Skip to main content

Bin Packing with Fixed Number of Bins Revisited

  • Conference paper
Algorithm Theory - SWAT 2010 (SWAT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6139))

Included in the following conference series:

Abstract

As Bin Packing is NP-hard already for k = 2 bins, it is unlikely to be solvable in polynomial time even if the number of bins is a fixed constant. However, if the sizes of the items are polynomially bounded integers, then the problem can be solved in time n O(k) for an input of length n by dynamic programming. We show, by proving the W[1]-hardness of Unary Bin Packing (where the sizes are given in unary encoding), that this running time cannot be improved to f(kn O(1) for any function f(k) (under standard complexity assumptions). On the other hand, we provide an algorithm for Bin Packing that obtains in time \(2^{O(k\log^2 k)}+O(n)\) a solution with additive error at most 1, i.e., either finds a packing into k + 1 bins or decides that k bins do not suffice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Ruzsa, I.Z.: Non-averaging subsets and non-vanishing transversals. J. Comb. Theory, Ser. A 86(1), 1–13 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bose, R.C., Chowla, S.: Theorems in the additive theory of numbers. Comment. Math. Helv. 37(1), 141–147 (1962-1963)

    Google Scholar 

  3. Bosznay, A.P.: On the lower estimation of non-averaging sets. Acta Math. Hung. 53, 155–157 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. de la Vega, W.F., Lueker, G.: Bin packing can be solved in within 1 + ε in linear time. Combinatorica 1, 349–355 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coffman, J.E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: A survey. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 46–93. PWS Publishing, Boston (1997)

    Google Scholar 

  6. Eisenbrand, F., Shmonin, G.: Caratheodory bounds for integer cones. OR Letters 34, 564–568 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  8. Graham, S.W.: \(B\sb h\) sequences. In: Analytic number theory. Progr. Math., vol. 1 (1995), vol. 138, pp. 431–449. Birkhäuser, Boston (1996)

    Google Scholar 

  9. Halberstam, H., Roth, K.F.: Sequences. Springer, New York (1983)

    MATH  Google Scholar 

  10. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an MILP relaxation with a constant number of integral variables. In: ICALP ’09: 36th International Colloquium on Automata, Languages and Programming, pp. 562–573 (2009)

    Google Scholar 

  11. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. of OR 12, 415–440 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Karmarkar, N., Karp, R.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: FOCS 1982: 23rd IEEE Symposium on Foundations of Computer Science, pp. 312–320 (1982)

    Google Scholar 

  13. Lenstra, H.: Integer programming with a fixed number of variables. Math. of OR 8, 538–548 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Plotkin, S., Tardos, D., Tardos, E.: Fast approximation algorithms for fractional packing and covering problems. Math. of OR 20, 257–301 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ruzsa, I.Z.: Solving a linear equation in a set of integers. I. Acta Arith. 65(3), 259–282 (1993)

    MATH  MathSciNet  Google Scholar 

  16. Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval Res. Logist. 41(4), 579–585 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jansen, K., Kratsch, S., Marx, D., Schlotter, I. (2010). Bin Packing with Fixed Number of Bins Revisited. In: Kaplan, H. (eds) Algorithm Theory - SWAT 2010. SWAT 2010. Lecture Notes in Computer Science, vol 6139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13731-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13731-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13730-3

  • Online ISBN: 978-3-642-13731-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics