The gnetworks Toolbox: a Software Package for
Queueing Networks Analysis

Moreno Marzolla

Dipartimento di Scienze dell’Informazione, Universita di Bologna
Mura Anteo Zamboni 7, 1-40127 Bologna, Italy
marzolla@cs.unibo.it

Abstract. Queueing Networks (QNs) are a useful performance mod-
elling notation. They can be used to describe many kinds of systems,
and efficient solution techniques have been developed for some classes
of QN models. Despite the fact that QNs have been extensively studied,
very few software packages for QN analysis are available today. In this
paper we describe the gnetworks toolbox, a free software package for QN
analysis for GNU Octave. gnetworks provides implementations of solu-
tion algorithms for single station queueing systems as well as for product
and some non product form QN models. Exact, approximate and bound
analysis can be performed. Additional utility functions and algorithms
for Markov Chains analysis are also included. The gnetworks package
is available as free and open source software, allowing users to study,
modify and extend the code. This makes gnetworks a viable teaching
tool.

1 Introduction

QNs are a very powerful modelling notation; they can be applied to many dif-
ferent domains, including computer networks, supply chain analysis, software
systems, street traffic and others [I]. QNs have been extensively studied and a
vast literature of solution algorithms exists. QN models can be evaluated either
by simulation, or using analytical and numerical techniques. Simulation has the
advantage of being able to evaluate any kind of system, including extended QN
models for which other solution techniques are either not available, or only pro-
duce approximate results. However, simulation can require significant time to
accurately evaluate complex models, and the computed results are only given
as confidence intervals. Furthermore, evaluation of the same model with differ-
ent parameters (the so-called “what-if” analysis) is computationally costly as it
involves a large number of simulation runs.

Many numerical solution techniques for QN models exist (see [2] and refer-
ences therein); despite this, there is a shortage of software tools implementing
these algorithms. This is particularly unfortunate for many reasons: people keep
reimplementing the same old algorithms over and over again, which is error prone
and time consuming. This is especially true since some QN algorithms can be

tricky to implement correctly due to their complexity. Effort put on implement-
ing old algorithms could be better spent solving interesting modelling problems,
or developing new solution techniques for QN models.

In this paper we present gnetworks, a QN analysis package written in GNU
Octave. GNU Octave [3] is an interpreted language for numerical computa-
tions very similar to MATLAHH[ZL], to which it is mostly compatible. gnetworks
provides a set of functions for analyzing Product form (PF) as well as some
non PF Queueing Network models; computation of performance bounds, eval-
uation of single-station queueing systems and Markov Chain analysis are also
possible. gnetworks is free and open source software: users can inspect, modify
and redistribute the code, which makes gnetworks a viable teaching tool.

gnetworks is not an integrated modelling tool, like JMT [5] or RESQ [6].
Rather, it is a library of functions which can be used as building blocks for
analyzing QN models. The Octave interactive environment provides the “glue”
which allows complex models to be quickly analyzed, enabling a greater degree
of flexibility which is usually not provided by rigid integrated modelling en-
vironments. Models can be defined and solved programmatically, so that fully
automated batch analysis can be easily implemented. However, a significant un-
derstanding of QN modelling is necessary in order to use qnetworks. For this
reason, casual users may prefer a less flexible but more user-friendly tool such
as JMT.

Different usage scenarios for gnetworks can be identified:

— Incremental model development: gnetworks and GNU Octave are an
ideal platform for rapid prototyping and iterative refinement of QN models.
Models can be defined and analyzed quickly using the function provided
by gnetworks. The Octave language provides very convenient features for
vector manipulation which allow models to be defined concisely.

— Modelling environment: large and complex performance studies can be
performed, as models involving repetitive or embedded structures can be
easily defined. Ad-hoc solution techniques can be realized on top of the
available functions. As a specific example, we show later in this paper how
hierarchical modelling with flow-equivalent service centers can be done with
gnetworks, even if no facility to perform such kind of analysis is provided
by the package.

— Queueing Network research: new QN analysis algorithms can be imple-
mented inside gnetworks and tested against existing ones. Contributions to
the gnetworks package are highly welcome. For many QN algorithms de-
scribed in the literature, no implementation is readily available. We hope
that qnetworks will encourage researchers and practitioners to provide im-
plementations of their own algorithms, so that others can use and improve
them.

— Teaching: gnetworks is suitable for introducing QN modelling concepts and
solution techniques. Students can immediately get a visual feedback from the

I MATLAB is a trademark of The MathWorks Inc.

solution of QN models by using the graphing capabilities provided by GNU
Octave. All plots in this paper has been produced by GNU Octave after
solving the appropriate model with gnetworks.

In order to partially support the above claims, most of this paper is struc-
tured in a tutorial style, showing how gnetworks can actually be used in simple
modelling studies. In Sect. [2] we briefly review related works in the area of QN
software. In Sect. [3|we introduce some basic concepts and definitions about QNs.
In Sect. [d we illustrate the features of qnetworks and the algorithms which have
been implemented. In Sect. 5| we give some usage examples to demonstrate how
qnetworks can be used in practice. Section |§| contains some performance con-
siderations. Finally, Sect. [7] describes conclusions and future works.

2 Related Works

Over the years, many software packages for the solution of QN models have been
developed. As an example, see the list available at http://web2.uwindsor.ca/
math/hlynka/qgsoft.html; however, that most of the tools listed there are of
very limited scope, obsolete or no longer available (many hyperlinks are actually
broken).

The Research Queueing Package (RESQ) [6] developed at IBM Research
was one of the first very successful QN analysis packages. It provided a mod-
elling language for describing extended QN models, which then could be solved
by either analytical of simulation techniques. A graphical user interface (called
RESQME [7]) was developed in order to facilitate the model definition process.
A similar tool was QNAP2 [8], which provided different solution methods (an-
alytical or simulation-based) for analyzing product and non-product form QNs.
Networks are described using a textual notation; the QNAP2 tool was written
in FORTRAN 77.

Unfortunately, both QNAP2 and RESQ are no longer available. Among
the tools which are still available and in use are SHARPE, PDQ and JMT.
The Symbolic Hierarchical Automated Reliability and Performance Evaluator
(SHARPE) [9] is an integrated package for describing and analyzing hierarchi-
cal stochastic models, including QN, fault trees, reliability models and so on.
Pretty Damn Quick (PDQ)H is a QN package with bindings for multiple lan-
guages (including Java, PHP, Perl, Python and C). PDQ implements the exact
and approximate Mean Value Analysis (MVA) algorithm for closed QNs.

Java Modelling Tools (J MT)E| [5] is a recent free and open source tool for the
construction and evaluation of QN models. JMT is developed by the Performance
Evaluation Lab of the Politecnico di Milano, Italy. This tool deserves special
consideration, because it is actively developed, highly portable (it is written in
Java) and is capable of handling a large class of QN models. JMT supports fixed

2 http://www.perfdynamics.com/Tools/PDQcode . html
3 http://jmt.sourceforge.net/

http://web2.uwindsor.ca/math/hlynka/qsoft.html
http://web2.uwindsor.ca/math/hlynka/qsoft.html
http://www.perfdynamics.com/Tools/PDQcode.html
http://jmt.sourceforge.net/

capacity regions, blocking, non exponential service times, general routing strate-
gies, priorities and other advanced features. Its graphical interface makes JMT
particularly suited for inexperienced users with little or no background on QN
analysis. While JMT uses simulation to analyze QN models (it also implements
the MVA algorithm), gnetworks provides analytical solution techniques which,
for some classes of models, are much faster and more accurate. Moreover, tools
like gnetworks are more appropriate in performance studies involving automated
construction and analysis of the model.

3 Queueing Networks

QNs are used to describe systems consisting of a collection of resources and
a population of requests (or jobs) which circulate demanding service from the
resources. Each resource consists of a service center, which is represented by a
queue connected to a number of identical servers. A QN model contains a finite
number K of service centers. In an open network there are infinite streams of
requests originating outside the system, which arrive to center k with rate Ag;
requests can leave the system from any node. In a closed network there is a
fixed population of N requests which continuously circulate through the system.
Mized models are also possible, in which there are multiple chains of requests,
some of which are open and other closed.

QN analysis for single-class networks usually involves computing the steady-
state probabilities (i) that there are 7 requests at center k. A class of QN
models is said to have product-form solution if the steady state of the network
can be expressed as the product of factors describing the state of each individual
node. The first class of Product form Queueing Networks (PFQNs) was iden-
tified by Jackson [I0] who discovered that single-class, open networks with the
following properties have PF solution:

— Each node of the network can have Poisson arrivals from outside; a job can
leave the network from any node. A\ denotes the external arrival rate to
node k. Arrival rates may depend on the total population of the network.

— All service times are exponentially distributed, and service discipline at all
nodes is First-Come First-Served (FCFS).

— The k-th node consists of m; > 1 identical servers with average service time
Sk. The service time S may depend on the number of requests at node k.

The result of Jackson has been later extended to closed networks by Gor-
don and Newell [II], and to open, closed and mixed networks with multiple
request classes by Baskett, Chandy, Muntz and Palacios (BCMP) [12]. Specifi-
cally, BCMP networks satisfy the following properties:

— Service discipline at each node can be FCFS, Processor Sharing (PS), Infinite
Server (IS) or Last-Came First-Served, Preemptive Resume (LCFS-PR).

— Service times for FCFS nodes must be exponentially distributed and class-
independent. Service times for the other kind of nodes must have rational
Laplace transform, and can in general be class-dependent. The service time
Sk of class ¢ requests at service center k£ might depend on the number of
requests at that center.

— There are L disjoint routing chains; each chain may be either open or closed.

— External arrivals to node k (if any) must be a Poisson process. A.; denotes
the class c arrival rate at service center k.

— A class r customer completing service at queue i will either move to queue
J as a class s request with probability P,.;s;, or leave the system with proba-
bility 1 - js P,;s; which can be nonzero for some subset of queues serving
open chains.

Additional network types have been shown to have PF solution as well.
PFQNs are of particular interest because they have efficient solution algorithms;
furthermore, despite their limitations (as stated above) PFQNs are general enough
to be useful for modelling large classes of actual systems. Unfortunately, there
are many situations which can be encountered in modern systems which can only
be represented with extended QN models which do not have PF solution. For ex-
ample, fork-join parallelism, simultaneous resource possession, non-exponential
service times and blocking due to finite capacity queues lead to networks which
in general do not have PF solution. In some cases, approximate analysis is pos-
sible (the approach of flow-equivalent centers illustrated in Sec. is widely
used); in other cases, the network can be analyzed through simulation.

4 Overview of gnetworks

gnetworks is a collection of numerical algorithms written in GNU Octave for
exact or approximate solution of single and multiclass QN models; open, closed
or mixed networks are supported. GNU Octave has been chosen for different
reasons. It is free software, available on multiple operating systems, including
Windows, MacOSX and most Unix variants. Furthermore, GNU Octave is mostly
compatible with MATLAB, a language for numerical computations which is
widely used in the research and industrial community. Thus, many students,
researchers or practitioners interested in the numerical analysis of QN models
will likely be already familiar with GNU Octave or MATLAB.

Technically, the gqnetworks package is a set of m-scripts; an m-script is a
program specified in the GNU Octave interpreted language. While m-scripts
are slower than compiled code, they allow maximum portability as they can be
executed on any platform where the Octave interpreter has been ported. It should
be observed that in most practical cases execution times of the algorithms in
qunetworks are acceptable, so there is currently no need to rewrite the functions
as compilable C/C++ code (see Sect. @for actual execution times of qnetworks).

Table 1. Some functions provided by the gnetworks package to analyze QN
models

Supported network type

Function Name Open Closed Single Multi

gnopensingle (
gnopenmulti(
gnconvolution (
gnconvolutionld (
qgnclosedsinglemva (
gnclosedsinglemvald (
gnclosedmultimva(
gnclosedmultimvaapprox(

)
)
)
)
)
)
)
)
gnmix()
)
)
)
)
)
)
)
)

<
|

R RIS
<

qgnsolve (

| < <l |

gnmvablo(
gnmarkov(
gnopenab(
gnclosedab(
gnopenbsb(
gnclosedbsb(
gnclosedgb(

RS

L U

NG NG N N N
|

4.1 Single Station Queueing Systems

quetworks provides functions for analyzing several types of single-station queue-
ing systems [132]: M/M/IE] and M/M/m [gnetworks functions gnmm1() and
gnmmm(), respectively], M/M/1/k and M/M/m/k [qnmm1k() and gnmmmk()],
M/M /oo [qnmminf()], asymmetric M /M /m which contains m servers with pos-
sibly different service rates [qnammm()], M/G/1 with general service time dis-
tribution [qnmgl()], M/H,,/1 with hyperexponential service time distribution
[anmh1()]. For each kind of system, the following performance measures are com-
puted: utilization U, mean response time R, average number of requests in the
system) and throughput X.

4.2 Queueing Networks

qunetworks provides a set of functions for analyzing product-form and non product-
form QNs; Table [I]lists some of these functions, specifying for each one whether
it can be applied to open or closed networks, and whether it supports single or
multiple request classes.

* We use the standard Kendall’s notation A/B/C/K, where A denotes the arrival
process (M=Poisson), B denotes the service time distribution (M =exponential), C
is the number of servers, K is the capacity of the system

Algorithms for Product-form Networks. For open networks, the gnopensingle()
and gnopenmulti() functions can be used on networks with single or multiple
customer classes, respectively. These functions implement the well known equa-
tions for Jackson networks, and the extensions for BCMP open multiclass net-
works [1412].

For PF closed networks, exact as well as approximate algorithms are pro-
vided. For single-class closed networks, the MVA [15] and convolution [16] algo-
rithms are provided by the gnclosedsinglemva() and gnconvolution() functions re-
spectively. Both support FCFS, LCFS-PR, PS and IS nodes; single and multiple
server FCFS nodes are supported as well. Note that the BCMP theorem allows a
general form of state-dependent service rates: for instance IS, PS and LCFS-PR
nodes may exhibit service rates depending on the population of a sub-network.
This is useful for modeling some kind of systems, but is currently not supported
by gnetworks.

gnclosedsinglemvald () and gnconvolutionld () implement the MVA and convo-
lution algorithms, respectively, for networks with general load-dependent service
centers. We provide separate functions for networks with and without general
load-dependent service centers because the former have a higher computational
cost and require more memory. Thus, we provide efficient implementations for
the common case of networks without general load-dependent centers, while still
allowing users to handle the general case using different functions.

It is important to remember that the MVA and convolution algorithms have
very different numerical properties [I7]. In particular, MVA is numerically stable
for models with only fixed rate and infinite server queues; this is true also when
extreme parameter values are considered. Unfortunately, MVA does not retain
its numerical stability for variable rate queues (general load-dependent service
centers). On the other hand, the convolution algorithm behaves badly for fixed
rate and infinite server queues, but has better numerical stability for variable
rate queues when the probability of small queue lengths at those queue is small.

For PF multiclass closed networks we implemented the multiclass MVA algo-
rithm in the gnclosedmultimva() function. For networks with K service centers,
C' customer chains and population vector (N7, No, ... N¢), the multiclass MVA
algorithm requires time O (CK H?:1(Ni + 1)) and space O (K Hiczl(Ni + 1))
Due to its computational complexity, the multiclass MVA algorithm is appropri-
ate only for networks with small population and a limited number of customer
chains. For larger networks, approximations based on the MVA have been pro-
posed in the literature. gnetworks provides the Bard and Schweitzer approxi-
mation [I814] in function gnclosedmultimvaapprox().

Mixed multiclass PFQNs [12] are handled by the gnmix() function. In mixed
networks, customer classes can be partitioned into disjoint chains; some chains
are open, and the others are closed and have fixed populations. The gnmix()
function does does not currently supports general load-dependent queueing cen-
ters.

Finally, the higher-level function gnsolve() can be used as a single front-end
to all the algorithms described above. This function uses a less efficient, but

more flexible representation of the network to be evaluated, and delegates the
actual analysis to the appropriate solution algorithm (if available), depending
on the network type.

Algorithms for non Product-form Networks. In blocking QNs, queues have a
fixed capacity: a request joining a full queue will block until a slot in the desti-
nation node becomes available. Different blocking strategies have been investi-
gated in the literature (see [I9] for a detailed review). The gnmvablo() function
implements the MVABLO algorithm [20]. MVABLO is based on an extension
of MVA, and computes approximate solutions for closed, single-class networks
with Blocking After Service (BAS) blocking. According to the BAS discipline,
a request joining a full queue blocks the source server until a slot is available at
the destination.

Networks with blocking can also be analyzed with the gnmarkov() function.
This function supports either open or closed, single-class networks where all
queues have fixed capacity. Exact performance measures are derived by explicit
construction of the underlying Markov Chain. The gnmarkov() function is ap-
propriate for small networks only, due to the exponential growth of the Markov
Chain size as the network increases.

Bound Analysis. 1t is often useful to compute bounds for the system throughput
X or response time R. Performance bounds can be obtained very quickly, and
can be useful for many performance studies, such as those involving on-line
performance tuning of systems. gnetworks implements three different algorithms
for computing performance bounds: Asymptotic Boundss (ABs) [21] for open and
closed networks (functions gnopenab() and gnclosedab() respectively), Balanced
System Boundss (BSBs) [22] for open and closed networks (functions gnopenbsb()
and gnclosedbsb() respectively) networks, and Geometric Boundss (GBs) [23] for
closed networks (function gnclosedgb()).

4.3 Validation

Almost all the functions provided by the gnetworks package include unit tests
embedded inside the m-files. The tests can be invoked using Octave test function;
it is also possible to run all tests with a single command, which is particularly
useful for checking the whole source distribution before releasing a new version.

As for many numerical softwares, testing QN packages can be nontrivial [24].
When possible, testing is done by computing results on reference networks for
which correct values are known (e.g., from the literature). When exact solutions
are not known, results can still be validated by computing them with different
algorithms. For example, the MVA and convolution algorithms can be applied to
the same network, and they must provide the same results (apart for deviations
due to numerical inaccuracies [I7]). As another example, a M/M/1/K queue is
a special case of an M/M/m/K queue with m = 1 servers. Thus, in this case
the performance results provided by the gnmmmk() and gnmm1k() must be the
same. Finally, even when results cannot be directly compared, consistency checks

— 1D

Dispatcher

Fig. 1. Open model of a two-tier E-commerce site; arrows denote nonzero flows

can nevertheless be done. For example, the bounds on the system throughput
computed by the AB or BSB equations must include the exact result provided
by the MVA algorithm. In this way it is possible to cross-check the gnclosedab(),
gnclosedbsb() and gnclosedmva() functions.

5 Examples

In this section we present some usage examples of the gnetworks package.

5.1 Open Network

Let us consider a simple model of a two-tier E-commerce site. The model is shown
in Fig. [T]and consists of six FCFS service centers. Center 1 is the dispatcher, and
is responsible for routing incoming requests to one of the Web servers (centers
2—4) with uniform probability. After being processed by one of the Web servers,
each request may leave the system with probability pexit, or be forwarded to one
of the Database servers (centers 5 and 6).

We assume average service times S; = 0.5 at the dispatcher, So = S5 = 5, =
0.8 at the Web servers and S5 = Sg = 1.8 at the Database servers; we set the
arrival rate at center 1 as A\; = 0.1 requests/s and exit probability pexis = 0.5.
The transition probability matrix P is:

01/31/31/3 0 0
00 0 0 1/41/4
00 0 0 1/41/4
00 0 0 1/41/4
01/31/31/3 0 0
01/31/31/3 0 0

This model can be defined with the following GNU Octave code:
p_exit = 0.5; # exit probability

i = 2:4; # indexes of Web servers
j = 5:6; # indexes of DB servers
P = zeros(6,6);

P(1,i) = 1/3;
P(i,j) = (1—p_exit)/2;
PG.1) = 1/3

S=1[0.508 0.8 0.8 1.8 1.8];
lambda = [0.1 00 0 0 0];
V = qnvisits(P,lambda);

Note the use of array slicing to define the matrix P: variables ¢ and j are
ranges, and the single instruction P(j,i)=1/3 sets P;; = 1/3 for all j € {5,6}
and i € {2,3,4}.

In the code above we compute the visit counts Vi, to center k using the
gnvisits () function. The visit counts Vj, satisfy the equality Vi, = A +ZJK:1 V; Pjg.
In the example above, we get Vi =1, Vo = V3 = V4 = 0.66 and V5 = V5 = 0.5.

The network is a PFQN and can be evaluated using the qnopensingle() func-
tion, as follows:

[U R Q X] = gnopensingle(sum(lambda),S,V);

where sum(lambda) is the global arrival rate) -, Ax. The resulting utilizations
are Uy = 0.05, Uy = Uz = Uy = 0.053 and Us = Ug = 0.09. It is also easy
to compute the maximum arrival rate Mgy which the system can sustain: it is
known that Agat = 1/ max;{SkVs}, and can be computed by the GNU Octave
expression lambda_sat=1/max(S.xV), which gives A\sat = 1.11; S.#V is the vector
of element-by-element products of S and V.

5.2 Closed Network

We show in Fig. 2| a closed model which is based on the open model of Fig.[1] In
the closed model we have a fixed population of N = 20 requests. Each request
spends an average delay Z = 5 outside the system between service cycles. Z is
also known as think time and is represented by the IS node in Fig.

Again, we can define and solve the model with the following GNU Octave
code:

p_back = 0.5; # back probability
i = 2:4; # range of Web servers
j = 5:6; # range of DB servers
P = zeros(6,6);

P(1,i) =1/3;

P(i,j) = (1—p-back)/2;

P(i,1) = p_back;

PG.i) =1/3;

S=1[05 0808 0.8 1.8 1.8];

V = qgnvisits (P); # Compute visit counts
Z =5; # Think Time

Think Time

HO;

Dispatcher

Ppack

Fig. 2. Closed model of a two-tier E-commerce site

N = 20; # Population
m = ones(1,6); # m(k)=number of servers at center k
[U R Q X] = gnclosedsinglemva(N,S,V,m,Z);

The qgnclosedsinglemva() function solves the given network using the MVA
algorithm. The computed utilizations are U; = 0.50112, Uy = Us = Uy = 0.53453
and U5 = UG = 0.90202.

5.3 Flow-equivalent Centers

We now show how a more complex analysis can be performed with gnetworks.
Let us consider the closed model of Fig. which is similar to the one of
Fig. 2| with the additional introduction of a capacity constraint: no more than
M requests can be in the dashed region at the same time. Any request entering
the fixed capacity region when it is full, must wait in a queue until a request
leaves the region.

Models with capacity constraints have in general no PF solution. However, in
this case we can replace the fixed capacity region with a load-dependent service
center [14], and solve the resulting model (which does have PF solution). More
specifically, we proceed as follows:

1. Define the complete model as in Sect. Then, “short circuit” center 1 by
setting its service time to zero (S(1)=0); we get the submodel in Fig.

2. Solve the short-circuited submodel by computing the throughput Xgup(n)
along the removed node(s) as a function of the population sizen =1,2,... M.
The computed value for Xg,p(n) can be used to derive the average service
time Sgub(n) of the flow-equivalent center which will replace the capacity
constrained region. Sgup(n) is defined as:

1/Xqn(n) ifl1<n<M

Ssu -
b() {1/Xsub(M) ifM<n<N

and can be computed with the following GNU Octave code:

Fixed capacity region

Think Time

Dispatcher

(D~ = (D
;

Phack
a) Original model

e Think Time
Z Dispatcher

Pback
(b) Isolated submodel (c) Equivalent model

Fig. 3. Closed model with capacity constraint

Ssub = zeros(1,N); # Initialize to zero
M = 10; # Capacity constraint
for n=1:M
[U R Q X] = gnclosedsinglemva(n,S,V);
Ssub(n) = V(1)/X(1);
endfor
Ssub(M+1:N) = Ssub(M);

3. Build an equivalent model (see Fig. starting from the full model with
the capacity constrained region replaced by a Flow Equivalent Service Center
(FESC). The service times for the FESC are those computed in the previous
step. Let Sk, be the service time at center k of the equivalent model when
there are n requests; we have that Sy, = 0.5 and Sy, = Ssup(n), for all n.
The equivalent model is defined and solved as follows:

S = [0.5%ones(1,N); Ssub |;
=[11f
Z =25
[UR Q X] = gnclosedsinglemvald(N,S,V,Z);

By repeating the above for different values of the population size N we can
produce the plot shown in Fig. 4l We show the system throughput X(N) as a

1.2

1E e —
3
X o8 _
=}
o
ey
3 0.6 Constrained model (M=10) |
g ' Unconstrained model ===----
|_
s 04| B
[
>
%)

02 |
0 \ \ \ \ | | |

0 5 10 15 20 25 30 35 40

Population size N

Fig. 4. System Throughput X () for the models of Fig. [2] and [3] as a function
of the number of requests N.

function of N. As expected, the system saturates shortly after the number of
requests IV exceeds the population constraint M.

6 Performance Considerations

As already described in Sect. [d] all functions provided by gqnetworks are im-
plemented as m-scripts running inside the Octave interpreter. Despite this, per-
formance are in general quite good. To give an example, we consider the im-
plementing the MVA algorithm for single-class closed networks as provided by
the gnclosedsinglemva() function. Single-class, closed networks are widely used
in practice, so it is important to analyze them efficiently.

Figure [5| illustrates the execution time of gnclosedsinglemva() for different
values of the network size K and population IV. The tests have been performed by
creating a network with K servers with random service times Sy and visit counts
Vi.. Execution times have been measured on a Linux PC with an AMD Athlon
64 X2 Dual Core processor 3800+ with 2GB of RAM, using GNU Octave version
3.2.3. For each combination of K and N, we consider the average execution time
of 5 runs.

We observe that the largest network (K = 2000 service centers and N = 500
requests) takes only a fraction of a second to be analyzed on the test machine.
We also observe that for a fixed population size N, the execution time increases
linearly with the number of service centers K. This is expected, as the compu-
tational complexity of MVA for single-class, load-independent service centers is
O(NK).

0.2

Population N=500 ‘—l—
Population N=250 —¥—
Population N=100 —&—

2 015 -

-

Q

O

[0}

o2

[0}

£ 01| -
5 MK
5

[

g

X 005 -

0 \ \ \
0 500 1000 1500 2000

Number of service centers (K)

Fig. 5. Execution time of the gnclosedsinglemva() function (in seconds, average
of five measurements).

7 Conclusions

In this paper we described gnetworks, a QN analysis package for GNU Octave.
gnetworks supports single station queueing systems, as well as open, closed or
mixed networks; implementations of the MVA and convolution algorithm for
product-form QNs are provided. Moreover, computation of performance bound
and approximate analysis of some classed of non product-form networks is also
possible. We gave some practical usage example showing how the Octave envi-
ronment coupled with gnetworks can be used to conduct performance modelling
studies.

We are currently extending gnetworks by including support for non expo-
nential single station queueing systems, as well as additional classes of QNs
models, in particular QNs with blocking, general state-dependent routing or
state-dependent service times.

gnetworks is available at http://www.moreno.marzolla.name/software/
gnetworks| and can be used, modified and distributed under the terms of the
GNU General Public License (GPL) version 3.

References

1. Serazzi, G.: Performance Evaluation Modelling with JMT: learning by examples.
Technical Report 2008.09, Politecnico di Milano (2008)

2. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions. Wiley (1998)

3. Eaton, J.W.: GNU Octave Manual. Network Theory Limited (2002)

http://www.moreno.marzolla.name/software/qnetworks
http://www.moreno.marzolla.name/software/qnetworks

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

The MathWorks Inc. Natick, Massachussets: MATLAB. (2003)

Bertoli, M., Casale, G., Serazzi, G.: JMT: performance engineering tools for system
modeling. SIGMETRICS Perform. Eval. Rev. 36(4) (2009) 10-15

Sauer, C.H., Reiser, M., MacNair, E.A.: RESQ: a package for solution of general-
ized queueing networks. In: AFIPS National Computer Conference. Volume 46 of
AFIPS Conference Proceedings., AFIPS Press (1977) 977-986

Chang, K.C., Gordon, R.F., Loewner, P.G., MacNair, E.A.: The Research Queuing
Package Modeling Environment (RESQME). In: Winter Simulation Conference.
(1993) 294-302

Véran, M., Potier, D.: QNAP2: A portable environment for queueing systems
modelling. Technical Report 314, Institut National de Recherche en Informatique
et en Automatique (June 1984)

Sahner, R., Trivedi, K.S., Puliafito, A.: Performance and Reliability Analysis of
Computer Systems: An Example-Based Approach Using the SHARPE Software
Package. Kluwer Academic Publishers (1996)

Jackson, J.R.: Jobshop-like queueing systems. Man. Science 10(1) (1963) 131-142
Gordon, W.J., Newell, G.F.: Closed Queuing Systems with Exponential Servers.
Operations Research 15(2) (1967) 254265

Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed
networks of queues with different classes of customers. J. ACM 22(2) (1975) 248
260

Kleinrock, L.: Queueing Systems: Volume I-Theory. Wiley Interscience, New York
(1975)

Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative System
Performance: Computer System Analysis Using Queueing Network Models. Pren-
tice Hall (1984)

Reiser, M., Lavenberg, S.S.: Mean-value analysis of closed multichain queuing
networks. Journal of the ACM 27(2) (April 1980) 313-322

Buzen, J.P.: Computational algorithms for closed queueing networks with expo-
nential servers. Comm. ACM 16(9) (September 1973) 527-531

Chandy, K.M., Sauer, C.H.: Computational algorithms for product form queueing
networks. Comm. ACM 23(10) (1980) 573-583

Schweitzer, P.: Approximate analysis of multiclass closed networks of queues. In:
Proc. Int. Conf. on Stochastic Control and Optimization. (June 1979) 25-29
Balsamo, S. De Nitto Personé, V., Onvural, R.: Analysis of Queueing Networks
with Blocking. Kluwer Academic Publishers (2001)

Akyildiz, I.F.: Mean value analysis for blocking queueing networks. IEEE Trans-
actions on Software Engineering 1(2) (April 1988) 418-428

Denning, P.J., Buzen, J.P.: The operational analysis of queueing network models.
ACM Computing Surveys 10(3) (September 1978) 225-261

Zahorjan, J., Sevcick, K.C., Eager, D.L., Galler, B.I.: Balanced job bound analysis
of queueing networks. Comm. ACM 25(2) (February 1982) 134-141

Casale, G., Muntz, R.R., Serazzi, G.: Geometric bounds: a non-iterative analysis
technique for closed queueing networks. IEEE Transactions on Computers 57(6)
(June 2008) 780-794

Schwetman, H.: Testing network-of-queues software. Technical Report CSD-TR-
330, Purdue University (January 1 1980)

	The qnetworks Toolbox: a Software Package for Queueing Networks Analysis
	Moreno Marzolla

