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Abstract. We present a general framework for the task of extracting
specific information “on demand” from a large corpus such as the Web
under resource-constraints. Given a database with missing or uncertain
information, the proposed system automatically formulates queries, is-
sues them to a search interface, selects a subset of the documents, ex-
tracts the required information from them, and fills the missing values
in the original database. We also exploit inherent dependency within the
data to obtain useful information with fewer computational resources.
We build such a system in the citation database domain that extracts
the missing publication years using limited resources from the Web. We
discuss a probabilistic approach for this task and present first results. The
main contribution of this paper is to propose a general, comprehensive
architecture for designing a system adaptable to different domains.

1 Introduction

The goal of traditional information extraction is to accurately extract as many
fields or records as possible from a collection of unstructured or semi-structured
text documents. In many scenarios, however, we already have a partial database
and we need only fill in its holes. This paper proposes methods for finding such
information in a large collection of external documents, and doing so efficiently
with limited computational resources. For instance, this small piece of informa-
tion may be a missing record, or a missing field in a database that would be
acquired by searching a very large collection of documents, such as the Web.
Using traditional information extraction models for this task is wasteful, and in
most cases computationally intractable. A more feasible approach for obtaining
the required information is to automatically issue appropriate queries to the ex-
ternal source, select a subset of the retrieved documents for processing and then
extract the specified field in a focussed and efficient manner. We can further en-
hance our system’s efficiency by exploiting the inherent relational nature of the
database. We call this process of searching and extracting for specific pieces of
information, on demand, Resource-bounded Information Extraction (RBIE). In
this paper, we present the design of a general framework for Resource-bounded
Information Extraction, discuss various design choices involved and present ex-
perimental results.



2 Resource-bounded Information Extraction

1.1 Example

Consider a database of scientific publication citations, such as Rexa, Citeseer
or Google Scholar. The database is created by crawling the web, downloading
papers, extracting citations from the bibliographies and then processing them
by tagging and normalizing. In addition, the information from the paper header
is also extracted. In order to make these citations and papers useful to the
users, it is important to have the year of publication information available. Even
after integrating the citation information with other publicly available databases,
such as DBLP, a large fraction of the papers do not have a year of publication
associated with them. This is because, often, the headers or the full text of the
papers do not contain the date and venue of publication (especially for preprints
available on the web). Approximately one third of the papers in Rexa are missing
the year of publication field. Our goal is to fill in the missing years by extracting
them from the web.

We chose this particular example task, since it demonstrates the relational
aspect of RBIE. Along with extracting headers, the bibliographic information
is often extracted, creating a citation network. This network information can
be further exploited by noting that in almost all cases, a paper is published
before (or the same year) as other papers that cite it. Using these temporal con-
straints, we obtain 87.7% of the original F1 by using only 13.2% of computational
resources such as queries and documents.

1.2 Motivation

The knowledge discovery and data mining community has long struggled with
the problem of missing information. Most real-world databases come with holes
in the form of missing records or missing feature values. In some cases, the values
exist, but there is considerable uncertainty about their correctness. Incomplete-
ness in the database provides incomplete responses to user queries, as well as
leads to less accurate data mining models and decision support systems. In order
to make the best use of the existing information, it is desirable to acquire missing
information from an external source in an efficient manner. The external source
can be another database that is purchased, or a large collection of free docu-
ments, such as the web. In the latter case, we may run information extraction
to obtain the missing values in our database. However, the traditional models of
information extraction can not be directly applied in this “on demand” setting.

Note that, in the setting described above, we are often not interested in ob-
taining the complete records in the database, but just filling in the missing values.
Also, the corpus of documents, such as the web, is extremely large. Moreover, in
most real scenarios, we must work under pre-specified resource constraints. The
resource constraints may be computational, such as processors, network band-
width, or related to time and money. Any method that aims to extract required
information in the described setting must be designed to work under the given
resource constraints.
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Many of these databases are relational in nature, e.g. obtaining the value of
one field may provide useful information about the remaining fields. Similarly,
if the records are part of a network structure with uncertain or missing values,
as in the case of our example task, then information obtained for one node can
reduce uncertainty in the entire network. We show that exploiting these kinds
of dependencies can significantly reduce the amount of resources required to
complete the task.

In this paper, we propose a general framework for resource-bounded informa-
tion extraction, along with the design of a prototype system used to address the
task of finding missing years of publication in citation records. We also present
first results on this task.

2 Related Work

Resource-bounded Information Extraction encompasses several different types
of problems. It deals with extracting information from a large corpus, such as
the web; it actively acquires this information under resource constraints; and
it exploits the interdependency within the data for best performance. Here we
discuss various related tasks and how RBIE is uniquely positioned between them.

2.1 Traditional Information Extraction

In the traditional information extraction settings, we are given a database schema,
and a set of unstructured or semi-structured documents. The goal is to automat-
ically extract records from these documents, and fill in the values in the given
database. These databases are then used for search, decision support and data
mining. In recent years, there has been much work in developing sophisticated
methods for performing information extraction over a closed collection of doc-
uments, e.g. [3]. Several approaches have been proposed for different phases of
information extraction task, such as segmentation, classification, association and
coreference. Most of these proposed approaches make extensive use of statistical
machine learning algorithms, which have improved significantly over the years.
However, only some of these methods remain computationally tractable as the
size of the document corpus grows. In fact, very few systems are designed to
scale over a corpus as large as, say, the Web [2,15].

2.2 Information Extraction From the Web

There are some large scale systems that extract information from the web.
Among these are KnowItAll [2], InfoSleuth [11] and Kylin [14]. The goal of
the KnowItAll system is a related, but different task called, “Open Information
Extraction”. In Open IE, the relations of interest are not known in advance, and
the emphasis is on discovering new relations and new records through extensive
web access. In contrast, in our task, what we are looking for is very specific
and the corresponding schema is known. The emphasis is mostly on filling the
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missing fields in known records, using resource-bounded web querying. Hence,
KnowltAll and RBIE frameworks have very different application domains. In-
foSleuth focuses on gathering information from given sources, and Kylin focuses
only on Wikipedia articles. These systems also do not aim to exploit the inherent
dependency within the database for maximum utilization of resources.

The Information Retrieval community is rich with work in document rel-
evance (TREC). However, traditional information retrieval solutions can not
directly be used, since we first need to automate the query formulation for our
task. Also, most search engine APIs return full documents or text snippets,
rather than specific feature values.

A family of methods closely related to RBIE, is question answering systems
[8]. These systems do retrieve a subset of relevant documents from the web, along
with extracting a specific piece of information. However, they target a single piece
of information requested by the user, whereas we target multiple, interdependent
fields of a relational database. They formulate queries by interpreting a natural
language question, whereas we formulate and rank them based on the utility of
information within the database. They do not address the problem of selecting
and prioritizing instances or a subset of fields to query. This is why, even though
some of the components in our system may appear similar to that of QA systems,
their functionalities differ. The semantic web community has been working on
similar problems, but their focus is not targeted information extraction.

2.3 Active Information Acquisition

Learning and acquiring information under resource constraints has been studied
in various forms. Consider these different scenarios at training time: active learn-
ing selects the best instances to label from a set of unlabeled instances; active
feature acquisition [10] explores the problem of learning models from incomplete
instances by acquiring additional features; budgeted learning [9] identifies the
best set of acquisitions, given a fixed cost for acquisitions. More recent work
[12] deals with learning models using noisy labels. At test time, the two common
scenarios are selecting a subset of features to acquire [13,1, 7], and selecting the
subset of instances for which to acquire features [6,5].

The interdependency within the data set is often conveniently modeled using
graphs, but it poses interesting questions about selection of instances to query
and propagating uncertainty through the graph [4]. In [5], the test instances are
not independent of each other, and the impact of acquisition in the context of
graph partitioning is studied. The general RBIE framework described in this pa-
per aims to leverage these methods for both train and test time for optimization
of query and instance selection.

