Skip to main content

Data Transformation for Sum Squared Residue

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6118))

Abstract

The sum squared residue has been popularly used as a clustering and co-clustering quality measure, however little research on its detail properties has been performed. Recent research articulates that the residue is useful to discover shifting patterns but inappropriate to find scaling patterns. To remedy this weakness, we propose to take specific data transformations that can adjust latent scaling factors and eventually lead to lower the residue. First, we consider data matrix models with varied shifting and scaling factors. Then, we formally analyze the effect of several data transformations on the residue. Finally, we empirically validate the analysis with publicly-available human cancer gene expression datasets. Both the analytical and experimental results reveal column standard deviation normalization and column Z-score transformation are effective for the residue to handle scaling factors, through which we are able to achieve better tissue sample clustering accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar-Ruiz, J.S.: Shifting and scaling patterns from gene expression data. Bioinformatics 21(20), 3840–3845 (2005)

    Article  Google Scholar 

  2. Alon, U., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. PNAS 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  3. Armstrong, S.A., et al.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics 30, 41–47 (2002)

    Article  Google Scholar 

  4. Banerjee, A., Dhillon, I.S., Ghosh, J., Merugu, S., Modha, D.: A Generalized maximum entropy approach to Bregman co-clustering and matrix approximation. Journal of Machine Learning Research 8, 1919–1986 (2007)

    MathSciNet  Google Scholar 

  5. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering Local Structure in Gene Expression Data: The Order-Preserving Submatrix Problem. Journal of Computational Biology 10(3-4), 373–384 (2003)

    Article  Google Scholar 

  6. Bø, T.H., Jonassen, I.: New feature subset selection procedures for classification of expression profiles. Genome Biology 3(4) (2002)

    Google Scholar 

  7. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology (ISMB), vol. 8, pp. 93–103 (2000)

    Google Scholar 

  8. Cho, H., Dhillon, I.S., Guan, Y., Sra, S.: Minimum sum squared residue based co-clustering of gene expression data. In: Proceedings of the Fourth SIAM International Conference on Data Mining (SDM), pp. 114–125 (2004)

    Google Scholar 

  9. Cho, H., Dhillon, I.S.: Co-clustering of human cancer microarrays using minimum sum-squared residue co-clustering (MSSRCC) algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics (IEEE/ACM TCBB) 5(3), 114–125 (2008)

    Google Scholar 

  10. Dettling, M., Bühlmann, P.: Supervised clustering of genes. Genome Biology 3(12) (2002)

    Google Scholar 

  11. Dudoit, S., Fridlyand, J.: A Prediction-based Resampling Method for Estimating the Number of Clusters in a Dataset. Genome Biology 3(7) (2002)

    Google Scholar 

  12. Golub, T.R., et al.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531–537 (2002)

    Article  Google Scholar 

  13. Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statistical Association 67(337), 123–129 (1972)

    Article  Google Scholar 

  14. Kowalski, B.R., Bender, C.F.: Pattern recognition: A powerful approach to interpreting chemical data. Journal of the American Chemical Society 94(16), 5632–5639 (1972)

    Article  Google Scholar 

  15. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE Transactions on Computational Biology and Bioinformatics (IEEE ACM/TCBB) 1(1), 24–45 (2004)

    Article  Google Scholar 

  16. Sánchez, F.C., Lewi, P.J., Massart, D.L.: Effect of different preprocessing methods for principal component analysis applied to the composition of mixtures: detection of impurities in HPLC-DAD. Chemometrics and Intelligent Laboratory Systems 25(2), 157–177 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cho, H. (2010). Data Transformation for Sum Squared Residue. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2010. Lecture Notes in Computer Science(), vol 6118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13657-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13657-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13656-6

  • Online ISBN: 978-3-642-13657-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics