
On the Krohn-Rhodes
Cascaded Decomposition Theorem

Oded Maler

CNRS-VERIMAG, 2 Av. de Vignate
38610 Gières, France

Dedicated to the memory of Amir Pnueli, deeply missed.

Abstract. The Krohn-Rhodes theorem states that any deterministic automaton
is a homomorphic image of a cascade of very simple automata which realize
either resets or permutations. Moreover, if the automaton is counter-free, only
reset automata are needed. In this paper we give a very constructive proof of a
variant of this theorem due to Eilenberg.

1 Introduction

More than 20 years ago my PhD advisor Amir Pnueli convinced me to postpone some
dead-ends I was pursuing around the middle of my thesis and look at the Krohn-Rhodes
decomposition theorem. His correct intuition was that this theorem can help in estab-
lishing a lower-complexity translation from automata to temporal logic. The best known
complexity at that time was non-elementary [6], based on a series of transformation
adapted from the monograph by McNaughton and Papert [9] which dealt with different
characterizations (logical, algebraic, language-theoretic, automatic) of the same class
of objects, the star-free regular sets [13].

The result of Kenneth Krohn and John Rhodes, announced almost 50 years ago
[12, 5], states that any deterministic automaton can be decomposed into a cascade of
simple automata, whose structure reflects the algebraic structure of the transformation
semigroup associated with the automaton. For some time in the 60s and 70s, their the-
orem, which got them 2 simultaneous PhD titles from Harvard and MIT, respectively,
was considered to be a cornerstone of automata theory. When I started to look at at the
topic in the late 80s the results have been practically forgotten in the Computer Science
mainstream, excluding some specialized islands.

Although I started to acquaint myself with the algebraic (and French) vocabulary of
transformation semigroups, it was not easy for me to understand the purely-algebraic
versions of the theorem expressed in terms of wreath product of semigroups or groups.
Fortunately, the book of Ginzburg [2] gave a clear automata-theoretic presentation from
which one could understand that a cascade of automata is a particular type of compo-
sition where the automata are ordered and each automaton reads the common input
alphabet and the states of its preceding automata or, equivalently, the output of its pre-
decessor, as illustrated in Fig. 1. The theorem states that any automaton, up to homomor-
phism, can be realized by a cascade of elementary automata of two types, permutation

automata where each letter induces a permutation of the state space, and reset automata
where each letter is either a reset (sends all states to a fixed single state) or an identity (a
self-loop from every state). However, as noted in the last paragraph of [2] “Finally, no-
tice that the above theory does not indicate how many particular basic building blocks
are needed to construct a cascade product covering of a given semiautomaton.”

A1

A2

A3

A1

A2

A3

Σ Σ

Q1

Q2

X1

X2

X3

Fig. 1. A cascade product of 3 automata using the state-as-input convention (left) and the input-
output convention (right).

I had the privilege to discuss the topic with the late Marcel-Paul Schützenberger who
encouraged me to look at the holonomy decomposition theorem, a variant of the Krohn-
Rhodes theorem, written on eight dense pages of volume B of Eilenberg’s book [1] to
which he contributed. It took me a long time to decipher this motivation-less algebraic
prose, translate the construction to my own automata-theoretic language, and verify
that it is indeed exponential. From there an exponential translation from counter-free
automata to temporal logic, very similar to the construction of Meyer [10] for star-free
regular expressions, followed immediately. We also managed to give a lower bound on
the size of the decomposition, obtained via a bounded two-way counter, also known as
the elevator automaton. Apart from a short abstract [7] and a draft on the web [8] we
have not published this work, which is what I intend to do presently. Unfortunately due
to timing constraints the presentation is not complete, including only the reconstruction
of the holonomy decomposition without the lower bound and the translation to temporal
logic. The interested reader is referred to [7, 8] for those.

The rest of the paper is organized as follows. In Section 2 we give the basic def-
initions concerning the algebraic theory of automata and semigroups. In section 3 we
define the cascade product and state the theorem. Section 4 is devoted to the study of
a particular structure, the holonomy tree, tightly related to a cascaded decomposition.
It is a combination of a tree whose nodes are labeled by subsets of the states of the
automaton, and on which a transition function, satisfying certain constraints is defined.
After establishing the close relationship between such a tree and a cascaded decompo-
sition we describe in Section 5 an algorithm for computing the tree and thus completing
a constructive version of the proof. The subtle part in these two sections is how to avoid

introducing spurious permutations and to assure that if the automaton is counter-free
the decomposition will consist exclusively of reset automata.

2 Preliminaries

A total function f from X to Y is an injection if f(x) 6= f(x′) whenever x 6= x′.
It is a surjection if ∀y∃x f(x) = y and a bijection if it is both an injection and a
surjection. The latter case implies |X| = |Y | as well as the existence of an inverse
function f ′ : Y → X .

2.1 Automata

We assume familiarity with finite automata and regular sets at the level of [4]. We use
Σ∗ to denote the set of finite sequences over an alphabet Σ and use ε for the empty
sequence.

Definition 1 (Automaton). A deterministic automaton is triple A = (Σ,Q, δ) where
Σ is a finite set of symbols called the input alphabet, Q is a finite set of states and
δ : Q×Σ → Q is the transition function. A partial automaton is such where δ may be
undefined for some combinations of states and symbols.

The transition function can be lifted naturally to sets of states, by letting δ(P, σ) =
{δ(q, σ) : q ∈ P}, and to input sequences, by letting δ(q, wσ) = δ(δ(q, w), σ).

An automaton can be made an acceptor by choosing an initial state q0 ∈ Q and a
set of accepting states F ⊆ Q. As such it accepts/recognizes a set of sequences, also
known as a language, defined as L(A) = {w : δ(q0, w) ∈ F}. Kleene’s Theorem states
that the class of languages recognizable by finite automata coincides with the regular
languages. A subclass of the regular sets is the class of star-free sets defined as:

Definition 2 (Star-Free Regular Sets). The class of star-free regular sets overΣ is the
smallest class containing Σ∗ and the sets of the form {σ} where σ ∈ Σ ∪ {ε}, which is
closed under finitely many applications of concatenation and Boolean operations.

Star-free sets have additional characterizations to be discussed in the sequel.

Definition 3 (Automaton Homomorphism). A surjection ϕ : Q → Q′ is an automa-
ton homomorphism from A = (Σ,Q, δ) to A′ = (Σ,Q′, δ′) if for every q ∈ Q, σ ∈ Σ

ϕ(δ(q, σ)) = δ′(ϕ(q), σ)

In such a case we say thatA′ is homomorphic toA and denote it byA′ ≤ϕ A. When ϕ
is a bijection, A and A′ are said to be isomorphic.

Intuitively A′ ≤ϕ A means that A′ is an abstraction of A and anything that can be
expressed usingA′ can be expressed, possibly in more detail usingA. Homomorphism
is transitive and induces a partial-order relation among automata.

2.2 Semigroups

The theory of automata is strongly related to the algebraic theory of semigroups dealing
with sets closed under an associative (but not necessarily invertible) binary operation.
Two typical examples of semigroups are sequences of symbols under the concatenation
operation and transformations (functions from a set to itself) under function composi-
tion. In fact, the theory of formal languages and automata is, to some extent, a theory
about the relation between these two semigroups.

Definition 4 (Semigroups, Monoids and Groups). A Semigroup is a pair (S, ·) where
S is a set and · is a binary associative operation (“multiplication”) from S×S to S. A
Monoid (S, ·, 1) is a semigroup admitting an identity element 1 such that s·1 = 1·s = s
for every s ∈ S. A group is a monoid such that for every s ∈ S there exists an element
s−1 ∈ S (an inverse) such that s · s−1 = 1.

Definition 5 (Subsemigroups, Generators). A subsemigroup T of S is a subset T ⊆ S
which is closed under multiplication, that is, T 2 ⊆ T . A subgroup of S is a subsemi-
group which is a group. The smallest subsemigroup of S containing a subset A ⊆ S is
denoted by A+ and it consists of all elements of S obtained by finitely many products
of elements of A. Any subset A ⊆ S such that A+ = S is called a generating set of S.

A finite semigroup can be described by its multiplication table. The trivial semi-
group consisting of the singleton set {e} is of course a monoid and a group. In the
sequel we will not make a distinction between a semigroup and a monoid. As with au-
tomata, one can define semigroup homomorphism which is transitive and corresponds
to the intuitive notions of refinement/abstraction among structures.

Definition 6 (Semigroup Homomorphisms). A surjective function ϕ : S → S′ is a
semigroup homomorphism from (S, ·) to (S′, ∗) if for every s1, s2 ∈ S,

ϕ(s1 · s2) = ϕ(s1) ∗ ϕ(s2)

In such a case we say that S′ is homomorphic to S and denote it by S′ ≤ϕ S. Two
mutually homomorphic semigroups are said to be isomorphic.

Let TR(Q) be the set of all total functions (transformations) of the form s : Q→ Q
over a finite set Q, |Q| = n. One can see that TR(Q) is a monoid of nn elements under
the operation of function composition defined as s · t(q) = t(s(q)) for every q ∈ Q. The
identity function on Q, 1Q, is the identity element of TR(Q). A transformation can be
represented as an n-tuple (qi1 , . . . , qin) where qij = s(qj).
Remark: There is some conflict between algebraic, functional, and automata-theoretic
notational conventions. Algebraically, the action of s on q is denoted by qs and the
associativity of composition is expressed as (qs)t = q(s · t). On the other hand, the
automata-theoretic notation δ(q, s) is preferable when we have to refer to several tran-
sition functions. We will try not to confuse the reader.

Definition 7 (Transformation Semigroups). A transformation semigroup is a pair
X = (Q,S) where Q is the underlying set and S is a subsemigroup of TR(Q), that
is, a set of transformations on Q closed under composition. Clearly if Q is finite, so is
S.

The importance of transformation semigroups as more concrete representations of ab-
stract semigroups comes from the following theorem:

Theorem 1 (Cayley). Every semigroup is isomorphic to a transformation semigroup.

On the other hand, every automaton gives rise to a transformation semigroupXA whose
generators are the transformations {sσ}σ∈Σ induced by input letters. The following
definition gives an intermediate representation of this semigroup.

Definition 8 (Expanded Automaton). Let A = (Σ,Q, δ) be an automaton and let
XA = (Q,S) be its transformation semigroup. The expansion of A is the automaton
Â = (S,Q, δ) with δ(q, s) = q · s.

It can be shown that the existence of a homomorphism between two automata im-
plies the existence of a homomorphism between their corresponding transformation
semigroups. On the other hand, a homomorphism from X = (Q,S) to X ′ = (Q′, S′)
can be obtained without an automaton state-homomorphism, just by takingQ′ ⊆ Q and
letting S′ be the set of transformation onQ′ obtained from transformations in S by pro-
jection (which consitutes the semigroup homomorphism from S to S′). Mechanically
this semigroup can be computed by constructing Â = (S,Q, δ) and then restricting it to
Q′ and to an alphabet S′ ⊆ S consisting of all transformations satisfying δ(Q′, s) ⊆ Q′.

Definition 9 (Rank). The rank of a transformation s ∈ TR(Q) is defined as the cardi-
nality of its range Qs = {qs : q ∈ Q}.

Permutations and resets (see Fig. 2) represent two extreme types of transformations
in terms of rank. The n! permutations are those in which the domain and the range
coincide and the rank is n while the n resets are the constant transformations of rank
1. It is worth looking at the effect of resets and permutations from the following angle,

Fig. 2. A permutation and a reset illustrated as transition graphs (left) and as transformations
(right).

emphasizing what is known about the state of the automaton upon the occurrence of
a generic transition q′ = δ(q, σ). If σ is a reset we do not need to know q in order to
determine q′, however knowing q′ we cannot determine q. On the other hand if σ is a
permutation we know nothing about q′ if we do not know what q was, but if we know q′,
q is uniquely determined. In other words, a permutation is reverse-deterministic, while
in resets the degree of reverse non-determinism is maximal.

Permutations and resets are closed under composition or more precisely, if we de-
note a reset by R and a permutation by P we get the following multiplication table:

∗ P R

P P R
R R R

Resets can be obtained by composing non-reset transformations, for example, (122) ·
(223) = (222), because composition can decrease the rank. On the other hand, because
composition cannot increase the rank, a permutation on Q cannot be composed from
non-permutations on Q. However a permutation on a subset R ⊆ Q can be composed
from non-permutations as can be seen from Fact 1.

Fact 1 A transformation s permutes a subset R ⊆ Q iff s = s1 · · · sm for some m > 0
and there exists a sequence of subsets {Rj}j=0..m such that R0 = Rm = R and the
restriction of every sj to Rj is an injection to Rj+1.

There are various ways to classify finite semigroups and their corresponding au-
tomata and regular sets [11]. An important sub-class of semigroups is defined as fol-
lows:

Definition 10 (Group-Free Semigroups). A semigroup S is aperiodic if there exists
a number k such that sk = sk+1 for every element s ∈ S. A semigroup is group-free
if it has no non-trivial subgroups. An automaton is counter-free if no word induces a
permutation other than identity on any subset of Q.

A semigroup is aperiodic iff it is group-free and an automaton is counter-free iff its
transformation semigroup is group-free. The following theorem relates these objects to
star-free sets and, consequently, to propositional temporal logic.

Theorem 2 (Schützenberger). A regular set U is star-free if and only if its syntactic
semigroup is aperiodic.

The syntactic semigroup of a language is the transformation semigroup of the minimal
deterministic automaton which recognizes it. This automaton is unique and, following
the theorem, it is counter-free if the language is star-free.

3 The Krohn-Rhodes Primary Decomposition Theorem

The definition of the cascade product of two or more automata is given below:

Definition 11 (Cascade Product). Let B1 = (Σ,Q1, δ1) be an automaton, and let
B2 = (Q1 ×Σ,Q2, δ2) be a (possibly partial) automaton such that for every q1 ∈ Q1

and q2 ∈ Q2, either δ2(q2, 〈q1, σ〉) is defined for every σ ∈ Σ or it is undefined for
every σ. The cascade product B1 ◦ B2 is the automaton C = (Σ,P, δ̄) where

P = {(q1, q2) : δ2(q2, 〈q1, σ〉) is defined}

and
δ̄(〈q1, q2〉, σ) = (δ1(q1, σ), δ2(q2, 〈q1, σ〉)).

The cascade product of more than two automata is defined as

B1 ◦ B2, . . . ◦ Bk = (. . . ((B1 ◦ B2) ◦ B3 . . .) ◦ Bk.

Fig. 3 shows a cascade product of two automata. Note that the communication links
between B1 and B2 are given implicitly via the definition of the input alphabet of B2 as
the product of Σ and the state-space of B1. A alternative definition using transducers
(Mealy machines) is possible as illustrated in Fig. 1.

a a aa a
AC BC BD

B1:

B2:

C = B1 ◦ B2

A B

DC
(B, a)(A, a), (B, a)

Fig. 3. A cascade C = B1 ◦ B2.

Definition 12 (Permutation-Reset Automata). A (potentially partial) automatonA =
(Σ,Q, δ) is a permutation-reset automaton if for every letter σ ∈ Σ, σ is either a
permutation or reset with respect to the set of states on which it is defined.1 If the only
permutations are identities, we call it a reset automaton.

The Krohn-Rhodes theorem states that one can realize any automaton (up to homo-
morphism) as a cascade of permutation-reset automata and that non-trivial permutations
are required only if the transformation semigroup of the automaton admits non-trivial
subgroups. Based on the Jordan-Hölder Theorem, the groups can be decomposed fur-
ther into a cascade of simple groups but we will not be concerned much with the group
part of the theorem beyond guaranteeing that it vanishes for counter-free automata. The
original formulation of the theorem was stated in terms of semigroups and its automata-
theoretic version can be phrased as follows.

Theorem 3 (Krohn-Rhodes: Automata). For every automaton A there exists a cas-
cade C = B1 ◦ B2 ◦ · · · ◦ Bk such that:

1. Each Bi is a permutation-reset automaton;
2. There is a homomorphism ϕ from C to A;
3. Any permutation group in some Bi is homomorphic to a subgroup of the transfor-

mation semigroup of A.

The pair (C, ϕ) is called a cascaded decomposition of A.

1 Partial resets and partial permutations can be completed to full ones by appropriately defining
the missing transitions.

The third condition implies that if A is counter-free then each Bi is a reset automaton.
It is this theorem that we are going to prove in constructive detail in the sequel. We
sometimes assume an additional trivial one-state automaton B0 composed in front of
the cascade. We will often use a notation of the form 〈p, qi〉 for 〈q1, q2, . . . , qi−1, qi〉.

4 Structures Associated with a Cascade

Let C = (Σ,P, δ̄) = B1 ◦ · · · ◦ Bk be a cascade, and let ϕ be a homomorphism from
C to an automaton A = (Σ,Q, δ). Let Ci = (Σ,Pi, δ̄i) = B1 ◦ · · · ◦ Bi be the product
of the first i components, i ≤ k. Elements of Pi are called i-configurations and they
admit a natural hierarchical structure, the configuration tree, where each i-configuration
pi = 〈pi−1, qi〉 is an extension of a parent configuration pi−1. We associate a family
of mappings ϕi : Pi → 2Q indicating for each configuration which states of Q are
encoded by its extensions, that is,

ϕk(p) = {ϕ(p)}

and
ϕi−1(p) =

⋃
〈p,q〉∈Pi

ϕi(〈p, q〉).

A decomposition is redundant if there are two i-configurations 〈p, q〉 and 〈p, q′〉 such
that ϕi(〈p, q′〉) ⊆ ϕi(〈p, q〉). In this case we can remove configuration 〈p, q′〉 by letting
δi(q′, 〈p, σ〉) be undefined and redirecting all transitions entering q′ to q. The restric-
tion of ϕk to the remaining configurations, those which are not extensions of 〈p, q′〉,
still covers the whole Q and is a homomorphism. Repeating this procedure until all
redundancies are removed we can conclude that the existence of a decomposition is
equivalent to the existence of a non-redundant decomposition.

The hierarchical relation between cascade configurations and subsets ofQmotivates
the following definition.

Definition 13 (Subset Transition Tree). A subset transition tree (STT) for an automa-
ton A = (Σ,Q, δ) is a tuple T = (Σ,M,∆, π, φ) where:

M = M0] . . .]Mk is a set of nodes partitioned into levels, with M0 = {m∗};
– ∆ = ∆0] · · ·]∆k is a transition function with ∆i : Mi × Σ → Mi. Each level

can be viewed as an automaton Ni = (Σ,Mi, ∆i);
– π : M −{m∗} →M is a parenthood function, mapping every element of Mi to an

element ofMi−1. We useΠm to denote the set of sons of a nodem, whose elements
are called brothers;

– The transition function is ancestor-preserving: π(∆(m,σ) = ∆(π(m), σ);
– The action of every letter on any setΠm of brothers is either a reset or an injection.
– φ : M → 2Q is a function mapping nodes to sets of states whose restriction to Mi

is denoted by φi and which satisfies:
• φk maps the leaves of the tree to singletons and constitutes a homomorphism

from Nk = (Σ,Mk, ∆k) to A;

• For every i < k

φi(m) =
⋃

m′∈Πm

φi+1(m′).

• No redundancy: φ(m) 6⊆ φ(m′) for any pair of brothers.

Next we prove a weak version of the fundamental fact underlying the decomposition.
It is weak because it speaks of a decomposition satisfying only conditions 1-2 of Theo-
rem 3.

Proposition 1. There exists a cascade decomposition C = B1 ◦ · · · ◦ Bk ≤ϕ A with
each Bi being a permutation-reset automaton, iff there exists an STT T for A which is
isomorphic to the configuration tree.

Proof. The construction of the STT from the configuration tree of the cascade is straight-
forward, obtained by letting Mi = Pi and ∆i = δ̄i. The mapping of nodes to states of
A is defined by the encoding, that is, φi = ϕi, and parenthood is defined naturally as
π(〈p, q〉) = p. The fact that letters induce injections and resets on brothers is obvious
and ancestor-preservation follows from:

π(δ̄i(〈p, q〉, σ)) = π(〈δ̄i−1(p, σ), δi(q, 〈p, σ〉)〉) = δ̄i−1(p, σ) = δ̄i−1(π(〈p, σ〉), σ).

For the other direction we need to show how to build a cascade from T . Let

di = max{|Πm| : m ∈Mi−1}

be the size of the largest set of brothers at level i and let Qi = {q1, . . . , qdi}. We
define for every i a mapping θi : Mi → Qi whose restriction to any set of brothers is
an injection. This encoding induces a bijection ψ : M → P , which decomposes into
ψ0] · · ·] ψk with ψi : Mi → Pi defined inductively as ψ0(m∗) = θ0(m∗) and

ψi(m) = 〈ψi−1(π(m)), θi(m)〉.

The transition function at each level is defined for every 〈p, q〉 ∈ Pi as

δi(q, 〈p, σ〉) = ∆i(ψ−1(〈p, q〉), σ)

All that remains to be shown is that ϕ : P → Q, defined as

ϕ(p) = φk(ψ−1
k (p))

is a homomorphism and this follows from the fact that ψk is an isomorphism between
C and Nk and φ is an homomorphism from Nk to A.

The idea of the second direction is rather simple. We want to build a cascade whose
configurations encode the subsets corresponding to the nodes of the tree. Each level i
can be partitioned into several sets of nodes, each of which consisting of all brothers
sharing the same ancestor. Let m and m′ be nodes at level i − 1 and let Πm and Πm′

be their respective sets of sons. Since m and m′ are already encoded by distinct config-
urations p and p′, their sons can be encoded by extensions of p and p′ that use the same

set of states Qi whose size is the size of the largest set of brothers at level i. Thus we
encode elements of Πm by configurations in {p}×Qi and elements of Πm′ by config-
urations in {p′} × Qi. The transitions that correspond to the former will be labeled by
〈p, σ〉 and those of the latter by 〈p′, σ〉. Doing so, every injection induced by some σ on
some Πm becomes a permutation induced by 〈p, σ〉 on Qi. The hard part of the proof
of the full theorem is to show that this injection folding can be done without creating
spurious permutations (not implied by permutation subgroups of the automaton) and,
in particular, if A is non-counting there will be no permutations.

Fig. 4 shows how a particular choice of encoding may lead to the introduction of
spurious permutations. Automaton A is a union of two reset automata, hence clearly
counter-free. An STT for A has an upper level with two nodes m and m′ mapped
naturally to sets {q1, q3} and {q2, q4}. The first element in the cascade is the reset
automaton B1 whose statesA andB encode, respectively, these two subsets. The choice
of the second coordinate makes a difference. Let AC encode q1 while AD encodes
q3. Then we have two ways to encode q2 and q4. Encoding them with BC and BD,
respectively, the second element in the cascade is the identity automaton B2. However,
if we choose to encode q2 by BD and q4 by BC we obtain B′2 in which the letter (A, a)
induces a non-trivial permutation. As it turns out there is an additional condition on the
structure of the STT as well as a general encoding scheme that avoids this phenomenon.

a a
q1 q2

a a
A B

{q1, q3} {q2, q4}

a
q2q3

a
m m′

M1

M2

a

T :

q1 q4

a

a a

a a
q3 q4

B1:

B′2:
C D

(B, a) (A, a)

(A, a)

(A, a), (B, a) (A, a), (B, a)

C D

a a
A B

(B, a)

A :

B2:

B1:

Fig. 4. A counter-free automatonA, an STT with sons of m and m′ separated by the dashed line,
and two choices of encoding, the second leading to a permutation.

Definition 14 (Equivalence). Let A = (Σ,Q, δ) be a (complete) automaton and let
T = (Σ,M,∆, π, φ) be an STT for A.

1. Two subsets R1, R2 ⊆ Q are equivalent if there exist w,w′ ∈ Σ∗ such that
(a) δ(R1, w) = R2 and δ(R2, w

′) = R1;

(b) ww′ and w′w induce identities on R1 and R2, respectively;
This fact is denoted by R1

w,w′∼ R2 or simply R1 ∼ R2.
2. Two nodes m,m′ ∈Mi are equivalent if there exist w,w′ ∈ Σ∗ such that:

(a) ∆(m,w) = m′ and ∆(m′, w′) = m;
(b) φ(m)w,w

′

∼ φ(m′), in the sense of subset equivalence;
This fact is denoted as well by mw,w′∼ m′ or simply m ∼ m′.

Note that if w and w′ satisfy condition 1-(a) but not 1-(b), then there exist some u, u′

satisfying the latter. Since ww′ is a permutation on R1 and w′w is a permutation on
R2, there is some l such that (ww′)l and (w′w)l are identities. By letting u = w and
u′ = w′(ww′)l−1 we have R1

u,u′∼ R2. Equivalence between nodes implies an additional
constraint on the definition of φ over their sons.

Proposition 2. Let mw,w′∼ m′ be two equivalent nodes in an STT. Then for every r ∈
Πm there exists r′ ∈ Πm′ such that δ(φ(r), w) = φ(r′). Consequently |Πm| = |Πm′ |.

Proof: Suppose, on the contrary, that δ(φ(r), w) ⊂ φ(r′) and hence δ(φ(r′), w′) 6⊆
φ(r) which violates the STT definition.

Definition 15 (Holonomy Tree). A holonomy tree is an STT T = (Σ,M,∆, π, φ)
such that for every m,m′ ∈ Mi and σ ∈ Σ, such that ∆(m,σ) = m′, σ induces an
injection2 from Πm to Πm′ only if m ∼ m′.

To motivate this definition let us observe that injection folding is necessary in order to
transform an injection from Πm to Πm′ to a permutation on Qi. On the other hand, a
reset fromΠm to some r ∈ Πm′ remains a reset in Bi even ifΠm andΠm′ are encoded
using different states in Bi. The essence of the additional condition in the holonomy
tree is to restrict injection folding to occur only among sons of equivalent nodes where
permutations really exist. If m and m′ are not equivalent, σ will induce a reset from
Πm to Πm′ .

The proof of the equivalence between the existence of a holonomy tree and a cas-
caded decomposition satisfying condition 3 of Theorem 3 involves the following steps:

1. Associate with every node m in the holonomy tree a (possibly-trivial) permutation
group Hm called a holonomy group;

2. Provide an encoding scheme which guarantees that any permutation subgroup in
the cascade is isomorphic to a holonomy group;

3. Show that any holonomy group is homomorphic to a subgroup of XA.

Definition 16 (Holonomy Group). Let T = (Σ,M,∆, π, φ) be a holonomy tree with
Ni = (Σ,Mi, ∆i) being the automaton of level i and let N̂i = (Si,Mi, ∆i) be its ex-
pansion. The holonomy group Hm associated with a node m ∈Mi−1 is the restriction
of N̂i to Πm and to transformations that induce permutations on it.

It can be shown that when m ∼ m′, the groups Hm and Hm′ are isomorphic. The
procedure for state encoding and injection folding for an equivalence class of ∼ is
given below. The definition is inductive, assuming the encoding of the preceding levels
has already been completed.

2 When |Πm| = 1 we view σ as a partial reset, not an injection, and m ∼ m′ is not required.

Definition 17 (Faithful Injection Folding). Let {m1, . . .ml} be an equivalence class
of ∼ at level i− 1 whose elements are encoded by configurations {p1, . . . , pl}, respec-

tively and that for every j, m1
wj ,w

′
j∼ mj . Let M =

⋃
j Πmj be the set of all sons of

these nodes. We will use the set Qi = Πm1 to encode the ith coordinate of all ele-
ments ofM. The function θ : M→ Πm1 is defined for every mj and every r ∈ Πmj

as θ(r) = ∆(m,w′j). Then for every q ∈ Πm1 and for every mj and mj′ such that
∆i(mj , σ) = mj′ we let

δi(q, 〈pj , σ〉) = ∆i(q, wjσw′j′).

Proposition 3 (Injection Folding and Holonomy). For every non-leaf node m ∈
Mi−1 the permutation group (induced by letters of the form 〈p, σ〉) in cascade element
Bi constructed according to Definition 17 is isomorphic to Hm.

Proof: We need to show that each permutation in Bi is identical to a permutation inHm

and vice versa. One direction follows immediately from the injection folding procedure:
the action of 〈p, σ〉 onQi = Πm1 is defined to be identical to the action of somewjσw′j′
onΠm1 . For the other direction consider a word u = σ1 ·σ2 · · ·σl inducing a cycle from
m = m1 to itself passing through nodes m2,m3, . . . ,ml. Since each w′jwj induces an
identity on Πmj , the word

u′ = σ1 · w′2 · w2 · σ2 · w′3 · w3 · · ·σl

induces the same permutation on Πm as does u. All the remains to be shown is that the
word

〈p1, σ1〉 · 〈p2, σ2〉 · · ·
induces the same permutation on Πm as does u′ and this follows from defining the
action of 〈pj , σj〉 in Ai to be identical to that of wjσjw′j+1 in Ni.

Proposition 4 (Holonomy and Subgroups). The holonomy group Hm is homomor-
phic to the subgroup of XA associated with φ(m).

Proof: We need to show how to map a permutation s : φ(m)→ φ(m) to a permutation
s′ : Πm → Πm. This is done by letting, for every r ∈ Πm

r · s′ = φ−1(δ(φ(r), s)),

that is, s is applied to the subset φ(r) associated with r and the resulting set is de-
coded back into an element of Πm. The fact that φ−1 exists and is unique follows from
Proposition 2.

To complete the construction of the cascade from the holonomy tree we just need
to partition every level in the tree into equivalence classes of ∼, build a cascade com-
ponent with states corresponding to each class and apply to each equivalence class the
procedure of Definition 17.

Corollary 1. There exists a cascaded decomposition C = B1 ◦ · · · ◦ Bk ≤ϕ A, with
each Bi being a permutation-reset automaton and each permutation group homomor-
phic to a subgroup of XA, iff there exists a holonomy tree T for A isomorphic to the
configuration tree.

5 A Decomposition Algorithm

In this section we show how to build for an automaton A a holonomy tree whose size
is at most exponential in the size of A. The procedure involves the following steps (see
Fig. 6):

1. Construct from A a tree subset automaton (TSA). This construction which is sim-
ilar to the famous subset construction, computes all the subsets reachable from Q,
that is, {δ(Q,w) : w ∈ Σ∗}, plus the singleton sets which are not reachable from
Q. In addition the TSA admits a parenthood function and in order to make its tran-
sition function ancestor-preserving, some reachable subsets will be represented by
more than one node in the tree;

2. Compute a height function over the nodes and rearrange the tree into levels accord-
ing to the height;

3. Complete the levels by duplicating nodes and redirect transitions to make each level
a complete automaton.

It will then remain to show that a holonomy tree is obtained, from which the cascaded
decomposition follows. The subtle point is the rearrangement of the tree into levels so
as to restrict injections to occur only among sons of equivalent nodes. For a parenthood
function π we let π0(m) = m and πj(m) = π(πj−1(m)). We useΠm,Π∗m and π∗(m),
respectively, do denote sons, descendants and ancestors of m.

Definition 18 (Tree Subset Automaton). A tree subset automaton (TSA) for an au-
tomaton A = (Σ,Q, δ) is a tuple T = (Σ,M,∆, π, φ) where:

– M is a set of nodes with a distinguished root element m∗;
– π : M − {m∗} →M is a parenthood function, such that for every m 6= m∗, there

exists some j > 0 such that πj(m) = m∗;
– ∆ : M × Σ → M is an ancestor-preserving transition function, that is, for every
m,σ there is some j such that ∆(π(m), σ) = πj(∆(m,σ));

– φ : M → 2Q is a function mapping nodes to sets of states, satisfying
• The range of φ is {δ(Q,w) : w ∈ Σ∗} ∪ {{q} : q ∈ Q};
• φ(m∗) = Q;
• φ(∆(m,σ)) = δ(φ(m), σ)
• φ(m) ⊆ φ(π(m));
• No redundancy: φ(m) 6⊆ φ(m′) for any pair of brothers.

Algorithm A-TSA for constructing a TSA is depicted in Table 1. It is a typical on-the-fly
graph exploration algorithm which uses an auxiliary list L of newly-discovered nodes
(those for which the transition function has not yet been computed). The algorithm
works in two phases: first it computes nodes that correspond to sets of the form δ(Q,w),
determines their respective parents and computes ∆ for them in an ancestor-preserving
manner. The determination of the parent for a newly-created node r′ is illustrated in
Fig. 5. Note that m′ ∈ Π∗m′ and F = δ(φ(r), σ) ⊆ φ(m′) so that a node z ∈ Π∗m′
satisfying F = φ(r′) ⊆ φ(z) always exists. Note also that z may be non-unique if m′

has two incomparable descendants whose sets contain F and in this case an arbitrary
choice of a parent can be made. In the second phase of the algorithm we add to the

tree all the remaining singletons by adding to each node m sons that correspond to
singleton nodes not covered by the union of its existing sons. Then we compute ∆ for
the newly-added nodes according to the same principle.

Algorithm A-TSA

M := L := {m∗}; φ(m∗) := Q

repeat pick r ∈ L, with π(r) = m
for every σ ∈ Σ
F := δ(φ(r), σ)
m′ = ∆(m,σ)
if ¬∃r′ ∈M s.t. φ(r′) = F and π(r′) ∈ Π∗m′

create a node r′ with φ(r′) = F and insert it to L and M
let π(r′) be a minimal z ∈ Π∗m′ s.t. F ⊆ φ(z)
for every node z′ s.t. π(z′) = z and F ⊆ φ(z′)
π(z′) := r′

endif
∆(r, σ) := r′

remove r from L
until L = ∅

for every m ∈M
for every q ∈ φ(m)−

⋃
r∈Πm φ(r)

insert a new node r to M and L
φ(r) := {q}; π(r) := m

repeat
take r ∈ L, m = π(r)
for every σ ∈ Σ
F := δ(φ(r), σ)
m′ = ∆(m,σ)
Let r′ be a node with φ(r′) = F and π(r′) ∈ Π∗m′
∆(r, σ) := r′

remove r from L
until L = ∅

Table 1. The TSA Construction Algorithm

Proposition 5. Algorithm A-TSA terminates and produces a TSA for A.

Proof: All sets of the form δ(Q,w) as well as the other singletons are eventually cov-
ered by nodes and ancestor preservation is guaranteed by construction.

The next step involves the rearrangement of the nodes into levels according to a
height function that we define below. Note that the definition of node equivalence (Def-

m

· · ·

z

r′

z′

F

m′

r

σ

σ

Fig. 5. Determining the parent of r′ to be a minimal element of Π∗m′ which contains φ(r′);
Redirecting the parenthood of z′ from z to r′.

inition 14) holds also for TSA, and that apart from transitions among members of an
equivalence class of ∼, the transition graph of the TSA is acyclic.

Definition 19 (Height). A height function for a TSA T = (Σ,M,∆, π, φ) is a function
h : M → N defined inductively as

h(m) = 0 if |φ(m)| = 1

h(m) = max

max{h(r) + 1 : r ∈ Πm},
max{h(r) + 1 : ∃σ∆(m,σ) = r 6∼ m},
max{h(m′) : m ∼ m′}


In other words, h(m) is the length of the longest path from m to a singleton node,
not counting transitions among equivalent nodes. The height function can be computed
polynomially using a shortest-path algorithm variant. After computing the height we
partition M into M0] . . .]Mk with k = h(m∗) and Mi = {m ∈M : h(m) = k− i}.

The next step is to transform T = (Σ,M,∆, π, φ) into a balanced TSA T ′ =
(Σ,M ′, ∆′, π′, φ′) in which all the ancestral chains from a singleton to m∗ are of the
same length. The completion of each level with missing nodes is performed bottom up
by letting M ′k = Mk and then computing M ′i based on M ′i+1 as follows. For every
r ∈ M ′i+1 such that π(r) 6∈ Mi we create a new node m ∈ M ′i and let φ′(m) = φ(r),
π′(m) = π(r), π′(r) = m and ∆′(m,σ) = ∆(r, σ) for every σ. The mapping of
existing nodes remains the same, that is, φ′(m) = φ(m) when m ∈ M . As a result
of this procedure each node has an ancestor (possibly identical to itself) in every level.
The final step which transforms T ′ into a holonomy tree consists of lifting transitions
that go from a node m to a lower-level node m′ so that they preserve the level. In other
words, for every i, m ∈Mi and σ we let ∆i(m,σ) = m′′ where m′′ is the ancestor of
m′ = ∆(m,σ) at Mi. The whole procedure is demonstrated in Fig. 6-(a,b,c,d).

To prove that we obtain a holonomy tree we need to show that for every two nodes
m and m′, a letter induces an injection from Πm to Πm′ only if m ∼ m′. Suppose
∆(m,σ) = m′ and m 6∼ m′, both belonging to level i. This implies that in the TSA

1 2 3 4

a

a

a

b b a

b

b

1234

124 23

12 14

1 2

a

a

a

a

b

b

b

b

a

b

b

4
a

b

2

3

1

b

a b
b

a

a

a
b

a

(a) (b)

1234

124

12

1 2

a

a

a

b

14 23

3

b

b

b

a
4 21

a

b

b

a b
b

b aa

a b

a

b

a

1234
a

b

124

a

23

b

b

a

a

12
a

14 23

b

a

b

b

1 2
a

3

b b

2

a

14
a b

ba

b

aab a

(c) (d)

a

b

b

a

a

a

b

a

b

b

a

b b

a

a b
ba

b

aab a

124 23

231412

1 2 4 1 2 3

A

E F

B

DDC

EFFE

AD, a

AD, b

BC, a

AC, a

AC, b

b

a

a bA B

C D

E F

A, a

A, a

A, b A, b
B, a
B, b

AC, a

BD, b

AD, a

AD, b

BC, a

AC, b

BD, b

(e) (f)

Fig. 6. The decomposition process: (a) An automaton; (b) its TSA (parenthood indicated by
dashed lines); (c) the TSA rearranged according to height; (d) the holonomy tree obtained af-
ter completion and redirection; (e) state encoding; (f) the decomposition.