In summary, RBIE requires a comprehensive architecture for efficiently inte-
grating multiple functionalities, such as instance and query selection, automatic
query formulation, and targeted information extraction by exploiting inherent
data dependency under limited resources. This leads us to the new framework
presented in this paper.
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3 A General Framework for
Resource-bounded Information Extraction

As described in the previous section, we need a new framework for performing
information extraction to automatically acquire specific pieces of information
from a very large corpus of unstructured documents. Fig. 1 shows a top-level
architecture of our proposed framework. In this section, we discuss the general
ideas for designing a resource-bounded information extraction system. Each of
these modules may be adapted to suit the needs of a specific application, as we
shall see for our example task.
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Fig. 1. General Framework for Resource-bounded Information Extraction

3.1 Overview of the Architecture

We start with a database containing missing values. In general, the missing
information can either be a complete record, or values of a subset of the features
for all records, or a subset of the records. We may also have uncertainty over the
existing feature values that can be reduced by integrating external information.
We assume that the external corpus provides a search interface that can be
accessed automatically, such as a search engine API.

The information already available in the database is used as an input to the
Query Engine. The basic function of the query engine is to automatically formu-
late queries, prioritize them optimally, and issue them to a search interface. The
documents returned by the search interface are then passed on to the Document
Filter. Document Filter removes documents that are not relevant to the original
database and ranks the remaining documents according to the usefulness of each
document in extracting the required information.
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A machine learning based information extraction system extracts relevant
features from the documents obtained from the Document Filter, and combines
them with the features obtained from the original database. Hence, information
from the original database and the external source is now merged, to build a
new model that predicts the values of missing fields. In general, we may have
resource constraints at both training and test times. In the training phase, the
learned model is passed to the Confidence Fvaluation System, which evaluates
the effectiveness of the model learned so far and recommends obtaining more
documents through Document Filter, or issuing more queries through the Query
Engine in order to improve the model. In the test phase, the prediction made by
the learned model is tested by the Confidence Evaluation System. If the model’s
confidence in the predicted value crosses a threshold, then it is used to fill (or to
replace a less certain value) in the original database. Otherwise, the Confidence
Evaluation System requests a new document or a new query to improve the
current prediction. This loop is continued until either all the required information
is satisfactorily obtained, or we run out of a required resource. Additionally,
feedback loops can be designed to help improve performance of Query Engine
and Document Filter.

This gives a general overview of the proposed architecture. We now turn to a
more detailed description for each module, along with the many design choices
involved while designing a system for our specific task.

3.2 Task Example: Finding Paper’s Year of Publication

We present a concrete resource-bounded information extraction task and a prob-
abilistic approach to instantiate the framework described above: We are given a
set of citations with fields, such as, paper title, author names, contact informa-
tion available, but missing year of publication. The goal is to search the web and
extract this information from web documents to fill in the missing year values.
We evaluate the performance of our system by measuring the precision, recall
and F1 values at different confidence levels. The following sections describe the
architecture of our prototype system, along with possible future extensions.

3.3 Query Engine

The basic function of query engine is to automatically formulate queries, pri-
oritize them optimally, and issue them to a search interface. There are three
modules of query engine. The available resources may allow us to acquire the
values for only a subset of the fields, for a subset of the records. Input selection
module decides which feature values should be acquired from the external source
to optimize the overall utility of the database. The query formulation module
combines input values selected from the database with some domain knowledge,
and automatically formulates queries. For instance, a subset of the available
fields in the record, combined with a few keywords provided by the user, can
form useful queries. Out of these queries, some queries are more successful than
others in obtaining the required information. Query ranking module ranks the



Acquiring Missing Feature Values On Demand 7

queries in an optimal order, requiring fewer queries to obtain the missing values.
In the future, we would like to explore sophisticated query ranking methods,
based on the feedback from other components of the system.

In our system, we use existing fields of the citation, such as paper title and
names of author, and combine them with keywords such as “cv”, “publication
list”, etc. to formulate the queries. We experiment with the order in which we
select citations to query. In one method, the nodes with most incoming and
outgoing citation links are queried first. We issue these queries to a search API
and the top n hits (where n depends on the available resources) are obtained.

3.4 Document Filter

The primary function of the document filter is to remove irrelevant documents
and prioritize the remaining documents for processing. Following are the two
main components of the Document Filter. Even though queries are formed using
the fields in the database, some documents may be irrelevant. This may be due
to the ambiguities in the data (e.g. person name coreference), or simply imper-
fections in retrieval engine. Initial filter removes documents which are irrelevant
to the original database. The remaining documents are then ranked by docu-
ment ranker, based on their relevance to the original database. Remember that
the relevance used by the search interface is with respect to the queries, which
may not necessarily be the same as the relevance with respect to the original
database. In the future, we would like to learn a ranking model, based on the
feedback from the information extraction module (via Confidence Fvaluation
System) about how useful the document was in making the actual prediction.

In our system, many of the returned documents are not relevant to the orig-
inal citation record. For example, a query with an author name and keyword
“resume” may return resumes of different people sharing a name with the paper
author. Hence, even though these documents are relevant to an otherwise use-
ful query, they are irrelevant to the original citation. Sometimes, the returned
document does not contain any year information. The document filter recognizes
these cases by looking for year information and soft matching the title with body
of the document.

3.5 Information Extraction

The design of this module differs from traditional information extraction, posing
interesting challenges. We need a good integration scheme to merge features from
the original database with the features obtained from the external source. As
new information (documents) arrives, the parameters of the model need to be
updated incrementally (at train time), and the confidence in the prediction made
by the system must be updated efficiently (at test time).

Probabilistic Prediction Model In our task, the field with missing values
can take one of a finite number of possible values (i.e. a given range of years).
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Hence, we can view this extraction task as a multi-class classification problem.
Features from the original citation and web documents are combined to make
the prediction using a maximum entropy classifer.

Let ¢; be a citation (¢ = 1,...,n), ¢;; be a query formed using input from
citation ¢; and d;;, be a document obtained as a result of ¢;;. Assuming that we
use all the queries, we drop the index j. Let y; be a random variable that assigns
a label to the citation c¢;. We also define a variable y;; to assign a label to the
document d;i. If Y is the set of all years in the given range, then y;,y;x € Y.
For each ¢;, we define a set of m feature functions f,(c;,y;). For each d;, we
define a set of [ feature functions fix(c;, dik, yir). For our model, we assume that
fm(ci,y;) is empty. This is because the information from the citation by itself is
not useful in predicting the year of publication. In the future, we would like to
design a more general model that takes these features into account. We can now
construct a model given by

1
P(yi|ci, dix) = z > " exp(Aufi(ci, dik, yin), (1)
l
where Zg = 2, exp(Aifi(ci, dik, Yin)

Combining Evidence in Feature Space v.s. Output Space The above
model outputs y;; instead of the required y;. We have two options to model
what we want. We can either merge all the features fix(c;, dik, yix) from dix’s to
form a single feature function. This is equivalent to combining all the evidence
for a single citation in the feature space. Alternatively, we can combine the
evidence from different d;;’s in the output space. Following are two possible
schemes for combining the evidence in the output space. In the first scheme, we
take a majority vote, i.e., the class with the highest number of y;; is predicted
as the winning class and assigned to y;. In the second scheme, highest confidence
scheme, we take the most confident vote, i.e., y; = argmazy,, P(yix|c;, dix)

3.6 Uncertainty Propagation in Citation Graph

The inherent dependency within the given data set can be exploited for better
resource utilization. In our case, the citation link structure can be used for infer-
ring temporal constraints. For example, if paper A cites paper B, then assuming
that papers from future can’t be cited, we infer that B must have been published
in the same or earlier year than A. Initially, we have no information about the
publication year for a citation. As information from the web arrives, this uncer-
tainty is reduced. If we propagate this reduction in uncertainty (or belief) for
one of the nodes through the entire graph, we may need fewer documents (or
fewer queries) to predict the publication year of the remaining nodes. Selecting
the citations to query in an effective order may further improve efficiency.

Notation Let ¢ € C be the citation which is currently being queried. Let
a — b denote that citation a cites citation b. Let Cp = {cp|cp — ¢} and Cy =
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{calc = ¢4}. Let X be the random variable that represents year of publication
of ¢; P.(X = z) be the probability that it takes one of finite values in the given
range, and P’(X = z) be the posterior probability from the Document Classifier.

Propagation Methods The method Best Indez passes the uncertainty message
to the neighbors of ¢ as follows:

Vep € CpPy(X =) = P(X = zlz > y) (2)

Ve, € CaP. (X =) = P(X = z|z <vy) (3)

Where y = argmaz, P(X =y). P(X = z|z > y) and P(X = z|z < y) are given
by one of the update methods described below. The method Weighted Average
takes a weighted average over all possible y’s:

Vey € CpPo, (X =2) = PAX =) ) P(X =z > y) (4)

Vea € CaPe, (X =2) = Pi(X =y) Y _ P(X =z <y) (5)

Update Methods If we know that the given paper was published after a certain
year, then we can set the probability mass from before the corresponding index
to zero and redistribute it to the years after the index. We only show update in
one direction here for brevity. The first update method, Uniform Update, simply
redistributes the probability mass, P(z > y) uniformly to the remaining years.
The second update method, Scale Update, uses conditional probability.

P(X =zlz>y) =0,z <y (6)

—PX =0+ g2 ™)

P(X =zlz>y)=0,z<y (8)
_P(X=1)

—m,ny (9)

Combination Methods Along with passing a message to its neighbors, the
node updates itself by combining information from the Document Classifier and
the graph structure.

P(X =a) = PX =) S P(X = ala =) (10)

The following options can be used for computing P.(X = x). Basic, P(X =
x|z =y) Product P.(X = x) * P/(X = z) and Sum P.(X =z) + P.(X = z)
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3.7 Confidence Evaluation System

At train time, after adding each new training document, the Confidence Eval-
uation System can measure the ‘goodness’ of the model by evaluating it on a
validation set. At test time, confidence in the prediction improves as more in-
formation is obtained. It sets a threshold on the confidence, to either return
the required information to the database, or to request more information from
external source. It also makes the choice between obtaining a new document or
to issue a new query at each iteration, by taking into account the cost and util-
ity factors. Finally, it keeps track of the effectiveness of queries and documents
in making a correct prediction. This information is useful for learning better
ranking models for Query Engine and Document Filter.

In our system, we train our model using all available resources, and focus
on evaluating test time confidence. For merging evidence in the output space,
we employ two schemes. In maz votes, we make a prediction if the percentage
of documents in the winning class crosses a threshold. In highest confidence, we
make a prediction if P(y;k|c;, dir) value of the document with the highest P in
the winning class passes a threshold. These schemes help determine if we have
completed the task satisfactorily. For combining evidence in feature space, we
use the Entropy Method, in which we compute the value H = — )" p;logp; of
the current distribution, and compare it against the confidence threshold.

4 Experimental Description and Results

4.1 Dataset and Setup

Our data set consists of five citation graphs (462 citations) , with years of pub-
lication ranging from 1989 to 2008. The sampling process is parameterized by
size of the network (20-100 citations per graph) and density (min in-degree = 3
and min out-degree = 6). We use five-fold cross validation on these data sets for
all our experiments. We use the Mallet infrastructure for training and testing,
and the Google search API to issue queries. The queries formed using the in-
formation from input citations include the raw title, title in quotes, and author
names combined with keywords like “publication list”, “resume”, “cv” , “year”
and “year of publication”. We issue queries in a random order, and obtain top 10
hits from google. We use around 7K queries and obtain around 15K documents
after filtering. The documents are tokenized and tokens are tagged to be possi-
ble years using a regular expression. The document filter discards a document
if there is no year information found on the webpage. It also uses a soft match
between the title and all n-grams in the body of the page, where n equals the
title length. The selected documents are passed on in a random order to the
MaxFEnt model, which uses the following features for classification: Occurrence
of a year on the webpage; the number of unique years on the webpage; years on
the webpage found in any particular order; the years that immediately follow
or precede the title matches; the distance between a ‘surrounding’ year and its
corresponding title match and occurrence of the same ‘following’ and ‘preceding’
year for a title match.
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4.2 Results and Discussion

