem 3 and the following Theorem.

Theorem 5. Given a polynomial P ∈ R[x1, . . . , xn] such that

(i) ∀x1, . . . , xn ≥ 0 : P (x1, . . . , xn) > max(x1, . . . , xn),
(ii) ∀x′

i > xi, x1, . . . , xn ≥ 0 : P (x1, . . . , x
′
i, xi+1, . . . , xn) > P (x1, . . . , xn),

then, there exist A ≥ 0 such that P (x1, . . . , xn) > x1+· · ·+xn whenever ||x|| > A.

All the hypotheses are necessary. If P (x, y) is not supposed to be greater than
max(x, y), you can simply take P (x, y) = (x+ y)/2. It is strictly monotonic, but
clearly, P (x, y) < x + y for all x, y > 0.

The second hypothesis is also necessary. A counter example is given by
P (x, y) = 16(x − y)2 + (3/2)x + 1.

3 The role of reals in complexity

We have now all the tools to prove that reals can safely replace integers from a
complexity point of view. This is illustrated by Theorem 6 and Theorem 8.

Theorem 6. Functions computed by programs with an additive strict interpre-
tation (over the reals) are exactly Ptime functions.

The rest of the section is devoted to the proof of the Theorem. The main
difficulty of the proof is that inequalities as given by the preceding section only
hold for sufficiently large values. So, the main issue is to split ”small” terms
(and ”small rewriting steps”) from ”large” ones. Positivstellensatz gives us the
arguments for the large terms (Lemma 7), Lemmas 8,9 show that there are not
too many small steps between two large steps. Lemma 11 describe how small
steps and big steps alternate.

From now on, we suppose we are given a program with an additive strict
interpretation over polynomials. The following Lemmas are direct applications of
Proposition 2,4, they are the main steps to prove both Theorem 6 and Theorem 8.
A full proof of the lemmas can be found in the technical report.

Lemma 7. There is a polynomial P and a real A > 0 such that for all steps
ℓσ → rσ with Lrσ M > A, then, for all contexts C, we have LC[ℓσ] M ≥ LC[rσ] M +

1

P (Lℓσ M)
.

Proof. This is a consequence of Proposition 2.

Definition 7. Given a real A > 0, we say that the A-size of a closed term t is
the number of subterms u of t (including itself) such that Lu M > A. We note |t|A
the A-size of t.

Lemma 8. There is a constant A such that for all C > A, there is a polynomial
Q for which |t|C ≤ Q(Lt M) for all closed terms t.



Proof. This is consequence of Proposition 4.

For A > 0, we say that t = C[ℓσ] → C[rσ] = u is an A-step whenever
Lrσ M > A. We note such a rewriting step t →>A u. Otherwise, it is an ≤ A-step,
and we note it t →≤A u. We use the usual ∗ notation for transitive closure. In
case we restrict the relation to the call by value strategy1, we add “cbv” as a
subscript. Take care that an →≤A-normal form is not necessarily a normal form
for →.

Lemma 9. There is a constant A such that for all C > A there is a (monotonic)
polynomial P such that for all terms t, any call by value derivation t →∗

≤C,cbv u
has length less than P (Lt M).

Proof. This is a consequence of Proposition 2.

Lemma 10. For constructor terms, we have Lt M ≤ Γ ×|t| for some constant Γ .

Proof. Take Γ = max{
1

γc

| Lc M(x1, . . . , xn) =
∑n

i=1
xi + γc}. By induction on

terms.

Lemma 11. Let us suppose we are given a program with an additive strict in-
terpretation. There is a strategy such that for all function symbol f , for all
constructor terms t1, . . . , tn, any derivation following the strategy starting from
f(t1, . . . , tn) has length bounded by Q(max(|t1|, . . . , |tn|)) where Q is a polyno-
mial.

Proof. Let us consider A as defined in Lemma 9, B and P1 as defined in Lemma 7.
We define C = max(A, B). Let P0 be the polynomial thus induced from Lemma 9.
Finally, let us consider the strategy as introduced above: rewrite as long as pos-
sible the according to →≤C,cbv , and then, apply an C-step. That is, we have
t1 →∗

≤C,cbv t′1→>C,cbv t2 →∗
≤C,cbv t′2 →∗. In Lemma 9, we have seen that there

are at most P0(Lti M) steps in the derivation ti →
∗
≤C,cbv t′i. From Lemma 7, we

can state that there are at most Lt1 M×P1(Lt1 M) such C-steps. Consequently, the
derivation length is bounded by Lt1 M × P1(Lt1 M) × P0(Lt1 M) since for all i ≥ 1,
Lti M ≤ Lt1 M.

Consider now a function symbol f ∈ F , from Lemma 10, Lf(t1, . . . , tn) M =
Lf M(Lt1 M, . . . , Ltn M) ≤ Lf M(Γ max(|t1|, . . . , |tn|), . . . , Γ max(|t1|, . . . , |tn|)). Then,
the conclusion is immediate.

Proof. Of Theorem 6 With the strategy defined above, we have seen that the
derivation length of a term f(t1, . . . , tn) is polynomial wrt to max(|t1|, . . . , |tn|).
The computation can be done in polynomial time due to dal Lago and Mar-
tini, see [7], together with the fact that the normal form has polynomial size
(Lemma 10). For the converse part, we refer the reader to [4] where a proof that
Ptime programs can be computed by functional programs with strict interpre-
tations over the integers. This proof can be safely used in the present context.

1 Innermost in the present context.



3.1 Dependency Pairs with polynomial interpretation over the reals

Termination by Dependency Pairs is a general method introduced by Arts and
Giesl [1]. It puts into light recursive calls. Suppose f(t1, . . . , tn) → C[g(u1, . . . , um)]
is a rule of the program. Then, (F (t1, . . . , tn), G(u1, . . . , um)) is a dependency
pair where F and G are new symbols associated to f and g respectively. S(C,F , R)
denotes the program thus obtained by adding these rules. The dependency graph
links dependency pairs (u, v) → (u′, v′) if there is a substitution σ such that

σ(v)
∗
→ σ(u) and termination is obtained when there is no cycles in the graph.

Since the definition of the graph involves the rewriting relation, its computation
is undecidable. In practice, one gives an approximation of the graph which is
bigger. Since this is not the issue here, we suppose that we have a procedure to
compute this supergraph which we call the dependency graph.

Theorem 7. [Arts,Giesl [1]] A TRS (C,F , R) is terminating iff there exists a
well-founded weakly monotonic quasi-ordering ≥, where both ≥ and > are closed
under substitution, such that

– ℓ ≥ r for all rules ℓ → r,
– s ≥ t for all dependency pairs (s, t) on a cycle of the dependency graph and
– s > t for at least one dependency pair on each cycle of the graph.

It is natural to use sup interpretations for the quasi-ordering and the ordering
of terms. However, the ordering > is not well-founded on R, so that system may
not terminate. Here is such an example.

Example 4. Consider the non terminating system:

(

f(0) → 0
f(x) → f(s(x))

)

Take L0 M = 1, Ls M(x) = x/2. There is a unique dependency pair F (x) → F (s(x)).
We define LF M(x) = Lf M(x) = x + 1.

One way to avoid these infinite descent is to force the inequalities over reals to
be of the form P (x1, . . . , xn) ≥ Q(x1, . . . , xn)+δ for some δ > 0 (see for instance
Lucas’s work [18]). Doing so, one gets a well-founded ordering on reals. We
propose an alternative approach to that problem, keeping the original ordering
of R.

Definition 8. A R-DP-interpretation for a program associates to each symbol
f a monotonic function Lf Msuch that

1. constructors have additive interpretations,
2. Lℓ M ≥ Lr M for ℓ → r ∈ R,
3. Ls M ≥ Lr M for (s, r) ∈ DP (R),
4. for each dependency pair (s, t) in a cycle, Ls M > Lr M holds.



Example 5. Let us come back to Example 3. The QBF problem can be given a
R-DP interpretation. Let us add the interpretations:

LNOT M(x) = x
LOR M(x, y) = LEQ M(x, y) = max(x, y)

LIN M(x, y) = x + y
LVERIFY M(x, y) = 2x + y + 1

LQBF M(x) = 2x + 1

Theorem 8. Functions computed by programs

– with additive R-DP-interpretations

– the interpretation of any capital symbol F has the sub-term property

are exactly Pspace computable functions.

Proof. The completeness comes from the example of the QBF, plus the compo-
sitionality of such interpretation.

In the other direction, the key argument is to prove that the call tree has a
polynomial depth w.r.t. the size of arguments. The proof relies again on Lem-
mas 7, 8, 9, 11 adapted to dependency pairs (in cycles). Indeed, since capital
symbol have the sub-term property, the lemmas are actually valid in the present
context.2 The rewriting steps of dependency pairs can be reinterpreted as depth-
first traversal in the call-tree. Thus, we can state that the depth of the call tree
is polynomial, as we stated in an analogous way that the derivation length was
polynomial.

Conclusion

If one goes back to the two characterization of complexity classes presented in
this paper, one sees that we essentially use two arguments: a) interpretations
with the subset properties provide a polynomial bound wrt the interpretation
of the initial interpretation, and b) the size of terms is polynomial w.r.t. their
interpretations.

As a consequence, our result can be used in other context such as proofs
of termination by matrix interpretations [13] or context dependent interpreta-
tions [12]. Potentially, any system dealing with decreasing chain of (interpreted)
terms could be treated.

Thanks to: Antoine Henrot for his helpful comments on an earlier version of the
contribution.

2 Lemma 8 is immediate here since we focus on terms of the shape F (t1, . . . , tn) where
t1, . . . , tn are constructor terms.
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