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Foreword

Reflecting modelling dynamical systems by mathematical methods can be en-
riched by philosophical categories. The following introduction might catch the
reader’s interest concerning some interdisciplinary dimensions and completes
the holistic approach.

“It has been said– and I was among those saying it– that any theory of ex-
planation worth its salt should be able to make good predictions. If good
predictions could not be made, the explanation could hardly count as serious.
(. . .) I now want to move on to my main point. There is, I claim, no major
conceptual difference between the problems of explaining the unpredictable in
human affairs and in non-human affairs. There are, it is true, many remarkable
successes of prediction in the physical sciences of which we are all aware, but
these few successes of principled science making principled predictions are, in
many ways, misleading. (. . .) The point I want to emphasize is that instability
is as present in purely physical systems as it is in those we think of as char-
acteristically human. Our ability to explain but not predict human behavior
is in the same general category as our ability to explain but not predict many
physical phenomena. The underlying reasons for the inability to predict are
the same. (. . .) The concept of instability which accounts for many of these
failures is one of the most neglected concepts in philosophy. We philosophers
have as a matter of practice put too much emphasis on the contrast between
deterministic and probabilistic phenomena. We have not emphasized enough
the salient differences between stable and unstable phenomena. One can argue
that the main sources of probabilistic or random behavior lie in instability.
We might even want to hold the speculative thesis that the random behavior
of quantum systems will itself in turn be explained by unstable behavior of
classical dynamical systems. (. . .)



vi Foreword

Chaos, the original confusion in which all the elements were mixed together,
was personified by the Greeks as the most ancient of the gods. Now in the
twentieth century, chaos has returned in force to attack that citadel of order
and harmony, classical mechanics. We have come to recognize how rare and
special are those physical systems whose behavior can be predicted in detail.
The naivet and hopes of earlier years will not return. For many phenomena
in many domains there are principled reasons to believe that we shall never
be able to move from good explanations to good predictions.”

PATRICK SUPPES “EXPLAINING THE UNPREDICTABLE”
Lucie Stern Professor of Philosophy, Stanford University

Director and Faculty Advisor, Education Program for Gifted Youth,
Stanford University



Preface

At the end of the nineteenth century Lyapunov and Poincaré developed the so
called qualitative theory of differential equations and introduced geometric-
topological considerations which have led to the concept of dynamical systems.
In its present abstract form this concept goes back to G.D. Birkhoff.

This is also the starting point of Chapter 1 of this book in which uncon-
trolled and controlled time-continuous and time-discrete systems are investi-
gated under the aspect of stability and controllability. Chapter 1 starts with
time-continuous dynamical systems. After the description of elementary prop-
erties of such systems it focusses on stability in the sense of Lyapunov and
gives applications to systems in the plane such as the mathematical pendu-
lum, to general predator-prey models, and to evolution matrix games.

The time-discrete case is divided into the autonomous and the non-autonomous
part where the latter is no more a dynamical system in the strong sense. It is
the counter part of the time-continuous case where the right-hand side of the
system of differential equations which describes the dynamics of the system
depends explicitly on the time.

Controlled dynamical systems could be considered as dynamical systems in
the strong sense, if the controls were incorporated into the state space. We,
however, adopt the conventional treatment of controlled systems as in control
theory. We are mainly interested in the question of controllability of dynami-
cal systems into equilibrium states. In the non-autonomous time-discrete case
we also consider the problem of stabilization.

Chapter 3 is concerned with chaotic behaviour of autonomous time discrete
systems. We consider three different types of chaos: chaos in the sense of De-
vaney, disorder chaos and chaos in the sense of Li and Yorke. The chapter
ends with two examples of strange (or chaotic) attractors.



viii Preface

The Appendix A is concerned with a dynamical method for the calculation of
Nash equilibria in non-cooperative n-person games. The method is based on
the fact that Nash equilibria are fixed points of certain continuous mappings
of the Cartesian product of the strategy sets of the players into itself. This
gives rise to an iteration method for the calculation of Nash equilibria the set
of which can be considered as the Ω-limit set of a time-discrete dynamical
system.

In Appendix B we consider two optimal control problems in chemotherapeutic
treatment of cancer. These two problems are somehow dual to each other and
are shown to have solutions of the same type.

The authors want to thank Korcan Görgülü for excellent typesetting. He
solved every TEX- problem which occurred in minimal time.

Werner Krabs, Stefan Pickl, Munich, May 2010
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