
Mining Association Rules in Long Sequences

Boris Cule and Bart Goethals

University of Antwerp,
Middelheimlaan 1, 2020 Antwerpen, Belgium

{boris.cule,bart.goethals}@ua.ac.be

Abstract. Discovering interesting patterns in long sequences, and find-
ing confident association rules within them, is a popular area in data
mining. Most existing methods define patterns as interesting if they oc-
cur frequently enough in a sufficiently cohesive form. Based on these
frequent patterns, association rules are mined in the traditional man-
ner. Recently, a new interestingness measure, combining cohesion and
frequency of a pattern, has been proposed, and patterns are deemed in-
teresting if encountering one event from the pattern implies with a high
probability that the rest of the pattern can be found nearby. It is quite
clear that this probability is not necessarily equally high for all the events
making up such a pattern, which is why we propose to introduce the con-
cept of association rules into this problem setting. The confidence of such
an association rule tells us how far on average from a particular event, or
a set of events, one has to look, in order to find the rest of the pattern.
In this paper, we present an efficient algorithm to mine such association
rules. After applying our method to both synthetic and real-life data, we
conclude that it indeed gives intuitive results in a number of applications.

Key words: association rules, sequences, interesting itemsets

1 Introduction

Pattern discovery in sequences is a popular data mining task. Typically, the
dataset consists of a single event sequence, and the task consists of analysing
the order in which events occur, trying to identify correlation among events. In
this paper, events are items, and we look for association rules between itemsets.
Usually, an itemset is evaluated based on how close to each other its items occur
(cohesion), and how often the itemset itself occurs (frequency).

Recently, we proposed to combine cohesion and frequency into a single mea-
sure [2], thereby guaranteeing that if we encounter an item from an itemset
identified as interesting, there is a high probability that the rest of the itemset
can be found nearby. The proposed algorithm suffered from long runtimes, de-
spite the efficient pruning of candidates. We now propose relaxing the pruning
function, but making it much easier to compute. As a result, we prune less, but
the algorithm runs much faster.

We further propose to introduce the concept of association rules into this
setting. We wish to find itemsets that imply the occurrence of other itemsets

nearby. We present an efficient algorithm to mine such rules, taking advantage
of two factors that lead to its efficiency — we can mine itemsets and rules in
parallel, and we only need to compute the confidence of a simple class of rules,
and use them to evaluate all other rules.

2 Related Work

The concept of finding patterns in sequences was first described by Mannila et
al. [7]. Patterns are described as episodes, and can be parallel, where the order in
which events occur is irrelevant, serial, where events occur in a particular order,
or a combination of the two. We limit ourselves to parallel episodes containing no
more than one occurrence of any single event type — in other words, itemsets.
In this setting, Mannila et al. propose the Winepi method to detect frequent
itemsets. The method slides a window of fixed length over the sequence, and
each window containing the itemset counts towards its total frequency, which
is defined as the proportion of all windows that contain it. The confidence of
an association rule X ⇒ Y , denoted c(X ⇒ Y), is defined as the ratio of the
frequency of X ∪ Y and the frequency of X . Once the frequent itemsets have
been found, rules between them are generated in the traditional manner [1].

Mannila et al. propose another method, Minepi, to search for frequent item-
sets based on their minimal occurrences [7]. Here, however, association rules are
of the form X [win1] ⇒ Y [win2], meaning that if itemset X has a minimal oc-
currence in a window W1 of size win1, then X∪Y has a minimal occurrence in a
window W2 of size win2 that fully contains W1. As we plan to develop rules that
tell us how likely we are to find some items nearby, we do not wish to use any
fixed window lengths, so these are precisely the sort of rules we wish to avoid.

Generating association rules based on a maximum gap constraint, as defined
by Garriga [4], was done by Méger and Rigotti [8], but only for serial episodes
X and Y , where X is a prefix of Y . Most other related work has been based
on the Winepi definitions, and only attempted to find the same rules (or a
representative subset) more efficiently [3, 5].

Consider sequence s = cghefababcidjcgdlcmd, that will be used as a running
example throughout the paper. Assume that the time stamps associated with
the items are integers from 1 to 20. This short sequence is enough to demonstrate
the unintuitiveness of the Winepi method for evaluating association rules. We
see that for each occurrence of an a, there is a b right next to it. Similarly, for
each g, there is a c right next to it. Logically, association rules a ⇒ b and g ⇒ c

should be equally confident (to be precise, their confidence should be equal to
1). Winepi, with a window size of 2 (the number of possible windows is thus
21, as the first window starts one time stamp before the sequence, and the last
one ends one time stamp after the sequence), results in fr(a) = 4

21 , fr(ab) =
3
21 , fr(g) = 4

21 , fr(cg) = 2
21 . and therefore c(a ⇒ b) = 0.75, c(g ⇒ c) = 0.5. A

larger window always gives similar results, namely c(g ⇒ c) < c(a ⇒ b) < 1.
Due to space restrictions, we only present related work on association rules.

A more extensive discussion of related work on discovering patterns in sequences
can be found in [2] and [6].

3 Problem Setting

As our work is based on an earlier work [2], we now reproduce some of the
necessary definitions and notations that we will use here. An event is a pair
(i, t), consisting of an item and a time stamp, where i ∈ I, the set of all possible
items, and t ∈ N. Two items can never occur at the same time. We denote a
sequence of events by S. For an itemset X , the set of all occurrences of its items
is denoted by N(X) = {t | (i, t) ∈ S and i ∈ X}. The coverage of X is defined
as the probability of encountering an item from X in the sequence, and denoted

P (X) = |N(X)|
|S| .

The length of the shortest interval containing itemset X for each time stamp in
N(X) is computed as

W (X, t) = min{t2 − t1 + 1 | t1 ≤ t ≤ t2 and ∀i ∈ X, ∃(i, t′) ∈ S, t1 ≤ t′ ≤ t2}.

The average length of such shortest intervals is expressed as

W (X) =
∑

t∈N(X) W (X, t)

|N(X)| .

The cohesion of X is defined as the ratio of the itemset size and the average
length of the shortest intervals that contain it, and denoted

C(X) = |X|

W (X)
.

Finally, the interestingness of an itemset X is defined as I(X) = C(X)P (X).
Given a user defined threshold min int, X is considered interesting if I(X)
exceeds min int. An optional parameter, max size, can be used to limit the
output only to itemsets with a size smaller or equal to max size.

We are now ready to define the concept of association rules in this setting.
The aim is to generate rules of the form if X occurs, Y occurs nearby, where
X ∩ Y = ∅ and X ∪ Y is an interesting itemset. We denote such a rule by
X ⇒ Y , and we call X the body of the rule and Y the head of the rule. Clearly,
the closer Y occurs to X on average, the higher the value of the rule. In other
words, to compute the confidence of the rule, we must now use the average length
of minimal windows containing X ∪ Y , but only from the point of view of items
making up itemset X . We therefore define this new average as

W (X, Y) =
∑

t∈N(X) W (X∪Y, t)

|N(X)| .

The confidence of a rule can now be defined as

c(X ⇒ Y) = |X∪Y |

W (X,Y)
.

A rule X ⇒ Y is considered confident if its confidence exceeds a given threshold,
min conf .

We now return to our running example. Looking at itemset cd, we see that
the occurrence of a c at time stamp 1 will reduce the value of rule c ⇒ d, but

not of rule d ⇒ c. Indeed, we see that W (cd, 1) = 12, and the minimal window
containing cd for the other three occurrences of c is always of size 3. Therefore,
W (c, d) = 21

4 = 5.25, and c(c ⇒ d) = 2
5.25 = 0.38. Meanwhile, the minimal

window containing cd for all occurrences of d is always of size 3. It follows that
W (d, c) = 9

3 = 3 and c(d ⇒ c) = 2
3 = 0.67. We can conclude that while an

occurrence of a c does not highly imply finding a d nearby, when we encounter a
d we can be reasonably certain that a c will be found nearby. We also note that,
according to our definitions, c(a ⇒ b) = 1 and c(g ⇒ c) = 1, as desired.

4 Improved Interesting Itemsets Algorithm

The algorithm proposed in [2] and given in Algorithm 1, finds interesting itemsets
as defined in Section 3 by going through the search space (a tree) in a depth-first
manner, pruning whenever possible. The first call to the algorithm is made with
X empty, and Y equal to the set of all items.