We first run our RBIE system without exploiting the citation network informa-
tion. We first present the results for combining evidence in the feature space. We
measure Precision, Recall and F1 based on using a confidence threshold, where
F1 is the harmonic mean of precision and recall. As seen in table 1, as we increase
the entropy threshold, precision drops, as expected. F1 peaks at threshold 0.7.
Note that the number of documents is proportional to the number of queries,
because in our experiments, we stop obtaining more documents or issuing queries
when the threshold is reached.

Next, we present the results of exploiting citation network information for
better resource utilization. Fig. 2 shows F1 as well as the fraction of the total
documents used for the baseline method, and for one of the graph based method
(Weighted Avg propagation, Scaling update, and Basic combination). The F1
values are smaller compared to the baseline because we use far fewer resources,
and the uncertainty propagation methods are not perfect. Using this method,
we are able to achieve 87.7% of the baseline F1, by using only 13.2% of the
documents. This demonstrates the effectiveness of exploiting relational nature of
the data. Table 2 shows the results of different uncertainty propagation methods
at entropy threshold 0.7.

We also experiment with combining evidence in the output space using the
two schemes described in section 3.5, and the confidence evaluation schemes
described in section 3.7. Fig. 3 shows the four precision-recall curves. We see
that for High Confidence Confidence evaluation scheme (fig. 3(a),(c)), we obtain
high values of precision and recall for reasonable values of confidence. That is,
in the confidence region below 0.9, we obtain a good F1 value. Especially, the
Majority Vote - High Confidence scheme (fig. 3(c)) performs exceptionally well
in making predictions. However, in the confidence region between 0.9 to 1.0, the
Maz Vote scheme (fig. 3(b),(d)) gives a better degradation performance.

Entropy Threshold|Precision|Recall| F1 |#Queries|#Docs
0.1 0.9357 |0.7358|0.8204| 4497 9564
0.3 0.9183 |0.8220|0.8666| 3752 8010
0.5 0.9013 |0.8718|0.8854| 3309 7158
0.7 0.8809 |0.9041|0.8909| 2987 6535
0.9 0.8625 |0.9171|0.8871| 2768 6088

Table 1. Baseline results

5 Conclusion and Future Work

We propose a new framework for targeted information extraction under resource
constraints to fill missing values in a database. We present first results on an
example task of extracting missing year of publication of scientific papers, along
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Fig. 2. The change in F1 v.s. the change in use of resources

Update |Combination|F1 for Best Index|F1 for Weighted Avg
Uniform Basic 0.7192 0.7249
Uniform Sum 0.7273 0.5827
Uniform| Product 0.6475 0.3460
Scaling Basic 0.7249 0.7249
Scaling Sum 0.6875 0.5365
Scaling | Product 0.6295 0.4306

Table 2. Comparison of Uncertainty Propagation Methods

with exploiting the underlying citation network for better resource utilization.
The overall framework is flexible, and can be applied to a variety of problem do-
mains and individual system components can be adapted to the task. The specific
methods recommended here can also be generalized in many different relational
domains, especially when the dataset has an underlying network structure. In
future, we would like to explore more sophisticated uncertainty propagation
methods, such as belief-propagation. We would also like to develop individual
components like Query Engine and Document Filter, by using good ranking
procedures. Finally, it would be interesting to see how these methods extend to
extracting multiple interdependent fields.
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