there was some node m′′ with h(m′′) < h(m) such that ∆(m,σ) = m′′ (Fig. 7-(a)).
After the rearrangement and completion procedure, m′′ is a node in level i + 1 and
σ induces a reset from Πm to it (Fig. 7-(b)). The injection at level i + 2 has been
separated into two resets induced by two distinct input letters. Fig. 6-(e,f) shows how
the holonomy tree is transformed to a cascade via state encoding. The global automaton
associated with the cascade and its homomorphism to the original automaton are shown
in Fig. 8.

m

m′′

(b)(a)

Mi

Mi+1

Mi+2

1
2

σ

m′m

m′′

(2, σ)

σ

σ

σ

(1, σ)

Fig. 7. The crux of the matter: (a) the situation before height rearrangement and completion with
an injection between non-equivalent nodes; (b) after the procedure the sons of m make a reset to
m′′ and the transition functions of their sons are defined over distinct alphabets.

Corollary 2 (Main Result). Every automaton A can be decomposed into a cascade
of permutation-reset automata, satisfying the conditions of Theorem 3, whose size is at
most exponential in the size of A.

The reason for the exponential blow-up is that to satisfy ancestor-preservation (which
is crucial for the hierarchical coordinate system underlying the cascade) some states
may need to split to exponentially-many copies, each representing a different class of
input histories that leads to the same state. The reader is invited to construct the holon-
omy tree for the automaton of Fig. 9.

6 Concluding Remarks

Let us sketch the historical roots of this construction. Among the numerous proofs of
the Krohn-Rhodes primary decomposition theorem those of Zeiger [15, 16] were more
automata oriented. Zeiger’s proof has been corrected and presented more clearly in
Ginzburg’s book [2] based on some constructs attributed to Yoeli [14]. Ginzburg’s proof

1 2 3 4

a

a

a

b b a

b

b

a

a

b

a

a

b

b

b

b

ADE

ACF

BDE BDF ADF

a

ACE

b
a

Fig. 8. The global automaton associated with the cascade. The homomorphism to the original
automaton is defined as ϕ(ACE) = ϕ(ADE) = 1, ϕ(ACF) = ϕ(BDE) = 2, ϕ(BDF) = 3
and ϕ(ADF) = 4.

a a a

b b b

ab

Fig. 9. The elevator automaton, the hardest counter-free automaton to decompose.

of the theorem contains some non-deterministic stages concerning the choice of semi-
partitions of Q. In addition, it does not discuss complexity issues explicitly. Another
incomplete proof in the same spirit appears in [3].

The proof in [2] inspired Eilenberg to give a slight generalization of the primary
decomposition, the holonomy decomposition ([1], pp. 43-50). The holonomy decom-
position is cleaner and determinizes the choice of semi-partitions. Its major drawback
is that it is a theorem on coverings of transformation semigroups and as such it pays
no attention to the labels of the generators of the semigroup, that is, the input alpha-
bet. Consequently, the outcome of the decomposition is not given explicitly as a valid
automaton over the original alphabet. Another cultural problem associated with this
construction is the elegant, concise and motivation-less algebraic style in which it is
written, which makes it hardly accessible to many. It remains to be seen if the present
exposition improves the situation..

As a final note, since this work has not undergone a complete review process, it
probably contains inaccuracies for which I apologize and urge the reader to notify me
of. I would like to thank O. Gauwin for proofreading and E. Asarin for helping me to
catch up with my former self.

References

1. S. Eilenberg. Automata, Languages, and Machines. Academic Press, 1976.
2. A. Ginzburg. Algebraic Theory of Automata. Academic Press, 1968.
3. J. Hartmanis and R.E. Stearns. Algebraic Structure Theory of Sequential Machines. Prentice-

Hall, 1966.
4. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computa-

tion. Addison-Wesley, 1979.

5. K. Krohn and J. Rhodes. Algebraic theory of machines. I. Prime decomposition theorem
for finite semigroups and machines. Transactions of the American Mathematical Society,
116:450–464, 1965.

6. O. Lichtenstein, A. Pnueli, and L.D. Zuck. The glory of the past. In Logic of Programs,
volume 193 of LNCS, pages 196–218, 1985.

7. O. Maler and A. Pnueli. Tight bounds on the complexity of cascaded decomposition of
automata. In FOCS, pages 672–682, 1990.

8. O. Maler and A. Pnueli. On the cascaded decomposition of automata, its complexity and
its application to logic. Unpublished manuscript http://www-verimag.imag.fr/
˜maler/Papers/decomp.pdf, 1994.

9. R. McNaughton and S. Papert. Counter-Free Automata. MIT Press Cambridge, Mass., 1971.
10. A.R. Meyer. A note on star-free events. J. ACM, 16(2):220–225, 1969.
11. J.-E. Pin. Varieties of Formal Languages. Plenum, 1996.
12. J.L. Rhodes and K. Krohn. Algebraic theory of machines. In Proc. Symp. on Math. Theory

of Automata. Polytechnic Press, Brooklyn, 1962.
13. M.-P. Schützenberger. On finite monoids having only trivial subgroups. Information and

Control, 8(2):190–194, 1965.
14. M. Yoeli. Decomposition of finite automata. Technical Report TR-10, US Office of Naval

Research, Information Systems Branch, Hebrew University, Jerusalem, 1963.
15. H.P. Zeiger. Cascade synthesis of finite-state machines. Information and Control, 10(4):419–

433, 1967.
16. H.P. Zeiger. Yet another proof of the cascade decomposition theorem for finite automata.

Mathematical Systems Theory, 1(3):225–228, 1967.