Algorithm 1 INIT(〈X, Y 〉) finds interesting itemsets

if UBI(〈X, Y 〉) ≥ min int and size(X) ≤ max size then

if Y = ∅ then

output X

else

Choose a in Y

INIT(〈X ∪ {a}, Y \ {a}〉)
INIT(〈X, Y \ {a}〉)

end if

end if

The algorithm uses the UBI pruning function, that returns an upper bound
of the interestingness of all itemsets Z such that X ⊆ Z ⊆ X ∪ Y . If this upper
bound is lower than the chosen min int, the subtree rooted at 〈X, Y 〉 can be
pruned. The UBI function is defined as

UBI(〈X,Y 〉) = |N(X∪Y)|2×|X∪Y |∑
t∈N(X) W (X, t)×|S|

.

This pruning function prunes a large number of candidates, but the algorithm
still suffers from long runtimes, due to the fact that each time a new itemset X is
considered for pruning, W (X, t) needs to be computed for almost each t ∈ N(X).
For large itemsets, this can imply multiple dataset scans just to decide if a single
candidate node can be pruned.

We propose a new pruning function in an attempt to balance pruning a large
number of candidates with the effort needed for pruning. As the main problem
with the original function was computing the exact minimal windows for each
candidate, we aim to estimate the length of these windows using a much simpler
computation. To do this, we first compute the exact sum of the window lengths
for each pair of items, and we then use these sums to come up with a lower
bound of the sum of the window lengths for all other candidate nodes.

We first note that

∑
t∈N(X) W (X, t) =

∑
x∈X

∑
t∈N({x}) W (X, t).

We then note that each window around an item x ∈ X must be at least as
large as the largest such window containing the same item x and any other item
y ∈ X . It follows that

∑
t∈N({x}) W (X, t) ≥

∑
t∈N({x}) maxy∈X\{x}(W (xy, t)).

Naturally, it also holds that

∑
t∈N({x}) W (X, t) ≥ maxy∈X\{x}(

∑
t∈N({x}) W (xy, t)).

To simplify our notation, from now on we will denote
∑

t∈N({x}) W (xy, t) by

s(x, y). Finally, we see that

∑
t∈N(X) W (X, t) ≥

∑
x∈X maxy∈X\{x}(s(x, y)),

giving us a lower bound for the sum of windows containing X around all occur-
rences of items of X . This gives us a new pruning function:

NUBI(〈X, Y 〉) = |N(X∪Y)|2×|X∪Y |∑
x∈X maxy∈X\{x}(s(x,y))×|S|

.

This new pruning function is easily evaluated, as all it requires is that we
store s(x, y), the sum of minimal windows containing x and y over all occurrences
of x, for each pair of items (x, y), so we can look them up when necessary.

The exact windows will still have to be computed for the leaves of the search
tree that have not been pruned, but this is unavoidable. Even for the leaves,
it pays off to first check the upper bound, and then, only if the upper bound
exceeds the threshold, compute the exact interestingness. The new algorithm
uses NUBI instead of UBI, and is the same as the one given in Algorithm 1,
with

if I(X) ≥ min int then output X

replacing line 3.
Let us now return to our running example, and examine what happens if we

encounter node 〈{a, b, c}, {d, e}〉 in the search tree. We denote X = {a, b, c} and
Y = {d, e}. With the original pruning technique, we would need to compute the
exact minimal windows containing X for each occurrence of a, b or c. After a fair
amount of work scanning the dataset many times, in all necessary directions, we
would come up with the following:

∑
t∈N(X) W (X, t) = 7 + 5 + 4 + 3 + 3 + 3 +

7 + 11 = 43. The value of the UBI pruning function is therefore:

|N(X∪Y)|2×|X∪Y |∑
t∈N(X) W (X, t)×|S| = 144×5

43×20 = 0.84.

Using the new technique, we would first compute s(x, y) for all pairs (x, y).
The relevant pairs are s(a, b) = 4, s(a, c) = 8, s(b, a) = 4, s(b, c) = 6,
s(c, a) = 27, s(c, b) = 25. We can now compute the minimal possible sum of
windows for each item, giving us

maxy∈X\{a}(s(a, y)) = 8, maxy∈X\{b}(s(b, y)) = 6, maxy∈X\{c}(s(c, y)) = 27

resulting in a sum of
∑

x∈X maxy∈X\{x}(s(x, y)) = 41. The value of the NUBI
pruning function is therefore

|N(X∪Y)|2×|X∪Y |∑
x∈X maxy∈X\{x}(s(x,y))×|S| = 0.88

We see that by simply looking up a few precomputed values instead of scanning
the dataset a number of times, we get a very good estimate of the sum of the
window lengths.

5 Association Rules Algorithm

Unlike the traditional approaches, which need all the frequent itemsets to be
generated before the generation of association rules can begin, we are able to
generate rules in parallel with the interesting itemsets. When finding an inter-
esting itemset X , we compute the sum of all minimal windows W (X, t) for each
x ∈ X apart, before adding them up into the overall sum needed to compute
I(X). With these sums still in memory, we can easily compute the confidence of
all association rules of the form x ⇒ X \{x}, with x ∈ X , that can be generated
from itemset X . In practice, it is sufficient to limit our computations to rules
of precisely this form (i.e., rules where the body consists of a single item). To
compute the confidence of all other rules, we first note that

∑
t∈N(X) W (X ∪ Y, t) =

∑
x∈X

∑
t∈N({x}) W (X ∪ Y, t).

A trivial mathematical property tells us that
∑

t∈N({x}) W (X ∪ Y, t) = W (x, Y ∪ X \ {x})|N(x)|.

As a result, we can conclude that

W (X, Y) =
∑

x∈X W (x,Y ∪X\{x})|N(x)|

|N(X)| ,

which in turn implies that

c(X ⇒ Y) = |X∪Y ||N(X)|
∑

x∈X W (x,Y ∪X\{x})|N(x)|
.

Meanwhile, we can derive that

c(x ⇒ Y ∪ X \ {x}) = |X∪Y |

W (x,Y ∪X\{x})
,

and it follows that

c(X ⇒ Y) =
|N(X)|

∑
x∈X

|N(x)|
c(x⇒Y ∪X\{x})

. (1)

As a result, once we have evaluated all the rules of the form x ⇒ X \ {x}, with
x ∈ X , we can then evaluate all other rules Y ⇒ X \ Y , with Y ⊂ X , without

Algorithm 2 AR(〈X, Y 〉) finds interesting itemsets and confident association
rules within them

if NUBI(〈X, Y 〉) ≥ min int and size(X) ≤ max size then

if Y = ∅ then

if I(X) ≥ min int then

output X

for all x ∈ X do

compute and store c(x ⇒ X \ {x})
if c(x ⇒ X \ {x}) ≥ min conf then output x ⇒ X \ {x}

end for

for all Y ⊂ X with |Y | ≥ 2 do

if c(Y ⇒ X \ Y) ≥ min conf then output Y ⇒ X \ Y

end for

end if

else

Choose a in Y

AR(〈X ∪ {a}, Y \ {a}〉)
AR(〈X,Y \ {a}〉)

end if

end if

further dataset scans. The algorithm for finding both interesting itemsets and
confident association rules is given in Algorithm 2.

Looking back at our running example, let us compute the confidence of rule
ab ⇒ c. First we compute c(a ⇒ bc) = 3

4 = 0.75 and c(b ⇒ ac) = 3
3.5 = 0.86.

From Eq. 1, it follows that c(ab ⇒ c) = 4
2

0.75 + 2
0.86

= 4
5 = 0.8. It is easy to check

that this corresponds to the value as defined in Section 3.

6 Experiments

In our experiments, we aim to show three things:

1. our algorithm for finding interesting itemsets works faster than the one given
in [2] and can handle much longer sequences.

2. our algorithm for finding association rules gives meaningful results, without
generating spurious output.

3. our algorithm for finding association rules runs very efficiently, even with a
confidence threshold set to 0.

To do this, we designed a dataset that allowed us to demonstrate all three
claims. To generate a sequence in which some association rules would certainly
stand out, we used the Markov chain model given in Table 1. Our dataset con-
sisted of items a, b, c, and 22 other items, randomly distributed whenever the
transition table led us to item x. We fine tuned the probabilities in such a way
that all items apart from c had approximately the same frequency, while c ap-
peared approximately twice as often. The high probability of transitions from a

to b and c, and from b to a and c should result in rules such as a ⇒ c and b ⇒ c

having a high confidence. However, given that c appears more often, sometimes
without an a or a b nearby, we would expect rules such as c ⇒ a and c ⇒ b to
be ranked lower. Later on we show that our algorithm gave the expected results
for all these cases.

a b c x

a 0 0.45 0.45 0.1
b 0.45 0 0.45 0.1
c 0 0 0.1 0.9
x 0.025 0.025 0.05 0.9

Table 1. A transition matrix defining a Markov model

First, though, let us examine our first claim. We used our Markov model
to generate ten sequences of 10 000 items and ran the two algorithms on each
sequence, varying min int, at first choosing max size of 4. Figures 1(a) and 1(c)
show the average runtimes and number of evaluated candidate nodes for each
algorithm, as well as the actual number of identified interesting itemsets. While
our algorithm pruned less (Figure 1(c)), it ran much faster, most importantly
at the thresholds where the most interesting itemsets are found (see Figure 1(b)
for a zoomed-in version). Naturally, if min int = 0, the algorithms take equally
long, as all itemsets are identified as interesting, and their exact interestingness
must be computed. In short, we see that the runtime of the original algorithm is
proportional to the number of candidates, while the runtime of our new algorithm
is proportional to the number of interesting itemsets.

To support the second claim, we ran our association rules algorithm with
both min int and min conf equal to 0. We set max size to 4. We now simply
had to check which rules had the highest confidence. In repeated experiments,
with various 500 000 items long datasets, the results were very consistent. The
most interesting rules were a ⇒ c and b ⇒ c, with a confidence of 0.52. Then
followed rules a ⇒ bc, b ⇒ ac and ab ⇒ c, with a confidence of 0.34. Rules
a ⇒ b and b ⇒ a had a confidence of 0.29, while rules ac ⇒ b and bc ⇒ a had
a confidence of 0.2. Rule c ⇒ ab had a confidence of around 0.17, while rules
not involving a, b or c had a confidence between 0.13 and 0.17. We can safely
conclude that our algorithm gave the expected results.

To confirm this claim, we ran our algorithm on three text datasets: English1,
Italian2 and Dutch3. In each text, we considered the letters of the alphabet and
the space between words (denoted) as items, ignoring all other symbols. In all
three languages, rule q ⇒ u had a confidence of 1, as q is almost always followed
by u in all these languages. In all three languages, there followed a number of
rules with in the head, but the body varied. In Italian, a space is often found
near f , as f is mostly found at the beginning of Italian words, while the same is

1 a selection from http://www.gutenberg.org/files/1999/1999.txt
2 a selection from http://www.gutenberg.org/dirs/etext04/7clel10.txt
3 a selection from http://www.gutenberg.org/files/18066/18066-8.txt

true for j in English. Rules involving two letters revealed some patterns inherent
in these languages. For example, rule h ⇒ c was ranked high in Italian (where h

appears very rarely without a c in front of it), while rule j ⇒ i scored very high
in Dutch (where j is often preceded by an i). A summary of the results is given
in Table 2.

English Italian Dutch

two c(q ⇒ u) = 1 c(q ⇒ u) = 1 c(q ⇒ u) = 1
letters c(z ⇒ i) = 0.61 c(h ⇒ c) = 0.75 c(j ⇒ i) = 0.75

c(v ⇒ e) = 0.58 c(h ⇒ e) = 0.51 c(d ⇒ e) = 0.61
c(x ⇒ e) = 0.53 c(z ⇒ a) = 0.5 c(g ⇒ e) = 0.57

three c(q ⇒ eu) = 0.63 c(q ⇒ eu) = 0.6 c(q ⇒ iu) = 15

letters c(z ⇒ ai) = 0.52 c(h ⇒ ce) = 0.57 c(j ⇒ ei) = 0.46
c(q ⇒ nu) = 0.4 c(q ⇒ au) = 0.52 c(g ⇒ en) = 0.44

with c(y ⇒) = 0.85 c(q ⇒) = 0.84 c(z ⇒) = 0.78
 c(w ⇒) = 0.84 c(f ⇒) = 0.7 c(w ⇒) = 0.74

c(j ⇒) = 0.83 c(a ⇒) = 0.7 c(v ⇒) = 0.73
...

c(⇒ e) = 0.35 c(⇒ a) = 0.39 c(⇒ n) = 0.35

Table 2. Some interesting rules found in three different languages

To prove our third claim, we ran the AR algorithm on ten Markov chain
datasets (each 10 000 items long), using min int of 0.025 and max size of 4, each
time varying min conf . The average runtimes and number of found association
rules are shown in Figure 1(d). We can see that the exponential growth in the
number of generated rules had virtually no effect on the runtime of the algorithm.

7 Conclusion

In this paper we presented a new way of identifying association rules in sequences.
We base ourselves on interesting itemsets and look for association rules within
them. When we encounter a part of an itemset in the sequence, our measure of
the rule’s confidence tells us how likely we are to find the rest of the itemset
nearby.

On our way to discovering association rules, we found a way to improve the
runtime of the algorithm that finds the interesting itemsets, too. By relaxing the
upper bound of an itemset’s interestingness, we actually prune fewer candidates,
but our new algorithm runs much faster than the old one. To be precise, the
runtime of the new algorithm is proportional to the number of identified item-
sets, while the runtime of the old algorithm was proportional to the number of
evaluated nodes in the search tree. Due to being able to generate association
rules while mining interesting itemsets, the cost of finding confident association
rules is negligible.

Experiments demonstrated the validity of our central claims — that our
algorithm for finding interesting itemsets runs much faster than the original one,
particularly on long datasets, and that our algorithm for finding association rules
gives meaningful results very efficiently.

5 This is due to a short dataset, rather than an actual rule in the Dutch language.

10

100

1000

 0 0.2 0.4 0.6 0.8 1

se
co

nd
s

(lo
g

sc
al

e)

interestingness threshold

new runtime
old runtime

(a)

10

100

1000

 0 0.02 0.04 0.06 0.08 0.1

1

100

10000

se
co

nd
s

(lo
g

sc
al

e)

in
te

re
st

in
g

ite
m

se
ts

 (
lo

g
sc

al
e)

interestingness threshold

new runtime
old runtime

interesting itemsets

(b)

1

10

100

1000

10000

1e+05

 0 0.2 0.4 0.6 0.8 1

ca
nd

id
at

es
 /

in
t.

ite
m

se
ts

 (
lo

g
sc

al
e)

interestingness threshold

new candidates
old candidates

interesting itemsets

(c)

100

200

400

 0 0.2 0.4 0.6 0.8 1

1

100

10000

se
co

nd
s

(lo
g

sc
al

e)

co
nf

id
en

t a
ss

oc
ia

tio
n

ru
le

s
(lo

g
sc

al
e)

confidence threshold

AR runtime
confident rules

(d)

Fig. 1. (a) Runtime comparison of the two itemset algorithms with max size set to 4.
(b) Zoomed-in version of Figure 1(a). (c) Pruning comparison with max size set to 4.
(d) Runtime of the AR algorithm with a varying confidence threshold.

References

1. R. Agrawal, T. Imielinski and A. Swami, Mining Association Rules between Sets

of Items in Large Databases, Proc. ACM SIGMOD Int. Conf. on Management of
Data, pp. 207-216, 1993

2. B. Cule, B. Goethals and C. Robardet, A new constraint for mining sets in se-

quences, Proc. SIAM Int. Conf. on Data Mining (SDM), pp. 317-328, 2009
3. G. Das, K-I. Lin, H. Mannila, G. Renganathan and P. Smyth, Rule discovery from

time series, Proc. Int. Conf. on Knowledge Discovery and Data Mining (KDD),
pp. 16-22, 1998

4. G. C. Garriga, Discovering Unbounded Episodes in Sequential Data, Proc. 7th Eu-
ropean Conf. on Principles and Practice of Knowledge Discovery in Databases
(PKDD), pp. 83–94, 2003

5. S. K. Harms, J. Saquer and T. Tadesse, Discovering Representative Episodal Asso-

ciation Rules from Event Sequences Using Frequent Closed Episode Sets and Event

Constraints, Proc. IEEE Int. Conf. on Data Mining (ICDM), pp. 603-606, 2001
6. S. Laxman and P. S. Sastry, A survey of temporal data mining, SADHANA,

Academy Proceedings in Engineering Sciences, volume 31, part 2, pp. 173–198,
2006

7. H. Mannila, H. Toivonen and A. I. Verkamo, Discovery of Frequent Episodes in

Event Sequences, Data Mining and Knowledge Discovery, volume 1(3), pp. 259–
289, 1997

8. N. Méger and C. Rigotti, Constraint-Based Mining of Episode Rules and Optimal

Window Sizes, Proc. 8th European Conf. on Principles and Practice of Knowledge
Discovery in Databases (PKDD), pp. 313–324, 2004

